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Abstract

This thesis studies two problems in theoretical machine learning. The first part of the
thesis investigates the statistical stability of clustering algorithms. In the second part, we
study the relative advantage of having unlabeled data in classification problems.

Clustering stability was proposed and used as a model selection method in clustering
tasks. The main idea of the method is that from a given data set two independent sam-
ples are taken. Each sample individually is clustered with the same clustering algorithm,
with the same setting of its parameters. If the two resulting clusterings turn out to be
close in some metric, it is concluded that the clustering algorithm and the setting of its
parameters match the data set, and that clusterings obtained are meaningful. We study
asymptotic properties of this method for certain types of cost minimizing clustering al-
gorithms and relate their asymptotic stability to the number of optimal solutions of the
underlying optimization problem.

In classification problems, it is often expensive to obtain labeled data, but on the other
hand, unlabeled data are often plentiful and cheap. We study how the access to unlabeled
data can decrease the amount of labeled data needed in the worst-case sense. We propose
an extension of the probably approximately correct (PAC) model in which this question
can be naturally studied. We show that for certain basic tasks the access to unlabeled data
might, at best, halve the amount of labeled data needed.
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“The question of whether a computer can think
is no more interesting than the question of
whether a submarine can swim.”

— Edsger W. Dijkstra
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Part I

Stability of Clustering Algorithms
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Chapter 1

Introduction

A common machine learning task is to partition a given set of sample points into a collec-
tion of groups so that points within each group are similar to each other and points from
different groups are dissimilar. These tasks are referred to as clustering problems. As an
example of a clustering problem consider a statistician doing market analysis. Her data
set consists of a set of (potential) customers of a company and for each customer the data
set contains filled in answers of a questionnaire. She might want to identify a few rep-
resentative groups in the customer base. A more extreme example are Internet websites
such as http://news.google.com/ which aggregate news stories from many other
news websites. The goal is to group news stories according to their topic, so that they can
be presented coherently to the visitors of the website.

Even small clustering problems are impossible to solve by hand and they are com-
puted automatically on a computer using a clustering algorithm. Various clustering algo-
rithms have been invented and are in use today. Common clustering algorithms, which
we discuss in our thesis, are k-means and k-medians; see, for example, the book [15,
Chapter 10]. Roughly speaking, these algorithms find a set of k centers by minimizing a
certain cost function and then assign each sample point to its closest center.

Practical clusterings tasks are hard to specify a priori in such way so that the clustering
algorithm would produce a good and meaningful clustering. Thus, usually, the user has
to verify that the produced clustering is as she wanted. This might be possible to do
visually for example, but that is prohibitive if the dimensionality of the data is large.
Furthermore, sometimes the user trying to cannot even tell whether a given clustering is
good or not. This is especially true for problems where the task is to find some unknown
structure such as in the market analysis example.

Another issue is that, typically, the clustering algorithm used has several free param-
eters which are left for the user to choose. A common parameter, for example, is the
desired number of clusters. For each setting of the parameters the algorithm produces a
clustering and it is the user’s task to choose one setting of the parameters. In statistics and
machine learning the problem of choosing the setting of parameters is sometimes called
a model selection problem.

Ideally, one would like to have an automatic or semi-automatic model selection method
that would optimally select the parameters of a clustering algorithm and also somehow
verify that the clustering produced is meaningful. The so-called stability method was pro-
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posed for this purpose by several authors. See for example Ben-Hur et al. [9] and Lange
et al. [20, 21].

The basic idea of the stability method is that two (or more) subsamples from the data
set are drawn. Each subsample individually is clustered by the same clustering algorithm
with the same settings of its parameters. The resulting clusterings are compared and
if they are close in a certain metric, it is declared that the clustering algorithm is stable
and thus the produced clusterings are good and meaningful. On a high level, we can
view the stability method as conducting repetitions of the same “scientific” experiment
(i.e. clustering a subsample of the data) with the assumption that if we obtain the same
outcome multiple times then, perhaps, the outcome is “verified”.

This part of the thesis studies the theoretical properties of the stability method as the
sample size approaches infinity. We focus on the stability of clustering algorithms that
optimize a cost function, and in particular, we study the stability of the algorithms that
minimize the k-means and the k-medians cost. The main conclusion of our investigation
is that the stability of such clustering algorithms depends solely on the number of optimal
solutions of cost function associated with the data set. Based on our results, we hold the
opinion that the stability method is not well justified, which we support by giving several
examples.

This part of the thesis is based on conference articles by Ben-David et al. [8, 6].

3



Chapter 2

Definitions and Notation

We introduce the basic setup that will be used for the rest of this part of the thesis. The
idea is that a sample S = (x1, x2, . . . , xm) is generated i.i.d. according to some probability
distribution P over some domain X. The probability distribution P is meant to represent
the “whole” data set. A clustering algorithm receives the sample S as an input and out-
puts a clustering which for our purposes is simply a partition of X. The fundamental
notion which we study, is the clustering stability. Roughly speaking, the instability of
the clustering algorithm on P is the expected distance between clusterings output by the
algorithm on two independent samples of the same size coming from P. Of course, we
need to define what is the distance between two clusterings.

In the rest of this chapter we give all the mentioned words their technical mathematical
meaning. We assume that the reader is familiar with basics of probability theory and real
analysis. See for example the books by Resnick [24] and Shilov [27].

Definition 2.1 (Domain). A domain is a measurable space. That is, it is a pair (X,M) where X
is a non-empty set and M is a σ-algebra of subsets of X.

As is usual in mathematics, we assume that the σ-algebra M is clear from the context
and simply talk about the domain X.

Definition 2.2 (Clustering). Let (X,M) be a domain. A clustering C of the domain is a partition
of X into finitely many measurable sets. That is, C is a finite collection of pairwise disjoint elements
of M whose union is X. An element of a clustering C is called a cluster. We denote by ∼C the
equivalence relation induced by a clustering C. That is, x ∼C y means that points x, y ∈ X belong
to the same cluster of C. We use x 6∼C y to denote that x and y belong to different clusters of C. We
denote by C the set of all clusterings of the domain.1

Definition 2.3 (Sample). Let (X,M) be a domain. A sample is a finite sequence (x1, x2, . . . , xm)

of the points from X. The size of a sample is its length.

Definition 2.4 (Clustering Algorithm). Let (X,M) be a domain. A clustering algorithm
is a function A that maps a sample of any size to a clustering C of the domain X. Formally,
A : (

⋃∞
m=1 X

m)→ C.

1Every time we write C, the domain to which C refers to, should be clear from the context.
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Note that in practice a clustering computed by a clustering algorithm is only a parti-
tion of the sample points. However, clusterings produced by some clustering algorithms
have natural extensions to the whole domain.

The next definition formalizes the notion of distance between two clusterings. In prac-
tice, people often compare partitions of two different samples and quite naturally the dis-
tance measure they define depends on the samples themselves. In our formalism, we are
interested in computing distances between two partitions of the domain. It might seem
that there is no way how to do this in a data dependent way. However, the scenarios we
care about are those where the two samples arise from the same probability distribution
P. For such scenarios, it is natural to allow the distance between two partitions of the
domain to depend on P. In the next definition, we do exactly that.

Definition 2.5 (Clustering distance). Let P be a family of probability distributions over some
domain X. A clustering distance d is a family of pseudo-metrics on the set of all clusterings, C,
with values in [0, 1].2 The family is indexed by the elements of P. That is, formally, d is a function
d : P × C × C → [0, 1] such that for any probability measure P ∈ P and for any clusterings
C1,C2,C3 ∈ C satisfies the following axioms:

(i) dP(C1,C1) = 0, 3

(ii) dP(C1,C2) = dP(C2,C1) (symmetry),

(iii) dP(C1,C3) ≤ dP(C1,C2) + dP(C2,C3) (triangle inequality).

Note that for a clustering distance it can be the case that dP(C1,C2) = 0 and yet C1 6=
C2. A prototypic example of a clustering distance is the Hamming clustering distance.
For any probability measure P we define the Hamming clustering distance between two
clusterings C1 and C2 as

dP(C1,C2) = Pr
x∼P
x ′∼P

[(x ∼C1
x ′)⊕ (x ∼C2

x ′)]

where ⊕ denotes the logical XOR operation. In other words, Hamming distance is the
probability that the two clusterings C1 and C2 disagree on two randomly drawn pair of
points x and x ′.

It can be easily checked that the Hamming clustering distance is indeed a clustering
distance. The first two properties are trivially satisfied and the triangle inequality follows
from

dP(C1,C3) = Pr
x∼P
x ′∼P

[(x ∼C1
x ′)⊕ (x ∼C3

x ′)]

= Pr
x∼P
x ′∼P

[((x ∼C1
x ′)⊕ (x ∼C2

x ′))⊕ ((x ∼C2
x ′)⊕ (x ∼C3

x ′))]

≤ Pr
x∼P
x ′∼P

[(x ∼C1
x ′)⊕ (x ∼C2

x ′)] + Pr
x∼P
x ′∼P

[(x ∼C2
x ′)⊕ (x ∼C3

x ′)]

= dP(C1,C2) + dP(C2,C3) .

2The upper bound 1 on values of d is an arbitrary choice. Any positive finite number suffices.
3Note that we write the first parameter of d, the probability measure P, as a subscript.
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In this part of the thesis, when we write d or dP we mean either a generic clustering
distance or the Hamming clustering distance.

We finish the chapter with the definition of the fundamental notion of instability.

Definition 2.6 (Instability). Let P be a probability distribution over a domain X and d be a
(generic) clustering distance. The instability of a clustering algorithmA for sample sizem on the
probability distribution P is

instab(A, P,m) = E
S1∼Pm

S2∼Pm

dP(A(S1), A(S2)) .

The (asymptotic) instability of a clustering algorithm A on the probability distribution P is

instab(A, P) = lim sup
m→∞ instab(A, P,m) .

We say that algorithm A is stable for P if instab(A, P) = 0. If instab(A, P) > 0, we say that A
is unstable on P.
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Chapter 3

Optimization Algorithms

3.1 Optimization Schemes and Algorithms

In the statistical setting introduced in the previous chapter, often, the goal of a clustering
algorithm is to find the clustering that minimizes some cost function defined by the prob-
ability distribution P generating the data. We assume that the distribution P is unknown
and the only access to it is through an i.i.d. sample. The task of a clustering algorithm
is to minimize the cost function just from the sample. Clearly, for a clustering algorithm
there is no hope to minimize a function defined by some unknown probability distribu-
tion. What we have in mind, however, is that the algorithm minimizes the cost in the
asymptotic sense. That is, the cost of the clustering output by the algorithm converges to
the minimum cost as the sample size grows.

In this section we setup the general framework for the setting just described. Instead of
the names “cost” or “objective” which are more common in optimization and operations
research, we will use the traditional statistical name risk. Along the way, we talk about
empirical risk minimization (ERM) and we describe two centre based ERM algorithms:
k-means and k-medians that naturally fit our model. We close the chapter by proving risk
convergence of these two algorithms in Euclidean spaces.

Definition 3.1 (Optimization Scheme). An optimization scheme over a domainX is a quadru-
ple (Y,P, R, Γ) where Y is a non-empty set of solutions, P is a family of distributions over X,
R : P× Y → R is a risk function and Γ : Y → C is a function that maps solutions to clusterings.

Given an optimization scheme (Y,P, R, Γ) an element P ∈ P is called an instance of the
scheme. The optimal value of an instance P is

optR(P) = inf
y∈Y
R(P, y) .

A risk minimizer (or an optimal solution) for an instance P is an element y∗ ∈ Y such that
R(P, y∗) = optR(P). We denote by argminy∈Y R(P, y) the set of risk minimizers of P. This set is
formally defined as

argmin
y∈Y

R(P,C) =
{
y∗ ∈ Y : R(P, y∗) = optR(P)

}
.
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Figure 3.1: The figures shows a Voronoi diagram in the Euclidean plane R2 with 9 centers.
The centers are shown as crosses. The lines represent the boundaries of the clusters. The
metric ` is the Euclidean metric.

Note that an optimization scheme does not define any clustering algorithm. It barely
tells us what risk function we are interested in minimizing. In the next definition we
define what meant by an optimization algorithm. Its task is to (asymptotically) minimize
the risk. In principle, for an optimization scheme, there might exist many quite different
optimization algorithms with that property (or, perhaps, none). For this reason we keep
these two notions separate.

Before we proceed with the definition of an optimization algorithm let us take a small
detour. We give examples of two generic optimization schemes—the k-means scheme and
k-medians scheme. These two examples are generic in the sense that each of them repre-
sents in fact a class of optimization schemes that share a certain common structure.

All the components of the two schemes are the same except for the risk function. For
both of them, we require existence of a metric ` on the domain X. The second component
of the schemes, P, is an arbitrary family of distributions of interest. The set of solutions Y
is the set of k-tuples of elements of the domain, that is, Y = Xk.1 Thus a generic solution
can be written as (c1, c2, . . . , ck) and its components c1, c2, . . . , ck are called centers. The

1 The reasons why we use k-tuples of centres, as opposed to (multi)sets of centres of size k, is purely
technical and it will become obvious later. Namely, we will need to compute the derivative of a function
with values in Yk.
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function Γ maps a solution (c1, c2, . . . , ck) to the Voronoi diagram with centers c1, c2, . . . , ck,
which we denote Voronoi(c1, c2, . . . , ck). It is defined as a clustering with k clusters where
we assign to the i-th cluster all the domain points that are closer to the center ci than to
any other center cj 6= ci. (See Figure 3.1.) A domain point to which two or more centers
are equally close is assigned to exactly one of them according to some fixed tie breaking
rule. As for now, we leave the tie breaking rule unspecified; however in any instantiation
of these generic optimizations schemes it needs to be specified. Finally, we define the risk
functions. For k-means optimization scheme the risk function is2

R(P; c1, c2, . . . , ck) = E
x∼P

[
min

i=1,2,...,k
(`(x, ci))

2
]
. (3.1)

For k-medians optimization scheme the risk function is

R ′(P; c1, c2, . . . , ck) = E
x∼P

[
min

i=1,2,...,k
`(x, ci)

]
. (3.2)

We will need the following technical definition.

Definition 3.2. Let (Y,P, R, Γ) be an optimization scheme. An optimization algorithm is any
function B : (

⋃∞
m=1 X

m) → Y. The composition Γ ◦ B is called the clustering algorithm induced
by B.

Note that despite the name an optimization algorithm does not need to optimize any-
thing. The intention, however, is that an optimization algorithm for any instance P of an
optimization scheme converges to the optimal value of P.

Definition 3.3 (Risk Convergence). Let (Y,P, R, Γ) be an optimization scheme over a domain
X. Let B be an optimization algorithm. We say that B is risk converging for the optimization
scheme whenever for any instance P of the optimization scheme if an i.i.d. sample S ∼ Pm is
generated then asm→∞

R(P, B(S))→ optR(P) in probability.

More formally, B is risk converging if and only if for any P ∈ P, any ε > 0 and any δ > 0 there
exists a positive integerm0 such that for allm ≥ m0

Pr
S∼Pm

[R(P, B(S)) > opt(P) + ε] ≤ δ .

3.2 Empirical Risk Minimization

One natural approach to design an optimization algorithm for some optimization scheme
is empirical risk minimization (ERM). The basic idea behind ERM is that the algorithm
replaces the data generating distribution P by the empirical distribution defined by the
sample. ERM can be applied to the k-means and the k-medians optimization schemes
which leads to simple optimization algorithms for the schemes. The sole purpose of this
section is to present these two algorithms.

