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Linear Bandits

In round t = 1, 2, . . .
I Choose an action Xt from a set Dt ⊂ R

d.
I Receive a reward

〈Xt, θ∗〉+ random noise

I Weights θ∗ are unknown but fixed.
I Goal: Maximize total reward.



Motivation

I exploration & exploitation with side information
I action = arm = ad = feature vector
I reward = click



Outline

I Formal model & Regret
I Algorithm:

Optimism in the Face of Uncertainty principle
I Confidence sets for Least Squares
I Sparse models: Online-to-Confidence-Set Conversion



Formal model
Unknown but fixed weight vector θ∗ ∈ Rd.

In round t = 1, 2, . . .
I Receive Dt ⊂ R

d

I Choose an action Xt ∈ Dt

I Receive a reward

Yt = 〈Xt, θ∗〉+ ηt

Noise is conditionally R-sub-Gaussian i.e.

∀γ ∈ R E[eγηt | X1:t, η1:t−1] ≤ exp
(
γ2R2

2

)
.



Sub-Gaussianity

Definition
Random variable Z is R-sub-Gaussian for some R ≥ 0 if

∀γ ∈ R E[eγZ] ≤ exp
(
γ2R2

2

)
.

The condition implies that
I E[Z] = 0
I Var[Z] ≤ R2

Examples:
I Zero-mean bounded in an interval of length 2R

(Hoeffding-Azuma)
I Zero-mean Gaussian with variance ≤ R2



Regret

I If we knew θ∗, then in round t we’d choose action

X∗t = argmax
x∈Dt

〈x, θ∗〉

I Regret is our reward in n rounds relative to X∗t :

Regretn =

n∑
t=1

〈X∗t , θ∗〉−
n∑

t=1

〈Xt, θ∗〉

I We want Regretn /n→ 0 as n→∞



Optimism in the Face of Uncertainty
Principle

I Maintain a confidence set Ct ⊆ R
d such that θ∗ ∈ Ct

with high probability.
I In round t, choose

(Xt, θ̃t) = argmax
(x,θ)∈Dt×Ct−1

〈Xt, θt〉

I θ̃t is an “optimistic” estimate of θ∗
I UCB algorithm is a special case.



Least Squares
I Data (X1,Y1), . . . , (Xn,Yn) such that Yt ≈ 〈Xt, θ∗〉
I Stack them into matrices: X1:n is n× d and Y1:n is n× 1
I Least squares estimate:

θ̂n = (X1:nX
T
1:n + λI)−1XT

1:nY1:n

I Let Vn = X1:nX
T
1:n + λI

Theorem
If ‖θ∗‖2 ≤ S, then with probability at least 1 − δ, for all t, θ∗
lies in

Ct =

{
θ : ‖θ̂t − θ‖Vt ≤ R

√
2 ln

(
det(Vt)1/2

δdet(λI)1/2

)
+ S
√
λ

}

where ‖v‖A =
√

vTAv is the matrix A-norm.



Confidence Set Ct

θ̂t

θ∗

θ̃t+1

I Least squares solution θ̂t is the center of Ct

I θ∗ lies somewhere in Ct w.h.p.
I Next action θ̃t+1 is on the boundary of Ct



Comparison with Previous Confidence Sets
I Our bound:

‖θ̂t − θ∗‖Vt ≤ R

√
2 ln

(
det(Vt)1/2

δdet(λI)1/2

)
+ S
√
λ

I [Dani et al.(2008)] If ‖θ∗‖2, ‖Xt‖2 ≤ 1 then for a
specific λ

‖θ̂t −θ∗‖Vt ≤ R max
{√

128d ln(t) ln(t2/δ),
8
3

ln(t2/δ)

}
I [Rusmevichientong and Tsitsiklis(2010)] If ‖Xt‖2 ≤ 1

‖θ̂t − θ∗‖Vt ≤ 2Rκ
√

ln t
√

d ln t + ln(t2/δ) + S
√
λ

where κ = 3 + 2 ln((1 + λd)/λ).

