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Abstract

We study the potential benefits of unlabeled data
to classification prediction to the learner. We com-
pare learning in the semi-supervised model to the
standard, supervised PAC (distribution free) model,
considering both the realizable and the unrealiz-
able (agnostic) settings.

Roughly speaking, our conclusion is that access
to unlabeled samples cannot provide sample size
guarantees that are better than those obtainable with-
out access to unlabeled data, unless one postulates
very strong assumptions about the distribution of
the labels.

In particular, we prove that for basic hypothesis
classes over the real line, if the distribution of un-
labeled data is ‘smooth’, knowledge of that dis-
tribution cannot improve the labeled sample com-
plexity by more than a constant factor (e.g., 2). We
conjecture that a similar phenomena holds for any
hypothesis class and any unlabeled data distribu-
tion. We also discuss the utility of semi-supervised
learning under the commanuster assumptiooon-
cerning the distribution of labels, and show that
even in the most accommodating cases, where data
is generated by two uni-modal label-homogeneous
distributions, common SSL paradigms may be mis-
leading and inflict poor prediction performance.

Introduction

t@cs.uwaterloo.ca

practice gap by providing formal analysis of some semi-supervised

learning settings. The question we focus on is whether un-
labeled data can be utilized to provably improve the sample
complexity of classification learning.

We investigate what type of assumptions about the data
generating distribution (or which circumstances) are suffi-
cient to make the SSL approach yield better predictions than
fully supervised learning. The bulk of this paper focuses on
showing that without prior knowledge about the distribution
of labels SSL cannot guarantee any significant advantages in
sample complexity (no more than a constant factor for learn-
ing tasks over the real line).

The basis for our theory is a simplified, utopian, model
of semi-supervised learning, in which the learning algorithm
has perfect knowledge of the probability distribution of the
unlabeled data. We focus on estimating taeeled sample
complexity of learning. Since our model provides the learner
with more information than just a sample of the unlabeled
data distribution, lower bounds on the labeled sample com-
plexity of learning in our model imply similar lower bounds

for common notions of semi-supervised learning. Upper bounds,

or sample size sufficiency results (for the labeled samples) in
our model, apply to the common SSL setting only once suf-

ficiently large unlabeled samples are available to the learner.
In this paper we mainly discuss lower bounds, and when we
address upper bounds we settle for stating that they apply
eventually as the unlabeled sample sizes grow.

Our model of semi-supervised learning can be viewed as
learning with respect to a fixed distribution, (see Benedek
and lItai [5]). However, our emphasis is different. Our goal
is to compare how thnowledgeof the unlabeled distribu-
tion helps, as opposed to learning when the only access to

While supervised classification has received a lot of researchthe underlying unlabeled data distribution is via the training
attention and is reasonably well understood, in many practi- labeled sample. We call the former settisgmi-supervised
cal learning scenarios, labeled data is hard to come by andand the lattesupervisedr fully supervisedearning.

unlabeled data is readily available. Consequently, users try

We present explicit formalization of different ways in

to utilize available unlabeled data to assist with the classi- which the merits of the semi-supervised paradigm can be
fication learning process. Learning from both labeled and measured. We then investigate the extent by which SSL can
unlabeled data is commonly called semi-supervised learningprovide provable advantages over fully supervised learning
(SSL). Due to its wide potential applications, this approach with respect to these measures.

is gaining attention in both the application oriented and the

theoretical machine learning communities.
However, theoretical analysis of semi-supervised learn- clusters) suffices to render SSL an advantage over fully su-
ing has, so far, been scarce and it falls short of providing pervised learning. Unlabeled data can make a difference
unequivocal explanation of merits of using unlabeled exam- only under strong assumptions (or prior knowledge) about
ples in learning. We take steps toward rectifying this theory- the conditionalabeleddistribution.