We start with the basic definition of the empirical distribution.
2To avoid having too many parentheses we use semicolon to separate the two formal parameters of the

risk function.
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Definition 3.4 (Empirical Distribution). Let (X,M) be a domain. For a sample S = (x1, x2, . . . , xm)

we denote by PS the empirical probability distribution of S. We define PS(M) for any measur-
able set M ⊆ X to be the fraction of the sample points of S that lies in M. Formally, for any
M ∈M

PS(M) =
1

m
|{i : 1 ≤ i ≤ m, xi ∈M}| . 3

ERM is suitable for optimization schemes with risk function that can be written as
R(P, y) = Ex∼P[L(x, y)] where L : X × Y → R is the so-called loss function and it is a
function of a domain point x and a solution y. The generic ERM algorithm for such an
optimization scheme on an input sample S = (x1, x2, . . . , xm) minimizes the empirical loss
R(PS, y) = 1

m

∑m
i=1 L(xi, y).

In both the k-means and the k-medians optimization scheme, introduced in the previ-
ous section, the risk function can be written via a loss function. We thus design generic
optimization algorithms B and B ′ for the generic k-means and the k-medians optimiza-
tion schemes respectively. The algorithms B, which we henceforth call the k-means ERM
algorithm, on an input S = (x1, x2, . . . , xm) outputs a solution (c1, c2, . . . , ck) which mini-
mizes

R(PS; c1, c2, . . . , ck) = E
x∼PS

[
min

i=1,2,...,k
(`(x, ci))

2
]

=
1

m

m∑
j=1

min
i=1,2,...,k

(`(xj, ci))
2
.

Similarly, the algorithm B ′, which we call k-medians ERM algorithm, on the input S outputs
a solution that minimizes

R ′(PS; c1, c2, . . . , ck) = E
x∼PS

[
min

i=1,2,...,k
`(x, ci)

]
=
1

m

m∑
j=1

min
i=1,2,...,k

`(xj, ci) .

We intentionally leave undefined the behavior of B and B ′ when R(PS, ·), R ′(PS, ·) respec-
tively have multiple minimizers.

A brief comment is necessary here. Computer scientists and statisticians when talking
about k-means and k-medians they often refer to a particular local search heuristic algo-
rithms for minimizing the empirical risks R and R ′. See for example the book by Duda
et al. [15, page 527]. In this thesis, however, when we talk about the k-means and the k-
medians algorithms, we mean the algorithms B and B ′, just defined, that compute exact
global minima of the empirical risks R and R ′ respectively. In particular, we ignore any
computational issues of how the minimization is carried out.

3.3 Risk Convergence of k-means and k-medians

In this section, we prove the risk convergence of k-means and k-medians ERM algorithms
if the domain is a bounded subset of a Euclidean space. Similar results were obtained by a
number of people. For k-means it has been done by Pollard [23] and Bartlett et al. [2]. For

3In the notation “PS” the symbol P bears no meaning. It is only a reminder that PS is a probability
distribution.
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both k-means and k-medians it has been done by Ben-David [4]. An independent recent
result of Biau et al. [10] show risk convergence of k-means in the real Hilbert space.

Our proof is new and has the advantage of being simple. The only non-trivial fact
it relies on is the famous result by Vapnik and Chervonenkis [31]. They prove that for
certain “small” classes of events the relative frequencies of the events uniformly converge
to their probabilities. For the k-means and k-medians risks R and R ′ we derive from their
result that

sup
y∈Y

|R(P, y) − R(PS, y)| and sup
y∈Y

|R ′(P, y) − R ′(PS, y)|

converge in probability to zero. The risk convergence of the algorithms B and B ′ easily
follows from that.

We state the result of Vapnik and Chervonenkis as Lemma 3.6. The proof of the lemma
can found in the Vapnik and Chervonenkis’ original paper [31] and books [30, 29, 13, 14,
1]. In order to phrase the lemma, we need first to define the crucial notion of Vapnik-
Chervonenkis dimension of a class of sets.

Definition 3.5 (VC-dimension). Let A be a class of subsets of a domainX. Vapnik-Chervonenkis
dimension (abbreviated as VC-dimension) of A and denoted by VC-dim(A) is the largest inte-
ger n such that there exists a subset S ⊆ X of size n such that

|{M ∩ S : M ∈ A}| = 2n .

In other words, VC-dim(A) is the largest cardinality of subset S ⊆ X such that for any subset
S ′ ⊆ S there existsM ∈ A such that S ′ = S ∩M.

Lemma 3.6 (Vapnik-Chervonenkis). If A is a family of measurable subsets of (X,M) with
VC-dim(A) <∞, and P is any probability distribution P over X, then for a sample S ∼ Pm

sup
A∈A

|PS(A) − P(A)| → 0 in probability.

In the rest of this section we assume that the domain is a bounded subset of a Eu-
clidean space RN. The metric `we use on the domain is the standard Euclidean metric. It
is defined for any x = (x1, x2, . . . , xN), x ′ = (x ′1, x

′
2, . . . , x

′
N) ∈ RN as

`(x, x ′) = ‖x− x ′‖2 =

√√√√ N∑
j=1

(xj − x
′
j)
2 .

This metric fully specifies the k-means and k-medians risks R and R ′ defined at the begin-
ning of the chapter. We make X a measurable space by endowing it with the σ-algebra of
the Borel sets of (X, `).

Theorem 3.7 (Uniform Convergence of k-means and k-medians). Let N be any positive
integer, X be any bounded subset of RN, let P be any probability distribution over (the σ-algebra
of Borel sets of) X. Let S = (x1, x2, . . . , xm) be an i.i.d. sample from P. Then, asm→∞,

sup
c1,c2,...,ck∈X

|R(P; c1, c2, . . . , ck) − R(PS; c1, c2, . . . , ck)|→ 0 in probability,

sup
c1,c2,...,ck∈X

|R ′(P; c1, c2, . . . , ck) − R ′(PS; c1, c2, . . . , ck)|→ 0 in probability.
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Proof. Let B(x, r) ⊆ X denote an open ball of radius r centered at x ∈ X. Consider the class
of sets

A =

{
k⋃
i=1

B(ci, r) : r ≥ 0, c1, c2, . . . , ck ∈ X
}
.

This class has finite VC-dimension. To prove it, we first employ Dudley’s result [16] which
says that the class of open balls B = {B(x, r) : x ∈ X, r ≥ 0} has VC-dimension (at most)
N+ 1. Second, by Sauer’s Lemma [1, Lemma 3.6], for any finite subset S ⊆ X, we bound

|{S ∩ B : B ∈ B}| ≤
n+1∑
i=0

(
|S|

i

)
. (3.3)

Third, for any finite subset S, we have

|{S ∩M : M ∈ A}| =

∣∣∣∣∣
{
S ∩

(
k⋃
i=1

B(ci, r)

)
: r ≥ 0, c1, c2, . . . , ck ∈ X

}∣∣∣∣∣
≤
∣∣∣∣∣
{
S ∩

(
k⋃
i=1

Bi

)
: B1, B2, . . . , Bk ∈ B

}∣∣∣∣∣
≤ |{S ∩ B : B ∈ B}|

k
. (3.4)

By combining the inequalities (3.3) and (3.4), we obtain

|{S ∩M : M ∈ A}| ≤
(
N+1∑
i=0

(
|S|

i

))k
. (3.5)

The last expression is a polynomial in |S| of degree k(N + 1). This polynomial grows
“slower” than the exponential 2|S|. Therefore, there exists an integer n ′ such that if the
subset S ⊆ X has size more than n ′, then the right hand side of (3.5) is strictly less than
2|S|. Thus, VC-dim(A) is at most n ′.4

Now, by the uniform convergence result of Vapnik-Chervonenkis (Lemma 3.6), as
m→∞,

sup
M∈A

|P(M) − PS(M)|→ 0 in probability.

Let D be the diameter of X. For probability distribution P over X and any centers

4One can even compute an explicit upper bound on the VC-dimension. See Exercise 4.2 in the book [14].
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c1, c2, . . . , ck ∈ X,

R(P; c1, c2, . . . , ck) = E
x∼P

[
min
1≤i≤k

‖ci − x‖22
]

=

∫D2

0

Pr
x∼P

[
min
1≤i≤k

‖ci − x‖22 ≥ t
]
dt

=

∫D2

0

1− Pr
x∼P

[
min
1≤i≤k

‖ci − x‖22 < t
]
dt

= D2 −

∫D2

0

P

(
k⋃
i=1

B(ci,
√
t)

)
dt

and similarly

R ′(P; c1, c2, . . . , ck) = E
x∼P

[
min
1≤i≤k

‖ci − x‖2
]

=

∫D
0

Pr
x∼P

[
min
1≤i≤k

‖ci − x‖2 ≥ t
]
dt

=

∫D
0

1− Pr
x∼P

[
min
1≤i≤k

‖ci − x‖2 < t
]
dt

= D−

∫D
0

P

(
k⋃
i=1

B(ci, t)

)
dt .

Therefore, for an i.i.d. sample S from any probability distribution P

sup
c1,c2,...,ck∈X

|R(P; c1, c2, . . . , ck) − R(PS; c1, c2, . . . , ck)|

= sup
c1,c2,...,ck∈X

∣∣∣∣∣
∫D2

0

P

(
k⋃
i=1

B(ci,
√
t)

)
− PS

(
k⋃
i=1

B(ci,
√
t)

)∣∣∣∣∣dt
≤ sup
c1,c2,...,ck∈X

∫D2

0

∣∣∣∣∣P
(

k⋃
i=1

B(ci,
√
t)

)
− PS

(
k⋃
i=1

B(ci,
√
t)

)∣∣∣∣∣dt
≤ D2 sup

c1,c2,...,ck∈X
sup
t≥0

∣∣∣∣∣P
(

k⋃
i=1

B(ci,
√
t)

)
− PS

(
k⋃
i=1

B(ci,
√
t)

)∣∣∣∣∣
= D2 sup

M∈A

|P(M) − PS(M)| → 0 in probability
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and similarly

sup
c1,c2,...,ck∈X

|R ′(P; c1, c2, . . . , ck) − R ′(PS; c1, c2, . . . , ck)|

= sup
c1,c2,...,ck∈X

∣∣∣∣∣
∫D
0

P

(
k⋃
i=1

B(ci, t)

)
− PS

(
k⋃
i=1

B(ci, t)

)∣∣∣∣∣dt
≤ sup
c1,c2,...,ck∈X

∫D
0

∣∣∣∣∣P
(

k⋃
i=1

B(ci, t)

)
− PS

(
k⋃
i=1

B(ci, t)

)∣∣∣∣∣dt
≤ D sup

c1,c2,...,ck∈X
sup
t≥0

∣∣∣∣∣P
(

k⋃
i=1

B(ci, t)

)
− PS

(
k⋃
i=1

B(ci, t)

)∣∣∣∣∣
= D sup

M∈A

|P(M) − PS(M)| → 0 in probability.

�

Corollary 3.8 (Risk Convergence of k-means and k-medians). Consider the instantiations of
the k-means and k-medians risks optimization schemes over a bounded subset of a Euclidean space
RN with Euclidean metric. The optimization algorithms B,B ′ are risk converging for the schemes
respectively.

Proof. We prove the corollary only for k-means. The argument for k-medians is the same.
Fix any ε > 0 and any δ > 0. By the above Theorem, there exists m0 such that for all
m ≥ m0 with probability 1− δ,

sup
c1,c2,...,ck∈X

|R(P; c1, c2, . . . , ck) − R(PS; c1, c2, . . . ck)| ≤ ε/2 . (3.6)

Suppose that the random event (3.6) occurs. Then, if we denote by y∗ a minimizer of
R(P, ·), then since B(S) is a minimizer of R(PS, ·), we have

R(P, B(S)) ≤ R(PS, B(S)) + ε/2

≤ R(PS, y
∗) + ε/2

≤ R(P, y∗) + ε/2+ ε/2

= optR(P) + ε .

Thus with probability 1 − δ, |R(P, B(S)) − optR(P)| ≤ ε for any m ≥ m0. Since ε and δ are
arbitrary, risk convergence of B follows. �
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Chapter 4

Stability of Optimization Algorithms

4.1 The Stability Theorem

In this section we investigate the stability of clustering algorithms induced by optimiza-
tion algorithms that are risk converging. Speaking informally, we show that their stability
depends only on the existence of a unique risk minimizer of the risk function. In this sec-
tion we prove the Stability Theorem (Theorem 4.1) which is essentially one implication
of this statement. The theorem states that under a certain condition on the risk function
and the clustering distance, which we call inverse continuity condition, the existence of a
unique risk minimizer guarantees that any clustering algorithm induced by a risk con-
verging optimization algorithm is stable.

Note that the Stability Theorem applies also to algorithms which are not ERM. Its
main application, however, are the k-means and k-medians ERM algorithms. We apply
the Stability Theorem to these algorithms in Section 4.2 for the case where the domain is
a convex compact subset of an Euclidean space RN.

Theorem 4.1 (Stability Theorem). Let (Y,P, R, Γ) be a risk optimization scheme over a domain
X, and let d : P× C× C→ [0, 1] be clustering distance. Let P ∈ P be a probability measure, and
let y∗ be a risk minimizer for P. Suppose that the following inverse continuity condition holds:

∀η > 0 ∃ ε > 0 ∀y ′ ∈ Y
(
R(P, y ′) ≤ optR(P) + ε =⇒ dP(Γ(y

′), Γ(y∗)) ≤ η
)

If A is any risk converging optimization algorithm for the scheme (Y,P, R, Γ), then the clustering
algorithm Γ ◦A induced by A is stable on P.

Roughly speaking, the inverse continuity condition requires that the set of “ε-minimizers”
of the risk function is contained in a small neighborhood of the unique risk minimizer.

Note that, formally, the inverse continuity condition implies that dP(Γ(y∗), Γ(y ′∗)) = 0

for any (other) risk minimizer y ′∗ ∈ argminy∈Y R(P, y). Therefore, y∗ can be thought of as
a unique risk minimizer for P.

Proof of the Stability Theorem. LetA be any risk converging optimization algorithm for (Y,P, R, Γ).
Pick any δ > 0 and any η > 0. The inverse continuity condition implies that there exists
ε > 0 such that

∀y ′ ∈ Y R(P, y ′) ≤ optR(P) + ε =⇒ dP(Γ(y
′), Γ(y∗)) ≤ η
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Since A is risk converging there existsm0 such that for allm ≥ m0

Pr
S∼Pm

[
R(P,A(S)) > optR(P) + ε

]
≤ δ .

Combining these two facts thus implies that for allm ≥ m0

Pr
S∼Pm

[dP(Γ(A(S)), Γ(y∗)) > η] ≤ Pr
S∼Pm

[
R(P,A(S)) > optR(P) + ε

]
≤ δ .