Our bound doesn’t depend on t.



Regret of the Bandit Algorithm

Theorem ([Dani et al.(2008)])
If ‖θ∗‖2 ≤ 1 and Dt’s are subsets of the unit 2-ball with
probability at least 1 − δ

Regretn ≤ O(Rd
√

n · polylog(n, d, 1/δ))

We get the same result with smaller polylog(n, d, 1/δ)
factor.



Sparse Bandits

What if θ∗ is sparse?

I Not good idea to use least squares.
I Better use e.g. L1-regularization.
I How do we construct confidence sets?

Our new technique: Online-to-Confidence-Set Conversion
I Similar to Online-to-Batch Conversion, but very

different
I We start with an online prediction algorithm.



Online Prediction Algorithms
In round t

I Receive Xt ∈ Rd

I Predict Ŷt ∈ R
I Receive correct label Yt ∈ R
I Suffer loss (Yt − Ŷt)

2

No assumptions whatsoever on (X1,Y1), (X2,Y2), . . .

There are heaps of algorithms of this structure:
I online gradient descent [Zinkevich(2003)]

I online least-squares [Azoury and Warmuth(2001), Vovk(2001)]

I exponetiated gradient [Kivinen and Warmuth(1997)]

I online LASSO (??)
I SeqSEW [Gerchinovitz(2011), Dalalyan and Tsybakov(2007)]



Online Prediction Algorithms, cnt’d

I Regret with respect to a linear predictor θ ∈ Rd

ρn(θ) =

n∑
t=1

(Yt − Ŷt)
2 −

n∑
t=1

(Yt − 〈Xt, θ〉)2

I Prediction algorithms come with “regret bounds” Bn:

∀n ρn(θ) ≤ Bn

I Bn depends on n, d, θ and possibly X1,X2, . . . ,Xn and
Y1,Y2, . . . ,Yn

I Typically, Bn = O(
√

n) or Bn = O(log n)



Online-to-Confidence-Set Conversion

I Data (X1,Y1), . . . , (Xn,Yn) where Yt = 〈Xt, θ∗〉+ ηt

and ηt is conditionally R-sub-Gaussian.
I Predictions Ŷ1, Ŷ2, . . . , Ŷn

I Regret bound ρ(θ∗) ≤ Bn

Theorem (Conversion)
With probability at least 1 − δ, for all n, θ∗ lies in

Cn =

{
θ ∈ Rd :

n∑
t=1

(Ŷt − 〈Xt, θ〉)2

≤ 1 + 2Bn + 32R2 ln

(
R
√

8 +
√

1 + Bn

δ

)}



Optimistic Algorithm with Conversion

Theorem
If |〈x, θ∗〉| ≤ 1 for all x ∈ Dt and all t then with probability at
least 1 − δ, for all n, the regret of Optimistic Algorithm is

Regretn ≤ O
(√

dnBn · polylog(n, d, 1/δ,Bn)
)
.



Bandits combined with SeqSEW

Theorem ([Gerchinovitz(2011)])
If ‖θ‖∞ ≤ 1 and ‖θ‖0 ≤ p then SEQSEW algorithm has regret
bound

ρn(θ) ≤ Bn = O(p log(nd)) .

Suppose ‖θ∗‖2 ≤ 1 and ‖θ∗‖0 ≤ p. Via the conversion, the
Optimistic Algorithm has regret

O(R
√

pdn · polylog(n, d, 1/δ))

which is better than O(Rd
√

n · polylog(n, d, 1/δ)).



Open problems

I Confidence sets for batch algorithms e.g. offline
LASSO.

I Adaptive bandit algorithm that doesn’t need p
upfront.



Questions?

Read papers at
http://david.palenica.com/

http://david.palenica.com/
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