Therefore, for allm ≥ m0 we upper bound instability as

instab(Γ ◦A, P,m) = E
S1∼Pm

S2∼Pm

dP(Γ(A(S1)), Γ(A(S2)))

≤ E
S1∼Pm

S2∼Pm

[dP(Γ(A(S1)), Γ(y
∗)) + dP(Γ(y

∗), Γ(A(S2)))]

= 2 E
S∼Pm

dP(Γ(A(S)), Γ(y∗))

≤ 2
(
η · Pr

S∼Pm
[dP(Γ(A(S)),C∗) ≤ η] + 1 · Pr

S∼Pm
[dP(Γ(A(S)),C∗) > η]

)
≤ 2

(
η+ Pr

S∼Pm

[
R(P,A(S)) > optR(P) + ε

])
≤ 2 (η+ δ)

Since η, δ are arbitrary, limm→∞ instab(A, P,m) = 0. �

4.2 Stability of k-means and k-medians

We apply the Stability Theorem to a particular instantiation of the k-means and k-medians
optimizations schemes and the ERM optimization algorithms B and B ′ from Section 3.2.
The instantiation we have in mind is the case when the domain X is a compact convex
subset of an Euclidean space RN with non-empty interior. The domain is endowed with
σ-algebra of Borel sets and Euclidean metric `, defined for any x = (x1, x2, . . . , xN), x ′ =

(x ′1, x
′
2, . . . , x

′
N) ∈ X as

`(x, x ′) = ‖x− x ′‖2 =

√√√√ N∑
j=1

(xj − x
′
j)
2 ,

and P is the set of all absolutely continuous probability distributions over X, densities
of which are bounded. Precisely, P belongs to P if and only if there exists a measurable
function f : X → R+

0 such that for any Borel set M ⊂ X, P(M) is defined as the Lebesgue
integral

P(M) =

∫
M

f(x) dx ,

and there exists a number G such that for all x ∈ X, f(x) ≤ G.1 Our goal is to prove that

1Note that G depends on P.
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Theorem 4.2 (Stability of k-means and k-medians). Let X be a convex compact subset of
RN with non-empty interior and let k ≥ 2 be an integer. Let (Y,P, R, Γ) ((Y,P, R ′, Γ)) be the
instantiation of the k-means (k-medians) optimization scheme over the domain X where P is the
set of absolutely continuous probability distributions over X with bounded densities. Let d be the
Hamming clustering distance. For any instance P ∈ P, if there exists up to permutation of the
centers unique risk minimizer y∗ of R (R ′), then the clustering algorithm Γ ◦ B (Γ ◦ B ′) is stable
on P.

Let us clarify what is meant by saying that y∗ is unique risk minimizer of R up to
permutation of the centers. If we write out y∗ = (c∗1, c

∗
2, . . . , c

∗
k), then we say that y∗ is

unique up to permutation of the centers if and only if

{y ′ ∈ Y : R(P, y ′) = optR(P)} = {(c∗π(1), c
∗
π(2), . . . , c

∗
π(k)) : π ∈ Sk}

where Sk denotes the set of all permutations on {1, 2, . . . , k}. The definition for R ′ is the
same. In the proof below we use the notation π(y) to denote (cπ(1), cπ(2), . . . , cπ(k))

where y = (c1, c2, . . . , ck) ∈ Y and π ∈ Sk.

Proof. We prove the theorem for k-means. The proof for k-medians is analogous. Con-
sider any probability distribution P ∈ P. By Theorem 3.7 the algorithm B is risk converg-
ing. Therefore, we need to verify the inverse continuity condition.

For that purpose we define the metric D on Y = Xk as

D(y, y ′) = D((c1, c2, . . . , ck), (c
′
1, c
′
2, . . . , c

′
k)) =

√√√√ k∑
i=1

‖ci − c ′i‖22 .

that is,D is simply the Euclidean metric on a subset of RNk. Since X is compact, the metric
space (Y,D) is also compact. Recall that P has a density function which is bounded. Also
recall that X is compact and hence its has finite diameter. These two facts imply that the
function R(P, ·) : Y → R is a continuous function on the metric space (Y,D).

The first claim that we make is that the following “inverse continuity” holds:

∀ ζ > 0 ∃ ε > 0 ∀y ′ ∈ Y
[
R(P, y ′) ≤ optR(P) + ε =⇒ (∃π ∈ Sk D(y ′, π(y∗)) ≤ ζ)

]
.

The claim follows from continuity of R(P, ·) : Y → R, compactness of (Y,D) and unique-
ness of y∗. To give a more detailed proof of the claim, consider any ζ > 0. Since Y is
compact it can be covered by finitely many closed balls b1, b2, . . . , bn each of radius ζ/2.
Each ball bj is itself compact and hence R(P, ·) attains minimum mj = miny∈bj

R(P, y).
Let m∗ = min{m1,m2, . . . ,mj} = optR(P) be the minimum of the minima and let m ′ =

min ({m1,m2, . . . ,mn} \ {m∗}) be the second smallest minimum. In the case when m1 =

m2 = · · · = mn we definem ′ = m∗+1. Let ε = (m ′−m∗)/2. Consider any y ′ ∈ Y that sat-
isfies R(P, y ′) ≤ optR(P) + ε. If y ′ lies in a ball bj for some j, thenmj = m∗ since otherwise
R(P, y ′) ≥ m ′ = optR(P) + ε/2 > optR(P) + ε which is a contradiction. Consider an arbi-
trary ball bj in which y ′ lies. (Since the balls cover Y, there exists at least one such ball.)
Since mj = m∗ and bj is compact, there exists a minimizer y ′∗ ∈ bj, R(P, y ′∗) = optR(P).
Since y ′∗ and y ′ lie in the same ball of radius ζ/2,D(y ′, y ′∗) ≤ ζ. Finally, since y∗ is unique

17



up to permutation of the centers, there exists π ∈ Sk such that y ′∗ = π(y∗) and the claim
follows.

The second claim that we make is that

∀η > 0 ∃ζ > 0 ∀y ′ ∈ Y ((∃π ∈ Sk D(y ′, π(y∗)) ≤ ζ) =⇒ dP(Γ(y
′), Γ(y∗)) ≤ η) .

The claim follows from boundedness of density of P, boundedness of X and that the
centers (c∗1, c

∗
2, . . . , c

∗
k) of y∗ have certain positive separation

∆ = min
1≤i<j≤k

‖c∗i − c∗j ‖2 .

Note that if the separation ∆ was not positive, then two centers would be collocated. But
in such case one of the centers could be moved, provided that |X| > 1, without increasing
the risk R(P, ·), which would contradict uniqueness of y∗. (If |X| = 1, the claim trivially
follows.)

To prove the second claim, let η > 0 and consider ζ ≤ ∆/2 which we specify later.
Let y ′ = (c ′1, c

′
2, . . . , c

′
k) be any solution such that D(y ′, π(y∗)) ≤ ζ for some π ∈ Sk.

For notational convenience and without loss of generality assume that π is the identity
permutation. The minimum distance ∆ ′ = min1≤i<j≤k ‖c ′i − c ′j‖2 between centers of y ′ is
at least ∆− η ≥ ∆/2. Consider, for any i 6= j, 1 ≤ i, j ≤ k, the “bisecting” halfspaces

h∗i,j = {x ∈ RN : (c∗i − c∗j )
Tx ≥ (c∗i − c∗j )

T (c∗i + c∗j )/2}

h ′i,j = {x ∈ RN : (c ′i − c
′
j)
Tx ≥ (c ′i − c

′
j)
T (c ′i + c

′
j)/2} .

The i-th cells of Voronoi(c∗1, c
∗
2, . . . , c

∗
k) and Voronoi(c ′1, c

′
2, . . . , c

′
k) can be written as

C∗i =
⋂
j=1...k
j 6=i

(
X ∩ h∗i,j

)
and C ′i =

⋂
j=1...k
j6=i

(
X ∩ h ′i,j

)
respectively. Let Si,j be the symmetric difference of (X∩h∗i,j) and (X∩h ′i,j). Since ‖c ′i−c∗i‖2 ≤
η, ‖c ′j − c∗j ‖2 ≤ η, ‖c ′i − c ′j‖2 ≥ ∆/2, ‖c∗i − c∗j ‖2 ≥ ∆ and X has finite diameter, the constant
ζ can be chosen sufficiently small so that the Euclidean volume of Si,j is arbitrarily small.
Since P is absolutely continuous and has bounded density, ζ can also be chosen small
enough so that the probability mass P(Si,j) is arbitrarily small. More precisely, ζ can be
chosen so that for any P(Si,j) ≤ η/k2 for any i 6= j

dP(Γ(y
′), Γ(y∗)) ≤ Pr

x∼P
x ′∼P

[
x ∈

⋃
1≤i<j≤k

Si,j ∨ x ′ ∈
⋃

1≤i<j≤k

Si,j

]

≤ 2P
( ⋃
1≤i<j≤k

Si,j

)
≤ η .

Since y ′ was arbitrary, the claim is proved.
Combining the two claims in an obvious way implies the inverse continuity condition

in the Stability Theorem. Therefore by the Stability Theorem the clustering algorithm Γ ◦B
is stable on P. �
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Chapter 5

Instability Because of Symmetry

So far we have looked at conditions which guarantee that a clustering algorithm is asymp-
totically stable. Now we investigate conditions which imply that a clustering algorithm
is unstable. One such condition is symmetry.

Before we dive into technical details we illustrate the idea on a simple example. Con-
sider the output of the k-means ERM algorithm B from Section 3.2 on samples coming
from a distribution P over the Euclidean plane R2 depicted on Figure 5.1. For k = 2 there
are, up to permutation of the centers, exactly two risk minimizers (c1, c2) and (c ′1, c

′
2) of

the k-means risk. The risk minimizers are depicted on Figure 5.2. Notice that P as well as
the risk minimizers are symmetric with respect the group generated by the rotation of the
plane by 90◦ around the mean of the distribution. It is not hard to see that asm→∞with
probability approaching 1/2 the algorithm B outputs a solution approximately equal to
(c1, c2) and with probability approaching 1/2 it outputs a solution approximately equal
to (c ′1, c

′
2). Thus because of symmetry B for k = 2 is unstable on P.

Symmetries are certain types of transformations. Recall that if T : X → X ′ is a mea-
surable transformation between two measurable spaces (X,M) and (X ′,M ′), then for any
probability distribution P over X, T induces a probability measure over X ′. The induced
measure is denoted by P ◦ T−1 and defined for any measurable setM ′ ⊆ X ′ as

(P ◦ T−1)(M ′) = P(T−1(M ′)) .

In a similar fashion, for any clustering C = {C1, C2, . . . , Ck} of X, T induces a clustering of
X ′. We denote the induced clustering by T(C) and define it as

T(C) = {T(C1), T(C2), . . . , T(Ck)} .

Likewise, for any sample S = (x1, x2, . . . , xm) ∈ Xm, T induces a sample T(S) ∈ (X ′)m

which we define as T(S) = (T(x1), T(x2), . . . , T(xm)). Finally, for an event E ⊆ Xm, T
induces an event T(E) which we define as T(E) = {T(S) : S ∈ E}.

Definition 5.1 (Transformation Invariance). Let (Y,P, R, Γ) be an optimization scheme over a
domain X, B be an optimization algorithm for the scheme, d : P× C× C→ [0, 1] be a clustering
distance. Let T : X → X be a measurable bijection and U : Y → Y be a bijection on the set of
solutions.
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Figure 5.1: The picture shows a discrete probability distribution P over R2 concentrated
on 4 vertices of a square. Each vertex has probability mass 1/4.

c1 c2

c′
2

c′
1

Figure 5.2: The picture shows two risk minimizers (c1, c2) and (c ′1, c
′
2) of the k-means

risk, k = 2, for the distribution P shown on Figure 5.1. Up to permutation of the centers
these are the only risk minimizers.

• We say that d is T -invariant if for any probability distribution P ∈ P also P ◦ T−1 lies in
P, and furthermore for any clusterings C1,C2 ∈ C

dP◦T−1(T(C1), T(C2)) = dP(C1,C2) .
1

• We say that the risk function R is (T,U)-invariant if for any instance P ∈ P

R(P ◦ T−1, U(y)) = R(P, y) .

• We say that B is (T,U)-invariant when B(T(S)) = U(B(S)) asymptotically almost surely2.
Formally,

lim
m→∞ Pr

S∼Pm
[B(T(S)) = U(B(S))] = 1 .

• We say that T and U commute with respect to Γ if for any P ∈ P and any solution y ∈ Y

dP(T(Γ(y)), Γ(U(y))) = 0 .

For example, if X is any domain, T : X→ X is any measurable bijection, P is the family
of all distributions over X, then the Hamming clustering d is T -invariant. In essence,
it means that the Hamming clustering distance does not depend on the identity of the
domain points.

1Note the non-trivial fact that the clusters of T(C1) and T(C2) are measurable.
2Asymptotically almost sure convergence is used in the theory of random graphs. Usually it is abbrevi-

ated as a.a.s.
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a
d

b

c

1/6 1/6

1/6

1/2

Figure 5.3: The figure shows a discrete probability distribution P over R2 concentrated
on four points {a, b, c, d}. The probability masses are P({a}) = P({b}) = P({c}) = 1/6 and
P({d}) = 1/2. Any measurable bijection T : R2 → R2 such that T({a, b, c}) = {a, b, c} and
T(d) = d is a symmetry of P. Note that the geometric positions of the points a, b, c, d are
not symmetric in any way whatsoever.

The risks R and R ′ of the generic k-means and k-medians optimization schemes over
a metric space (X, `) are (T,U)-invariant if T is an isometry of (X, `), that is, when

∀x, x ′ ∈ X `(T(x), T(x ′)) = `(x, x ′) ,

and U : Y → Y is defined in terms of T for any (c1, c2, . . . , ck) ∈ Y as

U(c1, c2, . . . , ck) = (T(c1), T(c2), . . . , T(ck)) .

When X = Rd, P is the set of absolutely continuous distributions, then T and U commute
with respect to Γ . In this case, the ERM algorithms B and B ′ are (T,U)-invariant. Note that,
however, B(T(S)) = U(B(S)) might fail for certain samples S. For example, the equality
might fail to hold if R(PS, ·) has multiple optimal solutions. For this reason the definition
requires only B(T(S)) = U(B(S)) to hold only asymptotically almost surely.

Definition 5.2 (Measure-preserving Symmetry). Let P be a probability distribution over a
domain X. A measurable bijection T : X → X is said to be a symmetry of P if P ◦ T−1 = P.
That is, T is a symmetry of P if for any measurable M ⊂ X, T−1(M) is also measurable and
P(T−1(M)) = P(M).

An example of a measure-preserving symmetry is shown on Figure 5.3.
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Now, we describe the conditions under which symmetry leads to instability.

Theorem 5.3 (Instability Because of Symmetry). Let (Y,P, R, Γ) be an optimization scheme
overX. LetB be a risk converging algorithm for the optimization scheme. Let d : P×C×C→ [0, 1]

be clustering distance. Let P ∈ P be an instance.
Let G be a finite set of measurable transformations T : X → X which forms a group under

function composition and has order at least 2. Let φ be a function that maps any element T ∈ G
to a bijection U : Y → Y and φ is a group homomorphism, that is, for any T, T ′ ∈ G, φ(T ◦ T ′) =

φ(T) ◦ φ(T ′).
Suppose for any T ∈ G,

• d is T -invariant,

• R is (T,φ(T))-invariant,

• B is (T,φ(T))-invariant,

• T and φ(T) commute with respect to Γ ,

• T is a symmetry of P.

Let y∗ be a risk minimizer of R(P, ·). If for every non-indentity element T ∈ G

dP(Γ(y
∗), T(Γ(y∗))) > 0 .

and the following generalized inverse continuity condition holds

∀η > 0 ∃ ε > 0 ∀y ′ ∈ Y
[
R(P, y ′) ≤ optR(P) + ε =⇒ (∃T ∈ G dP(Γ(y ′), T(Γ(y∗))) ≤ η)

]
then the induced algorithm Γ ◦ B is unstable on P.

Proof. Let ∆ = min {dP(Γ(y
∗), T(Γ(y∗)) : T ∈ G}. The generalized inverse continuity con-

dition guarantees that there exists ε > 0 such that for all y ′ ∈ Y

R(P, y ′) ≤ optR(P) + ε =⇒ ∃T ∈ G dP(Γ(y ′), T(Γ(y∗))) ≤ ∆/3 . (5.1)

For any sample sizemwe define the events3

ET1 = {S ∈ Xm : B(T(S)) = φ(T)(B(S))} for any T ∈ G
E1 =

⋂
T∈G

ET1

E2 =
{
S ∈ Xm : R(P, B(S)) ≤ optR(P) + ε

}
To keep our notation simple we do not write explicitly the dependence of E1 and E2 onm.

Now, since B is (T,φ(T))-invariant for every T ∈ G, there exists m0 such that for all
m ≥ m0, Pr[E1] ≥ 0.9. Since B is risk converging, there existsm ′0 such that for allm ≥ m ′0,
Pr[E2] ≥ 0.9. Then by the union bound, form ≥ max{m0,m

′
0},

Pr [E1 ∩ E2] = 1− Pr[Ec1 ∪ Ec2] ≥ 0.8 .
3Both E1 and E2 need to be measurable for anym. We ignore this issue here.
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For every T ∈ G define the event

HT = {S ∈ Xm : dP(Γ(B(S)), T(Γ(y∗))) ≤ ∆/3} .

First, because of (5.1), HT is a superset of E2. Second, if T 6= T ′,

dP(T(Γ(y
∗)), T ′(Γ(y∗)))

= dP◦T (Γ(y
∗), (T−1 ◦ T ′)(Γ(y∗))) (by T -invariance of d)

= dP(Γ(y
∗), (T−1 ◦ T ′)(Γ(y∗))) (since T−1 is a symmetry of P)

≥ ∆

and thus by triangle inequality for any S ∈ HT and any S ′ ∈ HT ′

dP(Γ(B(S)), Γ(B(S ′)))

≥ dP(T(Γ(y∗)), T ′(Γ(y∗))) − dP(Γ(B(S)), T(Γ(y∗))) − dP(Γ(B(S ′)), T ′(Γ(y∗)))

≥ ∆− ∆/3− ∆/3

= ∆/3

and therefore HT and HT ′ are disjoint. Therefore, {HT ∩ E1 ∩ E2 : T ∈ G} is a partition of
E1 ∩ E2 and hence for anym ≥ max{m0,m

′
0} there exists T0 ∈ G such that

Pr[HT0
∩ E1 ∩ E2] ≥ 0.8/|G| .

Let T1 be any non-identity element of G. We claim that

T1(HT0
∩ E1 ∩ E2) = HT1◦T0

∩ E1 ∩ E2 .

To see that, we write T1(HT0
∩ E1 ∩ E2) as

T1(HT0
∩ E1 ∩ E2) =

{
T1(S) ∈ Xm : dP(Γ(B(S)), T0(Γ(y

∗))) ≤ ∆/3,

∀T ∈ G B(T(S)) = φ(T)(B(S)),

R(P, B(S)) ≤ optR(P) + ε

}
Equivalently,

T1(HT0
∩ E1 ∩ E2) =

{
S ∈ Xm : dP(Γ(B(T−1

1 (S))), T0(Γ(y
∗))) ≤ ∆/3,

∀T ∈ G B(T(T−1
1 (S))) = φ(T)(B(T−1

1 (S))),

R(P, B(T−1
1 (S))) ≤ optR(P) + ε

}
Consider the three conditions on S defining the set. Since φ is a homomorphism and G is
a group, the second condition is equivalent to

∀T ∈ G B(T(S)) = φ(T)(B(S)) . (5.2)
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Therefore the left side of the third condition can be written as

R(P, B(T−1
1 (S)))

= R(P,φ(T−1
1 )(B(S))) (by (5.2))

= R(P ◦ T−1
1 , φ(T1)(φ(T1)

−1(B(S)))) (since R is (T1, φ(T1)) invariant)

= R(P ◦ T−1
1 , B(S)) (since φ is homomorphism)

= R(P, B(S)) (since T1 is a symmetry of P)

and the left hand side of the first condition can be written as

dP(Γ(B(T−1
1 (S))), T0(Γ(y

∗)))

= dP(Γ(φ(T−1
1 )(B(S))), T0(Γ(y

∗))) (by (5.2))

= dP(T
−1
1 (Γ(B(S))), T0(Γ(y

∗))) (by (T−1, φ(T−1))-commutativity of Γ )
= dP◦T−1

1
(Γ(B(S))), (T1 ◦ T0)(Γ(y∗))) (by T1-invariance of d)

= dP(Γ(B(S))), (T1 ◦ T0)(Γ(y∗))) (since T1 is a symmetry of P)

and thus

T1(HT0
∩ E1 ∩ E2) =

{
S ∈ Xm : dP(Γ(B((S))), (T1 ◦ T0)(Γ(y∗))) ≤ ∆/3,

∀T ∈ G B(T(S)) = φ(T)(B(S)),

R(P, B(S)) ≤ optR(P) + ε

}
= HT1◦T0

∩ E1 ∩ E2

and the claim is proven. Since T−1
1 is a symmetry of P and therefore also of Pm

Pm(HT1◦T0
∩ E1 ∩ E2) = Pm(T1(HT0

∩ E1 ∩ E2)) = Pm(HT0
∩ E1 ∩ E2) ≥ 0.8/|G| .

We lower bound stability for anym ≥ max{m0,m
′
0} as

instab(Γ ◦ B, P,m) = E
S1∼Pm

S2∼Pm

dP(Γ(B(S1)), Γ(B(S2)))

≥ ∆/3 · Pr[S1 ∈ HT0
∩ E1 ∩ E2] · Pr[S2 ∈ HT1◦T0

∩ E1 ∩ E2]
≥ ∆/3 · (0.8/|G|)2

Thus Γ ◦ B is unstable on P. �

5.1 Instability Because of Symmetry for k-means and k-
medians

We apply Theorem 5.3 to k-means and k-medians. For a solution y = (c1, c2, . . . , ck) ∈ Xk
and T : X→ Xwe use T(y) to denote (T(c1), T(c2), . . . , T(ck)).
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Corollary 5.4. Let (Y,P, R, Γ) (or (Y,P, R ′, Γ)) be a k-means (or k-medians) scheme over domain
X which is a convex compact subset of Rd and P is the set of absolutely continuous distributions
over X with bounded densities. Let d : P × C × C → [0, 1] be the Hamming clustering distance.
Let P ∈ P be an instance andG be a finite group of order at least 2 of isometries of X such that each
elemnent of G is also a symmetry of P. Suppose there exists a risk minimizer y∗ for P such that
for any risk minimizer y ′∗ there exists T ∈ G such that y ′∗ = T(y∗). Suppose further for every
non-identity element T ∈ G, dP(Γ(y∗), T(Γ(y∗))) > 0. Then, the clustering algorithm induced
by B (or B ′) is unstable on P.

Proof. We prove the Corollary for k-means only. The proof for k-medians is the same.
We define φ(T) = T , that is, (φ(T))(c1, c2, . . . , ck) = (T(c1), T(c2), . . . , T(ck)) for any
(c1, c2, . . . , ck) ∈ Y. Obviously φ is an homomorphism. Clearly, for any isometry T , d
is T -invariant, R and B are (T,φ(T)) invariant, T and φ(T) commute with respect to Γ . The
generalized inverse continuity is verified similarly as in Theorem 4.2; we only need to
realize that {T(y∗) : T ∈ G} is the set of all risk minimizers. �
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Chapter 6

Instability of k-means

In this chapter we prove that for a large class of probability distributions over a Euclidean
space RN the clustering algorithm induced by the k-means ERM algorithm is unstable
whenever there exist multiple k-means risk minimizers. The class of distributions for
which we prove the result consists of all probability distributions with finite support. To
avoid trivial degenerate cases we exclude the distributions with size of the support less
than k.

Recall that the support of a probability distribution P over RN is the set

support(P) =
{
x ∈ RN : ∀r > 0 P(B(x, r)) > 0

}
where B(x, r) denotes the open ball of radius r centered at x. It can be shown that
P(support(P)) = 1; see Devroye et al. [13, Lemma A.1]. Thus a probability distribution
over RN with a finite support is such for which there exists a finite set F such that P(F) = 1.

Theorem 6.1 (Instability of k-means). Let k ≥ 2 be an integer. Let (Y,P, R, Γ) be the instan-
tiation of the k-means optimization scheme over the Euclidean space RN where P is the family of
all probability distributions with finite support of size at least k. Let d be the Hamming clustering
distance. Let P ∈ P be any instance. If∣∣∣∣∣argmin

y∈Y
R(P, y)

∣∣∣∣∣ > k! , 1

then the clustering algorithm Γ ◦ B induced by the k-means ERM algorithm B is unstable on P.

An example of a probability distribution satisfying the hypotheses of the theorem is
shown in Figure 6.1.

The proof of the theorem is lengthy and technical. For this reason, we provide an ex-
planatory outline in the next section. The outline provides glue for the technical lemmas
that are contained in Section 6.2, as well as, it sets up the common notation.

1Recall that argminy∈Y = {(c1, c2, . . . , ck) : R(P; c1, c2, . . . , ck) = optR(P)} and thus the size of this set
counts the permutations as well.
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Figure 6.1: A distribution over the real line R with finite support. The support consists
of three points a, b, c with probability masses and relative distances as shown. For k =

2 there are two k-means optimal solutions both with k-means cost 14/15. In the first
solution, a, b lie in one cluster and c lies in a separate cluster. In the second solution, b, c
lie in one cluster and a lies in separate cluster.

6.1 Outline of the Proof

We view the clustering problem as a mapping from samples to partitions of the support.
We denote by

C1,C2, . . .Ch

the “optimal” partitions of the support i.e. the partitions induced by the risk minimizers
argminy∈Y R(P, y). Since there are only finitely many partitions of the support and because
of the risk convergence, for large enough samples, with high probability, the partition out-
put by the algorithm is among the optimal partitions. We show that the probability that
the algorithm outputs any of the optimal partitions is bounded away from one. Or in
other words, for sample sizes approaching infinity, at least two of the optimal partitions
will be output by the algorithm with probability bounded away from zero. This implies
instability, since having two (or more) different optimal partitions of the support, each
with non-zero probability, implies a non-zero expectation of the Hamming distance be-
tween the outputs of the algorithm.

To analyze which sample leads to which partition of the support, we use elementary
finite-dimensional calculus. A probability distribution with finite support can be viewed
as a finite-dimensional weight vector µ which has one coordinate for each point of the
support and the value of the coordinate is the probability of that point. Likewise, a sam-
ple can be viewed as a frequency vector w where value of each coordinate of w is the
empirical frequency of the corresponding point of the support. Abusing notation some-
what, we consider the functions

R(w,C1), R(w,C2), . . . , R(w,Ch),

which assign risks to the optimal partitions and the frequency vector w. We view these
functions as functions of w and we use Taylor expansion to analyze their behavior in
the neighborhood of µ. We show that for any pair Ci,Cj, i 6= j, in an arbitrarily small
neighborhood of µ there are vectors w for which R(w,Ci) > R(w,Cj) and, vice versa,
there are vectors w in the neighborhood for which the inequality is reversed. Via the
multidimensional central limit theorem, this property of the risk functions translates to
the property that the probability that the empirical risk of Ci is smaller than the empirical
risk of Cj is bounded away from zero and, vice-versa, the probability that the empirical
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risk of Ci is greater than the empirical risk of Cj is bounded away from zero. From that
we derive that the probability that the algorithm outputs any particular optimal partition
is bounded away from one.

In the above two paragraphs, we have essentially outlined the proof of the theorem.
To explain further details, we start with the notation that will be used in the technical
lemmas. We then re-iterate and we explain the outline one more time in much more
detail, and we point on individual lemmas in which each of the pieces is proved.

First, let F = {x1, x2, . . . , xn} be the support of P. In the rest of the proof we call F simply
as the support. Note that P({xi}) > 0 for all 1 ≤ i ≤ n2 and let µi = P({xi}) and let

µ = (µ1, µ2, . . . , µn).

Note that µ1 + µ2 + · · ·+ µn = 1.
For a sample S ∈ Fm, we denote the number of occurrences of the point xi in S by

mi, and use wi = mi/m to denote the empirical frequency (weight) of the point xi in the
sample. The sample is completely determined by the vector of weights

w = (w1, w2, . . . , wn) .

Note that w1 +w2 + . . . wn = 1. In the all the proofs, we identify w, the sample S and its
empirical distribution PS. More generally, we associate w with any probability distribu-
tion over F. Having this in mind and abusing the notation a little, we define

R(w,y) = R(PS, y) .

Note that R(µ, y) = R(P, y).
Consider the set argminy∈Y R(P, y) of risk minimizers. This set can be partitioned

into h ≥ 2 equivalence classes, each of size k!, of the form3 {π(y∗) : π ∈ Sk}. Let
y∗1, y

∗
2, . . . , y

∗
h ∈ RNk be representatives of the equivalence classes, one from each class.

According to Lemma 6.2, each y∗i , 1 ≤ i ≤ h, has the property that each point of the
support has a unique closest center in y∗i . Let C1,C2, . . . ,Ch the partitions of the support
induced by y∗1, y

∗
2, . . . , y

∗
h respectively. Formally, each Ci, 1 ≤ i ≤ h, is the restriction

of the clustering Γ(y∗i ) to F. We call these partitions optimal. The mentioned property of
y∗1, y

∗
2, . . . , y

∗
h guarantees that C1,C2, . . . ,Ch are well defined. It is also easy to see that the

optimality of y∗i , 1 ≤ i ≤ h ensures that C∗i consists of k non-empty sets.
We now associate risk with any partition C = {C1, C2, . . . , Ck} of the support into k

non-empty sets and any weight vector w ∈ Rn+. Abusing a notation a bit further, we
define

R(w,C) =

k∑
i=1

∑
xt∈Ci

wt

∥∥∥∥∥∥∥∥xt −

∑
xs∈Ci

wsxs∑
xs∈Ci

ws

∥∥∥∥∥∥∥∥
2

2

. (6.1)

2Note thatN and n are two different parameters. The upper caseN is the dimension of the domain. The
lower case n is the size of the support.

3The symbol Sk and notation π(y) were defined in Section 4.2.
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µ

f(w) > 0

Figure 6.2: The gray colored area represents the set Q = {w ∈ Rn+ | R(w,C) < R(w,D)}.
The boundary of Q, colored in black, are the points w where f(w) = 0. The point µ is
marked with a cross.

Note that we allow arguments w with the sum of the coordinates w1 + w2 + · · · + wn
not necessarily equal to one. This will greatly simplify our analysis. Also, note that R is
homogeneous in w, that is, for any real number α > 0, R(αw,C) = αR(w,C).

Proposition 6.3 explains the connection of (6.1) to the k-means risk. In particular, the
proposition gives us an equivalent characterization of the k-means ERM algorithm: As-
suming that the vectorw of the input sample is an ε-neighborhood of µ, the k-means ERM
algorithm can be viewed as picking an optimal partition C which minimizes R(w,C).

In this view, consider a pair of distinct optimal partitions C and D.4 The k-means
ERM algorithm prefers C over D when R(w,C) < R(w,D). We consider the set of weight
vectors

Q = {w ∈ Rn+ | R(w,C) < R(w,D)} .

Step 1: We analyze the set Q in a small neighborhood of µ. In Lemma 6.9, we show that Q
contains an open cone T with peak at µ. The proof of the Lemma consists of several
smaller steps.

(a) We first define the function f : Rn → R, f(w) = R(w,D) − R(w,C). In this
notation Q = {w | f(w) > 0}. Note the important fact that f(µ) = 0. We analyze
the behavior of f near µ. See Figure 6.2.

(b) In Lemma 6.4, we compute for any partition C the Taylor expansion of R(w,C)

at the point µ. This way we put our hands on the Taylor expansion of f.

(c) In Lemma 6.7 we show that the first non-zero term in the Taylor expansion of f
attains both positive and negative values, and thus f itself attains both positive
and negative values arbitrarily close to µ. (As it turns out, there are only two
options. The first non-zero term is either the gradient or the Hessian.)

(d) We show that, since f is rational and hence analytic in the neighborhood of µ,
it follows that Q contains a cone T whose peak is at µ. See Figure 6.3.

Step 2: Consider the hyperplane

H = {w ∈ Rn | w1 +w2 + · · ·+wn = 1}

4We use C and D instead of Ci and Cj so that we can use indices i, j for better purposes.
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µ

T

Figure 6.3: The gray colored area represents the cone T contained in the set Q. The peak
of the cone is at µ.

in which the weights actually lie. In Lemma 6.10 we show that Q ∩ H contains an
(n− 1)-dimensional open cone Y.

Step 3: The distribution of the random vectorw describing the sample is a multinomial dis-
tribution withm trials. From central limit theorem it follows that as the sample size
m approaches infinity the probability distribution of w can be approximated by a
multivariate Gaussian distribution lying in H. The Gaussian distribution concen-
trates near its mean value µ as the sample size increases. The shape of Q near µ
determines the probability that the algorithm prefers partition C over D. Formally,
in Lemma 6.11 we show that limm→∞ Pr[w ∈ Y] > 0; hence limm→∞ Pr[w ∈ Q] > 0.

Step 4: For sufficiently large sample sizes the partition of F output by the algorithm is, with
high probability, one of the optimal partitions. From the previous step it follows
that with non-zero probability any optimal partition has lower empirical risk than
any other optimal partition. Hence, there exist at least two optimal partitions of F,
such that each of them is empirically optimal for a sample with non-zero probabil-
ity. These two partitions cause instability of the algorithm. A precise argument is
presented in Lemma 6.12.

6.2 The Technical Lemmas

Lemma 6.2 (No Ties). Let w ∈ Rn+ be any weight vector with sum of coordinates w1 + w2 +

· · ·+wn = 1. Suppose y∗ = (c∗1, c
∗
2, . . . , c

∗
k) ∈ RNk is a minimizer of R(w, ·). Then, for any point

x ∈ F, the center of y∗ closest to x is unique.

Proof. Suppose by contradiction there exists a point x ∈ F to which two or more differ-
ent centers of y∗ are the closest. Let us define two different partitions of the support,
{C ′1, C

′
2, . . . , C

′
k} and {C ′′1 , C

′′
2 , . . . , C

′′
k }, in which for every i the clusters C ′i, C

′′
i consists of

the points of the support closest to c∗i , however the ties are broken differently for the
point x.

Consider the solutions y ′ = (c ′1, c
′
2, . . . , c

′
k) and y ′′ = (c ′′1 , c

′′
2 , . . . , c

′′
k) where the centers

are defined as the means of the clusters of the partitions {C ′1, C
′
2, . . . , C

′
k} and {C ′′1 , C

′′
2 , . . . , C

′′
k }.
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Formally, for 1 ≤ i ≤ k, we define

c ′i =

∑
xt∈C ′i

wtxt∑
xt∈C ′i

wt
and c ′′i =

∑
xt∈C ′′i

wtxt∑
xt∈C ′′i

wt
.

The risks R(w,y ′) and R(w,y ′′) are no more than R(w,y∗), since the centers y∗ were re-
placed by the cluster means. Furthermore, since y ′ 6= y ′′, either y∗ 6= y ′ or y∗ 6= y ′′

and thus either R(w,y ′) or R(w,y ′′) is strictly smaller than R(w,y∗). This contradicts the
optimality of y∗. �

Proposition 6.3. Let C = {C1, C2, . . . , Ck} be an optimal partition. For any w ∈ Rn+ define a
k-tuple of centers y(w) = (c1(w), c2(w), . . . , ck(w)) as

ci(w) =

∑
xt∈Ci

wtxt∑
xt∈Ci

wt
.

There exists ε > 0 such that if ‖w− µ‖ < ε and
∑n
i=1wi = 1, then

R(w,C) = R(w,y(w)) 5

and the restriction of Γ(y(w)) to the support equals C.

Proof. From optimality of C it follows that there exist a risk minimizer y∗ = (c∗1, c
∗
2, . . . , c

∗
k)

inducing C. Optimality of y∗ implies that y∗ = y(µ). From Lemma 6.2 it follows that y(µ)

has the property that each point of F has a unique closest center in y(µ). Then there exists
∆ > 0 such that for any point x ∈ F the difference of between the distances to the closest
and to the second closest center is at least ∆. By continuity of y(w) there exists some ε > 0
such that for any w in the ε-neighborhood of µ,

‖ci(w) − ci(µ)‖ < ∆/2 for all i = 1, 2, . . . , k.

Hence, for anyw in the ε-neighborhood the restriction of Γ(y(w)) to the support is C. The
equality R(w,C) = R(w,y(w)) follows by substituting the y(w) into the definition of the
k-means risk R(P, y). �

Lemma 6.4 (Derivatives of f). Let C = {C1, C2, . . . , Ck} be a partition of the support. The first
two derivatives of the risk function R(w,C) with respect to w at µ are as follows.

1. The p-th entry of the gradient is

(∇R(µ,C))p =
∂R(w,C)

∂wp

∣∣∣∣
w=µ

= ‖c` − xp‖22 ,

assuming that xp lies in the cluster C`.
5The right hand side is defined only if

∑n
i=1wi = 1.
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2. The (p, q)-th entry of the Hessian matrix

(
∇2R(µ,C)

)
p,q

=
∂2R(w,C)

∂wp∂wq

∣∣∣∣
w=µ

equals to

−2
(c` − xp)

T (c` − xq)∑
xs∈C`

µs

if xp, xq lie in a common cluster C`, and is zero otherwise.

Here, c1, c2, . . . , ck are the optimal centers

ci =

∑
xt∈Ci

µtxt∑
xt∈Ci

µt
.

Proof. For brevity, let us denote ĉi := ĉi(w), ĉi : Rn → RN, the center of mass of the cluster
Ci with respect to the empirical weights w. That is,

ĉi(w) =

∑
xs∈Ci

wsxs∑
xs∈Ci

ws
.

Plainly, ĉi(µ) = ci.
Suppose that xp lies in cluster C`. The p-th component of the gradient∇R(w,C) is

∂R(w,C)

∂wp
=

∂

∂wp

(
k∑
i=1

∑
xt∈Ci

wt ‖xt − ĉi‖22

)

= ‖xp − ĉ`‖22 +
∑
xt∈C`

wt
∂‖xt − ĉ`‖22
∂wp

= ‖xp − ĉ`‖22 − 2
∑
xt∈C`

wt(xt − ĉ`)
T ∂ĉ`

∂wp

= ‖xp − ĉ`‖22 − 2

(∑
xt∈C`

wtxt −wtĉ`

)T
︸ ︷︷ ︸

=0

∂ĉ`

∂wp

= ‖xp − ĉ`‖22
and at µ it is (∇R(µ,C))p = ‖c` − xp‖22.
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The (p, q)-th entry of the Hessian matrix is

∂2R(w,C)

∂wp∂wq
=

∂

∂wq
‖xp − ĉ`‖22 = 2(ĉ` − xp)

T ∂ĉ`

∂wq
. (6.2)

If xq does not lie in the cluster C`, then ∂ĉ`/∂wq = 0 and hence also (p, q)-th entry of the
Hessian matrix is zero. Otherwise

∂ĉ`

∂wq
=

∂

∂wq


∑
xs∈C`

wsxs∑
xs∈C`

ws



=

xq

(∑
xs∈C`

ws

)
−

(∑
xs∈C`

wsxs

)
(∑
xs∈C`

ws

)2
=
xq − ĉ`∑
xs∈C`

ws
. (6.3)

Substituting (6.3) into (6.2) we finally get (p, q)-th entry of the Hessian matrix

∂2R(w,C)

∂wp∂wq
= −2

(ĉ` − xp)
T (ĉ` − xq)∑

xs∈C`

ws
.

�

Lemma 6.5 (Weights of Clusters). For any subset E of domain, define its weight as µ(E) =∑
xt∈E µt. Let C = {C1, C2, . . . , Ck} and D = {D1, D2, . . . , Dk} be two partitions of the support

into k non-empty sets. For every point xt ∈ F, consider the indices i, j such that xt ∈ Ci and
xt ∈ Dj, and define the weights at = µ(Ci) and bt = µ(Dj). The following holds:

• Either, at = bt for all points xt ∈ F.

• Or, there exist two points xt, xs such that at > bt and as < bs.

Proof. Consider the two sums

n∑
t=1

µt

at
and

n∑
t=1

µt

bt
.

It easy to see that the sums are equal,

n∑
t=1

µt

at
=

k∑
i=1

∑
xt∈Ci

µt

at
= k =

k∑
i=1

∑
xt∈Di

µt

bt
=

n∑
t=1

µt

bt
.
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Either all the corresponding summands µt/at and µt/bt in the two sums are equal and
hence at = bt for all t. Or, there exist points xt and xs such that µt/at < µt/bt and
µs/as > µs/bs, and hence at > bt and as < bs. �

Lemma 6.6 (Hessian Determines Clustering). Let C,D be optimal partitions of the support. If
the Hessians of R(w,C), R(w,D) coincide at µ, then C = D.

Proof. For the sake of brevity, let

Hp,q :=
(
∇2R(µ,C)

)
p,q

.

It suffices to show that the centers c1, c2, . . . , ck of the partition C are uniquely determined
by the matrix H. To this end, we view H as the adjacency matrix of a graph G with
vertex set F, where nodes xp, xq are connected by an edge if and only if Hp,q 6= 0. Let
K1, K2, . . . , K` be the connected components of G. Note that there is an edge between xp
and xq only if p and q belong to the same cluster in C. Thus, the connected components
of G represent a refinement of the partition C.

For the sake of brevity, for any subset E ⊆ F, define the weight µ(E) =
∑
xt∈E µt.

Consider a fixed cluster Cj in C with center cj. Recall that

cj =
1

µ(Cj)

∑
xt∈Cj

µtxt (6.4)

Let K ⊆ Cj be any connected component of G that is contained in Cj and let K ′ = Cj \ K.
We claim that

cj =
1

µ(K)

∑
xt∈K

µtxt , (6.5)

that is, cj is determined by any component K ⊆ Cj. Since this is obvious for K = Cj, we
assume that K ( Cj. We can rewrite (6.4) as

0 =

(∑
xt∈K

µt(xt − cj)

)
+

(∑
xs∈K ′

µs(xs − cj)

)
. (6.6)

Pick any pair s, t such that xt ∈ K and xs ∈ K ′. Since xt and xs are not neighbors in G,
Ht,s = 0, which means that xt − cj is orthogonal to xs − cj. Thus the vector represented by
the first sum in (6.6) is orthogonal to the vector represented by the second sum. It follows
that both sums yield zero, respectively. Rewriting this for the first sum, we obtain (6.5).

�

Lemma 6.7 (Indefinitness). Let C and D be any two optimal partitions. Let f(w) = R(w,D) −

R(w,C). Consider the Taylor expansion of f around µ. Then, ∇f(µ) 6= 0 or the Hessian, ∇2f(µ),
is indefinite.6

6A matrix is indefinite if it is neither positively semi-definite, nor negatively semi-definite.
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Proof. We denote by C1, C2, . . . , Ck ⊆ F the clusters of C and by D1, D2, . . . , Dk ⊆ F the
clusters of D. We denote by c1, c2, . . . , ck the optimal centers for C, and by d1, d2, . . . , dk
the optimal centers for D. That is, the center ci is the center of mass of Ci, and dj is the
center of mass of Dj.

Consider the Taylor expansion of f at µ. Lemma 6.6 implies that the Hessian, ∇2f(µ),
is not zero. Assuming ∇f(µ) = 0 i.e. ∇R(µ,C) = ∇R(µ,D), we need to show that ∇2f(µ)

is indefinite.
For any point xp ∈ F we define three numbers ep, ap and bp as follows. Suppose

xp ∈ C` and xp ∈ D` ′ . The first part of the Lemma 6.4 and ∇R(µ,C) = ∇R(µ,D) imply
that the distance between xp and c` equals to the distance between xp and d` ′ ; denote
this distance by ep. Denote by ap the weight of the cluster C`, that is, ap =

∑
xt∈C`

µt.
Likewise, let bp be the weight of the cluster D` ′ , that is, bp =

∑
xt∈D` ′

µt.
Consider the diagonal entries of Hessian matrix of f. Using the notation we had just

introduced, by the second part of the Lemma 6.4 the (p, p)-th entry is

(∇2f(µ))p,p =

(
∂2R(w,D)

∂w2p
−
∂2R(w,C)

∂w2p

) ∣∣∣∣
w=µ

= 2e2p

(
1

ap
−
1

bp

)
.

We claim that if ep = 0, then ap = bp. Let xp ∈ C` ∩ D` ′ , and suppose without loss of
generality that ap > bp. Since ep = 0, we have xp = c` = d` ′ . Since ap > bp there is
another point xq that causes the decrease of the weight the cluster C`. Formally, xq ∈ C`,
xq 6∈ D` ′ , but xq ∈ D` ′′ . This means that in D the point xq is closest to both d` ′ and d` ′′ . By
Lemma 6.2, a tie can not happen in an optimal partition, which is a contradiction.

By Lemma 6.5, either (a) for all indices p, ap = bp, or (b) there are indices i, j such that
ai > bi and aj < bj. In the subcase (a), all the diagonal entries of Hessian matrix are zero.
Since the Hessian matrix is non-zero, there must exist a non-zero entry off the diagonal
making the matrix indefinite. In the subcase (b), the above claim implies that the indices
i, j for which ai > bi and aj < bj are such that ei, ej > 0. Hence, the (i, i)-th diagonal
entry of the Hessian matrix is negative, and the (j, j)-the diagonal entry of the Hessian
matrix is positive. Therefore the Hessian matrix is indefinite. �

Corollary 6.8. There exists arbitrarily small δ ∈ Rn such that f(µ + δ) > 0. (Similarly, there
exists arbitrarily small δ ′ such that f(µ+ δ ′) < 0.)

Proof. Consider the Taylor expansion of f at µ and its lowest order term P(x − µ) that
does not vanish (according to Lemma 6.7, either the gradient or the Hessian). Since P
can take values of positive and of negative sign (obvious for the gradient, and obvious
from Lemma 6.7 for the Hessian), we can pick a vector x = µ + δ such that P(x − µ) =

P(δ) > 0. Since P is homogeneous in δ, P(λδ) > 0 for every λ > 0. If λ is chosen sufficiently
small, then f(µ+ λδ) has the same sign as P(λδ). The considerations for negative sign are
symmetric. �

Lemma 6.9 (Existence of a Positive Open Cone). There exist positive real numbers ε and δ,
and a unit vector u ∈ Rn such that the open cone

T =

{
w ∈ Rn+

∣∣∣∣ 0 < ‖w− µ‖2 < ε,
uT (w− µ)

‖w− µ‖2
> 1− δ

}
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is contained in Q, the set of weights for which R(w,C) < R(w,D).

Proof. This lemma is a refinement of Corollary 6.8 above. Let h be the order of the first
non-zero term in the Taylor expansion of f around µ. Let this term be P(u) = P(w − µ),
that is, P is a multivariate polynomial in u = w−µ and all its terms have the same degree
h. Intuitively speaking, P determines the behavior of f in a small neighborhood of µ.

To prove existence of the cone, we proceed as follows. For a unit vector u ∈ Rn and
some ε > 0 consider the line segment

Su,ε = {λu : λ ∈ (0, ε]} .

We say that P super-dominates on Su,ε whenever for any v ∈ Su,ε we have |P(v)| > 0.9|f(µ+

v)|. Similarly, we say that P dominates on Su,ε if for any v ∈ Su,ε we have |P(v)| > 0.8|f(µ+

v)|. Note that, in particular, if P dominates or super-dominates on Su,λ, then for any
v ∈ Su,ε the signs of P(v) and f(µ+ v) are the same.

Clearly, there exists ε > 0 and a unit vector u such that P super-dominates on Su,ε.
Since P attains both positive and negative values, there exists a point x ∈ Rn such that
P(x) > 0. All terms of P have the same degree h and hence P(x/‖x‖2) > 0. (Note that
x 6= 0 since P(0) = 0.) Thus we can choose u = x/‖x‖2. After u is chosen, we can choose
ε > 0 small enough so that P super-dominates on Su,ε.

Now think of replacing u with another unit vector u ′. If u and u ′ are “close”, then
P still “at least” dominates on Su ′,η. This follows by from the fact that f is rational and
hence analytic. We measure closeness of u and u ′ by their dot product. Thus, there exists
some small enough δ > 0 such that for any unit vector u ′ ∈ Rn, if uTu ′ > 1 − δ, then P
dominates on Su ′,ε.

The choices of u, ε and δ determine the cone T in the statement of the lemma. The fact
that R(w,C) < R(w,D) for any w ∈ T directly follows from that P dominates on Su ′,ε for
any unit vector u ′ such that uTu ′ > 1 − δ. Simply substitute u ′ = (w − µ)/‖w − µ‖2 and
λ = ‖w− µ‖. �

Lemma 6.10 (Existence of a Positive Open Cone II). There exists positive real numbers ε, δ
and a unit vector u ∈ Rn with sum of coordinates, u1 + u2 + · · · + un, equal to zero, such that
the (n− 1)-dimensional open cone

Y =

{
w ∈ H ∩ Rn+

∣∣∣∣ 0 < ‖w− µ‖2 < ε,
uT (w− µ)

‖w− µ‖2
> 1− δ

}
is contained in Q ∩H.

Proof. We use the projection φ : Rn+ → H, φ(w) = w/(w1 +w2 + · · · +wn). Note that for
the k-means cost function, for every partition C and every positive constant λ, R(λw,C) =

λR(w,C). It follows that the projectionφ does not affect the sign of f. That is, sign(f(w)) =

sign(f(φ(w))). Therefore Q ∩ H = φ(Q) ⊂ Q. The projection φ(T) clearly contains an
(n − 1)-dimensional open cone Y of the form as stated in the Lemma. More precisely,
there exists positive numbers ε, δ and unit vector u (the direction of the axis of the cone),
such that the cone

Y := Yε,δ,u =

{
w ∈ H ∩ Rn+

∣∣∣∣ 0 < ‖w− µ‖2 < ε,
uT (w− µ)

‖w− µ‖2
> 1− δ

}
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is contained in φ(T). Since the cone Y lies in H, the direction of the axis, u, can be picked
in such way that the sum of its coordinates u1+u2+ · · ·+un is zero. Since T ⊆ Q, we get
Y ⊂ φ(T) ⊂ φ(Q) = Q ∩H. �

Lemma 6.11 (Instability). Let C and D be distinct optimal partitions of the support. Let Q be
the set of weights where the k-means ERM algorithm prefers C over D. Ifw are the weights for an
i.i.d. sample of sizem, then

lim
m→∞ Pr [w ∈ Q] > 0 .

Proof. Let Y ⊂ (Q ∩ H) be an (n − 1)-dimensional open cone (as implied by lemma 6.10)
lying in the hyperplane H defined by the equationw1 +w2 + · · ·+wn = 1. We show that,

lim
m→∞ Pr [w ∈ Y] > 0 ,

which implies the claim.
We have

Pr[w ∈ Y] = Pr
[
uT (w− µ)

‖w− µ‖2
> 1− δ, 0 < ‖w− µ‖2 < ε

]
= Pr

[
uT (
√
m(w− µ))√

m‖w− µ‖2
> 1− δ, 0 <

√
m‖w− µ‖2 < ε

√
m

]
.

By the central limit theorem
√
m(w− µ) weakly converges to a normally distributed ran-

dom variable Z ∼ N(0, Σ), where Σ is the covariance matrix.7 In particular this means that
there is a sequence {ζm}∞m=1, ζm → 0, such that∣∣∣∣∣Pr

[
uT (
√
m(w− µ))√

m‖w− µ‖2
> 1− δ, 0 <

√
m‖w− µ‖2 < ε

√
m

]

− Pr
[
uTZ

‖Z‖2
> 1− δ, 0 < ‖Z‖2 < ε

√
m

] ∣∣∣∣∣ < ζm
Consequently, we can bound the probability Pr[w ∈ Y] as

Pr[w ∈ Y] ≥ Pr
[
uTZ

‖Z‖2
> 1− δ, 0 < ‖Z‖2 < ε

√
m

]
− ζm

≥ 1− Pr
[
uTZ

‖Z‖2
< 1− δ

]
− Pr

[
‖Z‖2 ≥ ε

√
m
]
− Pr [‖Z‖2 = 0] − ζm .

Take the limitm→∞. The last three terms in the last expression vanish. Since u has sum
of its coordinates zero andZ ∼ N(0, Σ) is normally distributed, the term limm→∞ Pr

[
uTZ
‖Z‖2

< 1− δ
]

lies in (0, 1). �

7 Σ = diag(µ1, µ2, . . . , µn) − µµT , the rank of Σ is n − 1, and its rows (or columns) span the (n − 1)-
dimensional vector space {u ∈ Rn | u1 + u2 + · · ·+ un = 0}.
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Lemma 6.12 (Multiple Optimal Partitions). If there are h ≥ 2 optimal partitions of the support,
then the clustering algorithm Γ ◦ B induced by the k-means ERM algorithm B is unstable on P.

Proof. Let C1,C2, . . . ,Ch, h ≥ 2, be the optimal partitions. Let

πi = lim
m→∞ Pr

[
Γ(B(S))

∣∣
F

= Ci
]
,

where by Γ(B(S))|F we mean the clustering output by the algorithm restricted to F.
Claim: Each number πi is strictly less than one.
Proof of the claim:

Pr
S∼Pm

[
Γ(B(S))

∣∣
F

= Ci
]
≤ Pr

R(w,Ci) ≤ min
`=1,2,...,h
` 6=i

R(w,C`)


≤ Pr [R(w,Ci) ≤ R(w,Cj)]

= 1− Pr [R(w,Ci) > R(w,Cj)]

Taking limitm→∞ on both sides of the inequality and applying Lemma 6.11,

lim
m→∞ Pr[R(w,Ci) > R(w,Cj)] > 0

the claim follows.
Since k-means ERM algorithm is risk converging, as the sample size increases, with

probability approaching one, Γ(B(S))|F is an optimal partition, and hence

π1 + π2 + · · ·+ πh = 1 .

Necessarily at least two numbers, say, πi, πj are strictly positive. That is, the algorithm
outputs two different partitions Ci,Cj with non-zero probability for arbitrarily large sam-
ple size. The algorithm will be switching between these two partitions. Formally,

instab(Γ ◦ B, P) ≥ dP(Ci,Cj)πiπj

and the right hand side is is strictly positive. �
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Chapter 7

Conclusion

We have theoretically investigated the asymptotic stability of clustering algorithms. How-
ever, many questions are left unanswered. In this chapter we discuss consequences of our
theorems, their relationship to practice and discuss some of the main open questions.

The stability method was proposed by Ben-Hur et al. [9] and Lange et al. [20, 21]. Their
idea was that a clustering is good and meaningful if and only if it is stable. Based on this
postulate they design a model selection method. Roughly speaking, the method tries sev-
eral parameters of the clustering algorithm and for each of them numerically calculates
the stability score. The score is calculated based on several repetitions of randomly drawn
sample pairs (S1, S2). We emphasize that all the samples have some fixed finite sizem.

Ben-Hur et al. and Lange et al. do not conduct any theoretical investigations of the
proposed method. Instead, they conduct numerical experiments on both artificial and real
life data sets. The conclusions from these experiments seem encouraging and according
to them it seems that the stability method is able to select a sensible model for the number
of clusters.

In the next section we describe a simplified method from Ben-Hur et al. [9]. We exam-
ine the method on three simple one-dimensional probability distributions. We will use
the k-means and k-median ERM clustering algorithms. We apply our theoretical insight
from this thesis to argue about asymptotic (in)stability of the clustering algorithms on
these distributions. We will conclude that at least from the asymptotic perspective the
stability method is seriously flawed.

7.1 Examples

A simplified and adapted version of the stability method used in the numerical exper-
iments conducted by Ben-Hur et al. [9] can be summarized as follows. For each k =

2, 3, . . . , kmax run the clustering algorithm with parameter that controls the desired num-
ber of clusters set to k. For each k, draw independently 100 pairs of independent samples
(S1, S2). For each sample pair (S1, S2), cluster S1, cluster S2 and compute the cluster-
ing distance between the two samples. From the 100 pairwise clustering distances con-
struct a histogram. In our formalism, the histogram represents the distribution of the
random variable dP(Ak(S1), Ak(S2)), where Ak is the with parameter that controls the de-

39



0 1 d

Figure 7.1: The picture shows a mixture of the uniform distribution over [0, 1] and the
distribution which concentrates all mass on the point d.

sired number of clusters set to k. The histogram is assessed as “stable” if and only if
the probability of dP(Ak(S1), Ak(S2)) that is below certain value is large enough.1 Select,
as the “correct” number of clusters, the largest k for which the histogram is assessed as
stable.

We demonstrate several natural examples of probability distributions over the real
line and we look at the stability of k-means and k-medians ERM algorithms.2 On these
examples, we try to convince the reader that the assumption that stable clustering is not
equivalent to a correct one, and that in particular the correct number of clusters can not
be detected this way. We emphasize that we do not mathematically formalize what we
mean by the correct number of clusters. Instead, for each example, we simply state what
the correct number is. We leave the reader to judge whether these number makes sense
to him or her. A possible definition, which agrees with the numbers stated by us, is that
the correct number of clusters is the number of connected components of the support of
the probability distribution.

Our first example is the uniform distribution over the unit interval [0, 1]. The correct
number of clusters is clearly one. It is not hard to figure out that, for any number of
clusters, k, both k-means and k-medians have, up to permutation of the centers, exactly
one risk minimizer

y∗ = (c∗1, c
∗
2, . . . , c

∗
k) =

(
1

2k
,
3

2k
,
5

2k
, . . . ,

2k− 1

2k

)
It follows that both the clustering algorithms induced by the k-means and k-medians
ERM algorithms are stable on this distribution for any value of k. Therefore, the stability
method of Ben-Hur et al. outputs kmax for any large enough sample sizem and it certainly
does not output 1 as the answer.

Generalization of the previous example is the distribution over the union of two in-
tervals [0, π] ∪ [10, 11]. Clearly the correct number of clusters is 2. Yet for any k both the
k-means and k-medians algorithms have unique optimum and hence are stable.3 There-
fore, as before, the stability method outputs kmax for any large enough sample sizem. This
example can be further generalized to a distribution over a union of n disjoint intervals
in such a way that for any k both k-means and k-medians algorithms are stable.

1Ben-Hur et al. choose some ad-hoc unspecified threshold.
2We use the standard Euclidean metric on R.
3The uniqueness of the optimum follows from the irrationality of the ratio of the lengths of the two

intervals.
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Figure 7.2: Optimal k-means solutions for k = 2 and k = 3 are shown. For k = 2 there
are two optimal solutions. For k = 3 the solution is unique.

Our last and perhaps a more interesting is the example of a distribution P over [0, 1] ∪
{d} where d ≥ 3/2. The distribution is mixture of two distributions: the uniform distribu-
tion over [0, 1] and the distribution which has all mass concentrated on the point d. See
Figure 7.1. Clearly, this distribution has two clusters. By appropriately choosing the mix-
ing weights and the location of the point dwe can arrange that for k = 2 the k-means cost
function has two optimal solutions and for k = 3 it has unique optimal solution. Hence,
for k = 2 the k-means ERM algorithm is unstable and for k = 3 it is stable. One such
choice is d = 11/6 and mixing weights 15/16 and 1/16. Therefore, on this distribution the
stability method never identifies the correct model k = 2.

7.2 Mismatch between Theory and Practice

The examples from preceding section are disturbing. They show that for sufficiently large
sample sizem the stability method fails to recover the correct model.

We can make a more general statement. We can argue that a data set P encountered
in practice for all k ∈ {2, 3, . . . , kmax} simultaneously both the k-means and k-medians
cost functions have unique minima. Therefore, there exists sample size m such that for
all k = 2, 3, . . . , kmax the instability of k-means and k-medians ERM algorithms is below
any pre-specified threshold value, say, 0.001. The argument that the optimal solution is
unique in practice simply follows from the fact that any small perturbation of a data set P
with a unique optimal solution makes it stable.

This general argument is even more disturbing than the examples from the preceding
section. Essentially, it says that for any data set the k-means and k-medians clustering
algorithms are stable for all k provided that the sample size m is large enough. Thus for
sample sizes big enough, the stability method seems to become vacuous. At best, such
behavior of clustering stability is unintuitive and undesired, as one would expect that
the larger the sample size, the “better” the stability method works and the more “refined
picture” of the structure of the data set the stability method reveals. However, as we see,
quite the opposite is true.

A natural question to ask is why Ben-Hur et al. [9] and Lange et al. [20, 21] successfully
used the method to recover the correct number of clusters. One possible reason is that the
algorithm uses that Ben-Hur et al. use hierarchical clustering algorithm and in our thesis
we consider cost based algorithms. Another reason seems to be that the sample size they
used was “small enough”. Currently, however, there is no theoretical answer to what is a
“suitably small” sample size.

Shamir and Tishby in their recent work [26] give a partial answer to this problem.
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Their answer is, however, an impossibility result. They show that no matter how big
sample size we consider, the non-asymptotic instability can be “large”, despite the fact
that asymptotic instability is 0. More precisely, they show that for any sample sizem there
exists a probability distribution P such that instab(A, P,m) ≥ 1/12 and at the same time
instab(A, P) = 0. This might suggest that the asymptotic instability might not be a good
measure, and that success of the stability method reported in the numerical experiments
crucially depends on the fact that the sample size is finite and small.

It’s not clear however which useful property of P is revealed by the numerical value
of instab(A, P,m) for some fixed m. Shamir and Tishby [26] and Ben-David and von
Luxburg [7] are trying to relate clustering stability of k-means ERM algorithm and the
probability mass that P has near boundaries of clusters of the optimal solution.4 But both
papers miss the point of coming up with some prior assumption on the data set, so that
one would have an explicit formula for the sample size m which would guarantee the
stability method to work.5

7.3 Rates of Convergence and Cluster Boundaries

Shamir and Tishby [26] characterize the rate at which instability of k-means over Rd ap-
proaches zero as a function of the sample size, provided that optimal solution is unique.
They assume that the probability distribution has continuous density with respect to the
Lebesgue measure. They show that the instability is asymptotically C/

√
m where C de-

pends only on distribution of the probability density at the cluster boundaries of the op-
timal solution. The provide an explicit, but very complicated formula for C. Generally
speaking, however, the lower density on the boundaries, the smaller the multiplicative
constant C.

As a corollary Shamir and Tishby get that for large enough sample size m, for two
different choices of the number of clusters, k1 and k2, the multiplicative constants C1 and
C2 can be distinguished based on two pairs of samples (S1, S2) and (S ′1, S

′
2) each sample

of sizem.
This corollary can be viewed as an argument in favor of the stability method as it

might explain why the stability method works in practice. Namely, one might postulate
that the multiplicative factor C is some inherent quantity that characterizes how well the
model fits the data set. And so the stability method might be a way of selecting the model
with the smallest multiplicative factor C.

However, we must be very cautious here. The corollary is only an asymptotic state-
ment. In other words, no upper bound on the sample size m is known to guarantee that
if, say, C1 > C2 then instab(Ak1

, P,m) > instab(Ak2
, P,m). It is not clear whether such

bound for m exists or a impossibility result, similar to the one in the preceding section,
holds.

Ben-David and von Luxburg [7] also study a very similar setup of stability of k-means
ERM algorithm on distributions over Rd under the assumption that the optimal solu-
tion is (up to the permutation of the centers) unique. However, they do not assume that

4Here, we mean the boundaries of the Voronoi cells.
5Ideally, the prior assumption should ensure that the sample size, say,m = 42makes the method work.
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the distribution has a density function. In they work they consider the probability mass
within a certain distance from the cluster boundaries (boundaries of the Voronoi cells) in
the optimal solution. They argue that if instab(A, P,m) is “large”, then the probability
mass near cluster boundaries is “large” as well. They provide a counter-example for the
converse of the statement, that is, an example where the mass near cluster is large and
instab(A, P,m) quickly converges to zero. Their paper, however, is less quantitative than
one would hope for, since the bounds are expressed in terms of quantities for which it
is not obvious how to compute them explicitly. For example, the main theorem assumes
that for some unknown sample sizemwith probability at least 1−δ the boundaries of the
Voronoi cells of the empirically optimal solution will not differ from the boundaries of the
true optimal solution by more than γ. However, they do not give any explicit nor asymp-
totic formulas which would relate γ, δ and m. It would be nice if at least the asymptotic
rate of instab(A, P,m), as a function of m, could be explicitly expressed in terms of how
the probability distribution looks in the vicinity of the boundaries of the Voronoi cells of
the optimal solution, in similar spirit as Shamir and Tishby did for absolutely continuous
probability distributions.

7.4 Technical Questions

There remain a couple of open technical questions, which are more directly connected
to the work in this thesis. A very concrete problem is to prove that the k-means ERM
algorithm is stable on a probability distribution over (a bounded subset of) RN if and
only if the cost function has one optimal solution. In other words, generalize Theorem 6.1
and Theorem 4.2 to arbitrary distributions. The main technical problem seems to be to
prove that if multiple optima exists, the algorithm is unstable. For distributions with
infinite support the trick with multinomial distributions no longer works and some more
sophisticated technique needs to be applied. Another obstacle might be the issue with
infinitely many optimal solutions.

A more general and certainly more challenging question is to find conditions on the
loss function L : X × Y → R which would ensure that the ERM algorithm minimizing
R(PS, y) = 1

m

∑m
i=1 L(xi, y) is stable on P if only if R(P, Y) = 1

m
Ex∼P[L(x, y)] has unique

optimal solution. In particular, is this true for the k-medians loss function?
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Part II

Comparison of Supervised and
Semi-Supervised Learning
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Chapter 8

Introduction

Classification is one of the most studied machine learning and statistical problems. See
the books [13, 29, 1]. In a classification task, we are given a set of unlabeled examples,
say, email messages. The examples are manually classified into categories, say, spam
or non-spam, and receive corresponding labels. The goal is to automatically construct
(learn) from the labeled examples a classifier that can be used to predict labels of future
unlabeled examples.

The above approach to classification when the classifier is learned exclusively from
labeled examples is called supervised learning, and from a theoretical perspective, it is
reasonably well understood. The disadvantage of supervised learning is the need to
manually label large quantities of examples, which can be costly and/or laborious. A
natural approach to overcome this drawback is to learn from both labeled and unlabeled
examples. This approach is called semi-supervised learning, and it is theoretically lesser
understood than supervised learning; see the recent book edited by Chapelle et al. [12].

A natural question is what is the advantage (or disadvantage) of semi-supervised
learning. Sidestepping computational issues, the main hope is the fewer examples need
to be labeled manually if one has access to large quantities of unlabeled examples. In this
part of the thesis, we propose a simple theoretical framework in which this question can
be addressed. The idea of this papt of the thesis comes from a conference paper which I
co-authored with Shai Ben-David and Tyler Lu [5]. Tyler Lu’s master’s thesis [22] is also
based on that paper.

Our framework is a utopian extension of the probably approximately correct (PAC)
model where the labeled examples are assumed to be generated independently from a
fixed probability distribution. In the same manner as in the PAC model, supervised learn-
ers are functions that receive a finite sequence of labeled examples, and produce a clas-
sifier. Semi-supervised learners, in addition to labeled examples, have access to infinite
amount of unlabeled data. And so, we model semi-supervised learners as functions that
receive a finite sequence of labeled examples and the distribution of the unlabeled data,
and produce a classifier.

Within our framework, we analyze a simple learning problem of learning a threshold
(a point on the real line). We place no restrictions or assumptions on the relationship
between unlabeled data and the labels. On this problem we demonstrate that access to
unlabeled data at best roughly halves the number of labeled examples needed. We finish
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this part of the thesis by presenting a general definition of a measure which quantifies
the relative advantage of having the access to unlabeled data. We call the measure the
semi-supervised learning ratio.
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Chapter 9

Definitions and Notation

In this chapter, we introduce a learning model which will allow us to compare the rel-
ative advantage of unlabeled data. Our model is a simple extension of Valiant’s prob-
ably approximately correct (PAC) model [28]; see also the book by Kearns and Vazi-
rani [19]. Similarly, as in the PAC model the learner receives data an i.i.d. labeled sample
(x1, y1), (x2, y2), . . . , (xm, ym) generated at random from a probability distribution P over
X × Y where X is some domain and Y = {+1,−1} is the set of labels. We consider two
types of learners: (a) supervised learners which receive only the sample and (b) semi-
supervised learners (SSL) which, in addition to the sample, also receive the marginal
distribution PX i.e. the distribution P “without” the labels. In both cases, the learners
output a hypothesis which is a function f : X → {+1,−1}. For such a hypothesis f, we
are interested in its misclassification probability, that is, the probability that on a random
sample (x, y) drawn from P the values f(x) and y disagree. This probability is called error
and the learner’s task is to output fwith as small an error as possible.

The error of the learner (supervised or semi-supervised) is compared with the error of
the best function from a class H. The difference between the error of the function output
by the learner and the minimum error of a function from the class H is called the excess
error. Quite non-standardly, we measure the performance of a learner by the expected
excess error1 which we call the learning rate. In the literature, for online learning tasks,
the term regret is used; see for example the book [11].

We consider two standard variants of the model. The first variant is the original
Valiant’s version in which P is such that there exists a function in H with zero error. The
second variant is the agnostic version attributed to Haussler [17] where any probability
distribution P is allowed.

The fundamental comparison that we want to make is the relative advantage of a
semi-supervised learner over a supervised learner. In contrast to the original Valiant’s
model, we ignore any computational issues such as how the input sample or the output
hypotheses are represented and whether the learner runs in polynomial time or not.

We start gently with the basic definitions. However, we postpone our main definition,
the definition of semi-supervised learning ratio, to the next chapter.

1The common practice is to study the sample sizem as function of the probability δ that the excess error
is greater than ε. We advocate our approach because of its simplicity and more understandable presentation
of the results.
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Definition 9.1 (Domain). A domain is a measurable space. That is, it is a pair (X,M) where X
a non-empty set and M is a σ-algebra of subsets of X.

As in the first part of the thesis, we will simply talk about the domain X as long as the
σ-algebra is clear from context.

Definition 9.2 (Hypothesis). Let (X,M) be a domain. A hypothesis (over X) is a measurable
function f : X → {+1,−1}. We denote by H the set of all hypotheses i.e. the set of all measurable
functions from X to {+1,−1}

Whenever we write H, the domain to which H refers, will be clear from the context.
We use this convention to avoid awkward notations such as HX or H(X).

Definition 9.3 (Hypothesis Class). Let (X,M) be a domain. A hypothesis class is a non-empty
subset of H.

Definition 9.4 (Error). Let (X,M) be a domain and let P be a probability distribution over X ×
{+1,−1}.2 Let h : X→ {+1,−1} be a hypothesis. We define the error of h on P as

ErrP(h) = Pr
(x,y)∼P

[h(x) 6= y] .

Definition 9.5 (Example and Sample). Let X be a domain. An element of X× {+1,−1} is called
an example or a labeled example. The second component of an example is called the label. If the
label of an example is +1, we call the example positive; otherwise we call the example negative.
A sample or a labeled sample is a finite sequence of examples. The size of a sample is its length.
Formally, a sample is an element of

∞⋃
m=1

(X× {+1,−1})
m
.

Definition 9.6 (Supervised Learner). Let (X,M) be a domain. A supervised learner is a
mapping

A :

∞⋃
m=1

(X× {+1,−1})
m → H .

Definition 9.7 (Semi-Supervised Learner). Let D be a family of probability distributions over
a domain (X,M). A semi-supervised learner is a mapping

A : D×
( ∞⋃
m=1

(X× {+1,−1})
m

)→ H .

An element of D is called an unlabeled distribution.

A learner, without any further qualification, is either a supervised learner or a semi-
supervised learner.

2P is defined on the σ-algebra generated by the class of sets {M× {+1} : M ∈M}∪ {M× {−1} : M ∈M}.
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Definition 9.8 (Excess Error). Let X be a domain, H be a hypothesis class over X, and let P be a
probability distribution over X× {+1,−1}. The excess error of a hypothesis h ∈ H is

ErrP(h) − inf
h∈H

ErrP(h) .

Note that, in principle, the excess error of h can be negative.

Definition 9.9 (Unlabeled distribution). Let (X,M) be a domain and let P be a probability
distribution over X × {+1,−1}. The unlabeled distribution of P is the marginal probability
distribution over X. We denote the unlabeled distribution by PX. Formally, for any measurable set
M ⊆ X, it is defined as

PX(M) = P(M× {+1,−1}) .

Definition 9.10 (Learning Rate). Suppose X is a domain, H is a hypothesis class over X, P is
a probability distribution over X × {+1,−1}, and A is learner and m is a positive integer. The
learning rate is defined as

L(A, P,H,m) = E
S∼Pm

[
ErrP(A(S)) − inf

h∈H
ErrP(h)

]
,

and for semi-supervised learner as

L(A, P,H,m) = E
S∼Pm

[
ErrP(A(PX, S)) − inf

h∈H
ErrP(h)

]
.

More intuitively, the learning rate of a learner is the function that maps the sample
sizem to the expected excess error of a hypothesis produced by the learner.

Let us explain the difference between Valiant’s and Haussler’s model. The former
is sometimes called the realizable case and the second the agnostic or unrealizable case.
Technically, a probability distribution P over X × {+1,−1} is realizable by H if there exists
a hypothesis h ∈ H such that ErrP(h) = 0. Such hypothesis h is called a target. If no target
exists inH, we say that P is unrealizable byH and we talk about the unrealizable or agnostic
case.

9.1 A Folklore Example

We present a folklore example of a learner for the class of thresholds on the real line in
the realizable case. The example will be useful in the next chapter. Consider the domain
X = R. The hypothesis class H of thresholds contains for each real number t a hypothesis
ht which is defined as

ht(x) =

{
−1 if x ≤ t,
+1 if x > t.

We define a supervised learnerA for probability distributions realizable by this class. The
learner A, for a given labeled sample S = ((x1, y1), (x2, y2), . . . , (xm, ym)), computes the
position of the rightmost negative example

` = max {xi : 1 ≤ i ≤ m, yi = −1}
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and outputs h`. Here, we use the convention that the maximum of the empty set is −∞
and we define h−∞(x) = −1 for every x ∈ R.

What is the learning rate ofA on distributions realizable byH? Let P be any probability
distribution over R× {+1,−1} realizable by a target ht∗ ∈ H. We have

L(A, P,H,m) = E
S∼Pm

[
ErrP(A(S))

]
=

∫ 1
0

Pr
S∼Pm

[
ErrP(A(S)) ≥ x

]
dx

To bound PrS∼Pm

[
ErrP(A(S)) ≥ x

]
, let

t ′ = sup{t ∈ R : PX([t, t∗]) ≥ x} .

The event ErrP(A(S)) ≥ x occurs precisely when no (negative) example of S falls in the
interval [t ′, t∗]. The probability of that event is

(1− P([t ′, t∗]))m ≤ (1− x)m .

Therefore,

L(A, P,H,m) ≤
∫ 1
0

(1− x)m dx =
1

m+ 1
.

Note that this result holds for any probability distribution P over X × {+1,−1} realizable
by H. Note that when PX is absolutely continuous, the learning rate is exactly 1/(m+ 1).
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Chapter 10

The Hypothesis Class of Thresholds

The goal of this chapter is to analyze the relative advantage of the unlabeled data for the
hypothesis class of thresholds on the real line introduced in Section 9.1. Our intention is
to keep things as simple as possible so that we can demonstrate our point and at the same
time provide enough motivation for the definition of the semi-supervised ratio. We propose
this ratio as a measure of the relative advantage of the unlabeled data. Roughly speaking,
the ratio is defined as the ratio between the learning rates of the best supervised and the
best semi-supervised learner.

First, in the next section, we construct a semi-supervised learning algorithm for the
hypothesis class of thresholds and compute its learning rate on distributions realizable
by the hypothesis class of thresholds and with absolutely continuous unlabeled distribu-
tion. Second, we give a lower bound on the learning rate of any semi-supervised learner.
As it will turn out, the learning rate will be roughly within factor 2 from the learning rate
of the supervised learning algorithm given in Section 9.1. Third, we present the defini-
tion of semi-supervised learning ratio which quantifies what advantage of having access to
unlabeled data i.e. advantage of the “knowledge” of the unlabeled distribution.

10.1 Kääriäinen’s Algorithm

Consider the hypothesis class H of thresholds as defined in Section 9.1. We construct
a semi-supervised learning algorithm B for probability distributions realizable by this
class. The idea behind this algorithm was proposed by Kääriäinen [18]. For simplicity,
we define the algorithm on the family of (unlabeled) distributions D over R which are
absolutely continuous with respect to the Lebesgue measure on R. Given an unlabeled
distribution D ∈ D and a labeled sample S = ((x1, y1), (x2, y2), . . . , (xm, ym)), the algo-
rithm first computes the position ` of the rightmost negative example and the position r
of the leftmost positive example:

` = max{xi : 1 ≤ i ≤ m, yi = −1},

r = min{xi : 1 ≤ i ≤ m, yi = +1} .

It computes, then, a point t ∈ (`, r) such that D([`, t]) = D([t, r]) = 1
2
D([`, r]). If there

are multiple such points t, the algorithm outputs any of them, for definitiveness, say
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the leftmost such point. Similarly as before, we use the convention that maximum of an
empty set is −∞ and minimum of an empty set is +∞.

Theorem 10.1. Let P be a probability distribution over X × {+1,−1} realizable by the class H
of thresholds and suppose its unlabeled distribution PX is absolutely continuous (with respect to
Lebesgue measure on R). For anym ≥ 2, the learning rate of Kääriäinen’s algorithm B is

L(B, P,H,m) ≤ 1

2(m+ 1)
.

Proof. Let F : R→ [0, 1] be the distribution function of the unlabeled distribution PX, that
is, F(s) = PX((−∞, s]). Let ht∗ ∈ H be a target for P and define T ∗ = F(t∗). Consider
the three real numbers `, r, t computed by Kääriäinen’s algorithm as random variables
(depending on the random choice of the sample S). Define three related random variables
L = F(`), R = F(r) and T = F(t). Noting that T = (L+ R)/2we have

L(B, P,H,m) = E
S∼Pm

[
ErrP(B(PX, S))

]
= E
S∼Pm

|T ∗ − T |

= E
S∼Pm

|T ∗ − (L+ R)/2| .

To compute the last expectation we consider three cases: (a) both ` and r are finite i.e.
there exists both a positive and a negative example in the sample, (b) only ` is finite i.e. all
examples in S are negative, (c) only r is finite i.e. all examples in S are positive. We write
each of the cases as a Riemann integral and so we have

L(B, P,H,m) = m(m+ 1)

∫ T
0

∫ 1
T

|T ∗ − (L+ R)/2| · (1− (R− L))m−2 dR dL

+m

∫ T
0

|T ∗ − (L+ 1)/2| · Lm−1 dL

+m

∫ 1
T

|T ∗ − R/2| · (1− R)m−1 dR .

Without loss of generality assume that T ≤ 1/2. These integrals can be explicitly calcu-
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lated

L(B, P,H,m) = m(m− 1)

∫ T
0

∫ 2T−R

T

(T − (L+ R)/2) · (1+ L− R)m−2 dR dL

+m(m− 1)

∫ T
0

∫ 1
2T−x1

((L+ R)/2− T) · (1+ L− R)m−2 dR dL

+m

∫ 2T
T

(T − R/2) · (1− R)m−1 dR

+m

∫ 1
2T

(R/2− T) · (1− R)m−1 dR

+m

∫ T
0

((L+ 1)/2− T) · Lm−1 dL

=
1

2(m+ 1)
+

(1− 2T)m+1 − (1− T)m+1 − Tm+1

2(m+ 1)
(10.1)

It is not hard to see that the second fraction is negative for any T ∈ [0, 1/2] and hence the
theorem follows. �

10.2 Lower Bound

When we compare the supervised learner from Section 9.1 and Kääriäinen’s semi-supervised
learner from the previous section, we see that if the unlabeled distribution is absolutely
continuous, the upper bound on learning rate of Kääriäinen’s algorithm is two times bet-
ter than the upper bound for the supervised learner. A natural question arises whether
there exists a semi-supervised learner with a better learning rate. The following theorem
answers this question negatively.

Theorem 10.2 (Lower Bound). Let B be any semi-supervised learner on the domain X = R.
Let PX be any absolutely continuous (unlabeled) probability distribution over R. There exists a
probability distribution P over R× {+1,−1} realizable byH, unlabeled distribution of which is PX
and such that for anym ≥ 1

L(B, P,H,m) ≥ 1

2(m+ 2)
.

Proof. The proof is a simple application of the averaging argument. We choose t ∈ R at
random from PX and we let ht to be the target. This means that the distribution P = Pt
itself is random, determined by the random choice of t. Formally, the distribution Pt is
defined for any measurable setM ⊆ R× {+1,−1} as

Pt(M) = PX({x ∈ R : (x,−1) ∈M,x ≤ t}) + PX({x ∈ R : (x,+1) ∈M,x > t}) .

We consider the average learning rate Et [L(B, Pt, H,m)] and we will bound it from be-
low by 1

2(m+2)
. The lower bound will imply existence of at least one t such that L(B, Pt, H,m) ≥

1
2(m+2)

and the theorem will follow.
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Let U be the random variable denoting the unlabeled part of the sample S. Formally,
if the labeled sample S equals ((x1, y1), (x2, y2), . . . , (xm, ym)) the unlabeled sample U is
(x1, x2, . . . , xm). Note that S is determined by U and t, namely, yi = −1 if and only if
xi ≤ t. With this in mind, we can write the average learning rate as

E
t∼PX

[L(B, Pt, H,m)] = E
t∼PX

E
S∼Pt

m

[
ErrPt(B(PX, S))

]
= E
U∼Pm

X

E
t∼PX

[
ErrPt(B(PX, S))

] (10.2)

Fix U = (x1, x2, . . . , xm) and consider the inner term Et∼PX

[
ErrPt(B(PX, S))

]
. Without loss

of generality, assume that the elements of U are sorted so that x1 < x2 < · · · < xm. Now,
since if t lies anywhere in the interval (xi, xi+1), then S and hence also the hypothesis
hi := B(PX, S) are fixed. (Here, i = 0, 1, . . . ,m and x0 = −∞ and xm+1 = +∞.) Since

E
t∼PX

[
ErrPt(B(PX, S))

]
=

m∑
i=0

∫xi+1

xi

ErrPt(hi) dPX(t) . (10.3)

It remains to lower bound the Lebesgue integral
∫xi+1

xi
ErrPt(hi) dPX(t) for some fixed i.

For that purpose, we define an indicator function

I(x, t) =


1 if hi(x) = +1, x ≤ t
1 if hi(x) = −1, x > t

0 if hi(x) = −1, x ≤ t
0 if hi(x) = +1, x > t

that indicates whether hi makes error on the domain point xwhen the target is ht. Using
that indicator we can write∫xi+1

xi

ErrPt(hi) dPX(t) =

∫xi+1

xi

∫∞
−∞ I(x, t) dPX(x) dPX(t)

=

∫∞
−∞
∫xi+1

xi

I(x, t) dPX(t) dPX(x)
(10.4)

Consider a fixed x ∈ (xi, xi+1). Then∫xi+1

xi

I(x, t) dPX(t) =

{
PX((x, xi+1)) if hi(x) = −1

PX((xi, x)) if hi(x) = +1

≥ min {PX((x, xi+1)), PX((xi, x))} .

Substituting back into (10.4) we have∫xi+1

xi

ErrPt(hi) dPX(t) =

∫∞
−∞
∫xi+1

xi

I(x, t) dPX(t) dPX(x)

≥
∫xi+1

xi

min {PX((x, xi+1)), PX((xi, x))} dPX(x)

= PX((xi, xi+1))
2/4 .
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and substituting that into (10.3) we have

E
t∼PX

[
ErrPt(B(PX, S))

]
≥

m∑
i=0

PX((xi, xi+1))
2/4

It thus remains to compute

E
U∼Pm

X

[
m∑
i=0

PX((xi, xi+1))
2/4

]
.

Taking into account that the ordering x1 < x2 < · · · < xm is one of m! possible, we can
write the expectation as an m-folded Riemann integral over a 1/m! fraction of the cube
[0, 1]m:

E
U∼Pm

X

[
m∑
i=0

PX((xi, xi+1))
2/4

]
= m!

∫ zm+1

0

∫ zm
0

∫ zm−1

0

. . .

∫ z2
0

m∑
i=0

(zi+1 − zi)
2

4
dz1 · · · dzm−1 dzm

where z0 = 0 and zm+1 = 1. We consider the last integral as a function of m and the last
point zm+1 and we write

Im(zm+1) = m!

∫ zm+1

0

∫ zm
0

∫ zm−1

0

. . .

∫ z2
0

m∑
i=0

(zi+1 − zi)
2

4
dz1 · · · dzm−1 dzm .

Unfolding the integral we get the recurrence

I0(z1) = z21/4 ,

Im(zm+1) = m

∫ zm+1

0

Im−1(zm) + (zm)m−1 · (zm+1 − zm)2/4 dzm form ≥ 1.

We prove by induction on m that Im(zm+1) = (zm+1)m+2

2(m+2)
for any zm+1 ≥ 0. The base case

m = 0 holds by definition. In the inductive case, m ≥ 1, we obtain from the recurrence
and inductive hypothesis

Im(zm+1) = m

∫ zm+1

0

Im−1(zm) + (zm)m−1 · (zm+1 − zm)2/4 dzm

= m

∫ zm+1

0

(zm)m+1

2(m+ 1)
+ (zm)m−1 · (zm+1 − zm)2/4 dzm

= m

(
(zm+1)

m+2

2(m+ 1)(m+ 2)
+m

(zm+1)
m+2

2m(m+ 1)(m+ 2)

)
=

(zm+1)
m+2

2(m+ 2)
.

Substituting the value zm+1 = 1 and looking back at (10.2) we obtain the lower bound of
the expected learning rate

E
t∼PX

[L(B, Pt, H,m)] ≥ Im(1) =
1

2(m+ 2)
.

�
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10.3 Semi-supervised Learning Ratio

Learning algorithms supervised or semi-supervised learners are intended to be used for
an “unknown” distributions over X × {+1,−1}. In other words, the learner will used for
any distribution coming from a family P of probability distributions over X × {+1,−1}.
Any assumption about the learning problem can be captured by what distributions do
we include in (or exclude from) the family P. (We will talk about this issue later.)

On the family P, we can compare learning rates of a supervised learning algorithm A

and a semi-supervised learning algorithm B. In order to do so, we partition the family
P into equivalence classes such that within each equivalence class the unlabeled distri-
butions are the same. Formally, we define D = {PX : P ∈ P} the family of all unlabeled
distributions. And for any unlabeled distribution D ∈ D we define the equivalence class
P[D] = {P : P ∈ P, PX = D}. Using this notation we define the semi-supervised learning
ratio.

Definition 10.3. Let X be a domain, let H be a hypothesis class over X, let P be a family of
probability distributions over X × {+1,−1}. Let A be a supervised learner, and let B be a semi-
supervised learner. Fro any sample sizem, we define semi-supervised learning ratio as

ssl-ratio(H,P,m,A, B) = sup
D∈D

sup
P∈P[D]

L(A, P,H,m)

sup
P∈P[D]

L(B, P,H,m)

and inherent semi-supervised learning ratio as

ssl-ratio(H,P,m) = inf
A

sup
B

ssl-ratio(H,P,m,A, B) .

where the infimimum is taken over all supervised learners A and the supremum is taken over all
semi-supervised learners B.

The fraction
supP∈P[D] L(A,P,H,m)

supP∈P[D] L(B,P,H,m)
is the ratio of the worst-case learning rates of A,B

on distributions with the same unlabeled distribution D. Worst-case here refers to the
suprema in the numerator and the denominator of the fraction. The semi-supervised
learning ratio for learners A,B is the supremum of this fraction over all unlabeled distri-
butions. This supremum corresponds to the best-case over the unlabeled distributions in
the favor of SSL.

The inherent semi-supervised learning ratio is the min-max value of semi-supervised
learning ratio. Perhaps more intuitively, it can be written as

ssl-ratio(H,P,m) = inf
A

sup
D∈D

sup
P∈P[D]

L(A, P,H,m)

inf
B

sup
P∈P[D]

L(B, P,H,m)

where the both infima are taken over all supervised learners A,B. This rearrangement
follows from the fact that a semi-supervised learner can be seen as collection of supervised
learners; one supervised learner for each unlabeled distribution D.
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Our results from about thresholds on the real line can expressed as follows. Let P be
the family of distributions over R × {+1,−1} realizable by the hypothesis class of thresh-
olds H and having the absolutely continuous unlabeled distribution. If we denote by by
A the supervised learner from Section 9.1, and by BKääriäinen’s semi-supervised learner,
then

ssl-ratio(H,P, A, B,m) = 2+O(1/m) .

This follows from the note at the end of Section 9.1 and equation (10.1) at the end of the
proof of Theorem 10.1. More importantly, the inherent semi-supervised learning ratio is

ssl-ratio(H,P,m) ≤ 2+O(1/m) .

as follows from the lower bound in stated in Theorem 10.2. This says intuitively that on
the family P and the hypothesis class of thresholds the relative advantage of unlabeled
data is an improvement of the learning rate roughly by a factor of 2.
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Chapter 11

Conclusion

Semi-supervised learning is an active research topic. Our aim was to draw attention to
the basic fact that access to unlabeled data itself does not decrease the worst-case sample
complexity of learning, if one does not postulate any relationship between unlabeled data
and the labels. We have mathematically proven that this is indeed the case of learning
thresholds on the real line provided that the unlabeled distribution is absolutely continu-
ous. We stress that in semi-supervised learning in order to utilize the unlabeled data, it is
important to make non-trivial prior assumptions on the relationship between unlabeled
data and the labels. Our work shows that in order to gain a non-trivial advantage from
unlabeled data, making these assumptions is, in fact, necessary.

In retrospect our claim sounds almost obvious. However, it is less obvious mathemat-
ically. And so, as in Ben-David et al. [5], we make the following conjecture.

Conjecture 11.1. Let H be any hypothesis class over some domain X. Let P be a family of all
probability distributions over X × {+1,−1} realizable by H. There exists a universal1 constant c
such that

ssl-ratio(H,P,m) ≤ c for allm ≥ 0.
A step towards proving the conjecture would be to consider as H the class of thresh-

olds on the real line and as P the class of all realizable distributions over R × {+1,−1}

with finite support. It seems that these distributions have faster (i.e. lower) learning rates
than distributions with absolutely continuous unlabeled distributions. As an extreme ex-
ample, any consistent learner has learning rate 0 on a distribution concentrated on one
point.

Notice that we do not put any restriction on the hypothesis class H. In particular, we
do not insist on the Vapnik-Chervonenkis dimension to be finite. For example, consider
an uncountable domain X (e.g. the real line) and the class H of all hypotheses h such
that either h labels finitely many points +1 and all other points by −1, or vice versa h
labels finitely many points −1 and all other points by +1. This class has infinite VC-
dimension. Despite that one can construct a supervised learner which for any realizable
distribution has learning rate approaching zero. We conjecture the learning rate of any
semi-supervised learner is within constant factor.

A similar conjecture can be made in the unrealizable case.
1Universal means that c does not depend on H and X.
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Conjecture 11.2. Let H be any hypothesis class over some domain X. Let P be a family of all
probability distributions over X× {+1,−1}. There exists a universal constant c ′ such that

ssl-ratio(H,P,m) ≤ c ′ for allm ≥ 0.

A special case of this conjecture was proved by Ben-David et al. [5] and Lu [22].
Namely, the conjecture was proved for the hypothesis class of unions of d intervals on the
real line and P restricted to distributions which have absolutely continuous unlabeled
distributions. (The constant c ′ is not explicitly computed in these works.)
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