Roughly speaking, we conclude that no special unlabeled
data distribution (like, say, one that breaks into clear data



One should note however, that in many cases such knowl-samples. The investigation of the first setup was pioneered
edge can also be utilized by a fully supervised algorithm. by Vapnik in the late 70s in his model of transductive learn-
The search for justification to the SSL paradigm therefore ing, e.g. [21]. There has been growing interest in this model
leaves us with one setting - the cases where there exists prioin the recent years due to the popularity of using unlabeled
knowledge about theslationshipbetween the labels and the data in practical label prediction tasks. This model assumes
unlabeled data structure (and not just about the labels per se)that unlabeled examples are drawn IID from an unknown dis-
However, we show in Section 3 that common applications of tribution, and then the labels of some randomly picked sub-
SSL paradigms for utilizing such relationship (like the popu- set of these examples are revealed to the learner. The goal
lar cluster assumptioar the related algorithmic bias towards of the learner is to label the remaining examples minimizing
class boundaries that pass through low-density data regionsthe error. The main difference with SSL is that the error of
may lead to poor prediction accuracy, even when the datalearner’s hypothesis is judged only with respect to the known
does comply with the underlying data model (say, the data initial sample.
is generated by a mixture of two Gaussian distributions, one  However, there are no known bounds in the transduc-
for each label, each generating a homogeneously labeled sefive setting that are strictly better than supervised learning
of examples). . . _ . ~ bounds (Vapnik’s bounds [21] are almost identical). El-Yaniv

The potential merits of SSL, in both settings - either with  and Pechyony [14] prove bounds that are similar to the usual
or without making assumptions about the labeled distribu- margin bounds using Rademacher complexity, except that
tion, have been investigated before. Vapnik’s model of trans- the learner is allowed to decideposteriorithe concept class
ductive learning [21], as well asdriainen's paper [17] ad-  gjven the unlabeled examples. But they do not show whether
dress the setting without restrictions on the way labels are it can be advantageous to choose the class in this way. Their
generated while Balcan-Blum’s augmented PAC model for earlier paper [13] give bounds in terms of a notionuoi-
semi-supervised learning [3, 4] offers a framework for for- form stability of the learning algorithm, and in the broader

malizing prior knowledge about the relationship between la- setting where examples are not assumed to come 11D from
bels and the structure of the unlabeled distribution. We elab- an unknown distribution. But again, it's not clear whether

orate more about these in the next section on related work.and when it beats the supervised learning bounds.
One basic difference between these works and ours is that Methods for semi-supervised learning without prior as-

they try to provide explanations of the success of the SSL g, 5tion of conditional label distributions have been devel-

paradigm while we focus on investigating its inherent limi- oped by Benedek and Itai [5], andaitriainen [17]. The

tatlc\)/r\}s.d ve the i  the utility of unlabeleq €2 Of Benedek and Itai's algorithm is to construct a min-
e do not resolve the issue of the utility of unlabeled ;. c_cover and apply empirical risk minimization (ERM)

data in full generality. Rather, we demonstrate the answers . the functions in the cover. Of course thisover algo-

for relatively simple classes of concepts over the real line jhm makes sense when we have knowledge of the unlabeled
(thresholds and unions af intervals). \We believe that the distribution. The algorithm of Bariainen is inspired by the

?hnswers gemlerallze o other clas_se? inan O%V'OUS way. '?.Iongclever observation that one can output the function that mini-
€ way we alSo pose Some conjectures and open qUESUIONS ;a5 the distance to all other functions of the version space.

The paper is organized as follows. We start by discussing s aigorithmcanbe twice as good as in supervised ERM.
previous related work in section 2. Then, we take a detour g more details on these algorithms, see section 5.

in section 3 and show that a commonly held assumption can . . .

result in performance degradation of SSL. We continue on ___1N€ shecofnd, certainly more pqpular,bset oLsem|—3l_Jperv:s|,ed

our main path in section 4 where we formally define our &PProaches focuses on assumptions about the conditional la-
P y beled distributions. A recent PAC model of SSL proposed

model of semi-supervised learning and introduce notation. by Bal 4B 3 41 att 10 f I " h
Section 5 casts the previous paradigms in our model and for-PY Balcan and Blum [3, 4] attempts to formally capture suc
ssumptions. They propose a notion of a compatibility func-

mally poses the question of in what sense unlabeled data carf; X ! - ; )
yP q ion that assigns a higher score to classifiers which “fit nicely”

e, Tis ueston il guid e rest of i paber 3¢ we L0 2C e unabeed skbuton. e raiond 5
' by narrowing down the set of classifiers to only compatible

learning tasks on the real line. The section finishes off by th ity of th t of botential classifi d
asking a slightly different question how one might compare ©N€S: the capacity of the set of potential classitiers goes down
and the generalization bounds of empirical risk minimization

SSL and supervised learning. We conclude our paper in sec-;

tion 7 where we also discuss open questions and directiongMProve. However, since the set of potential classifiers is
for further research. trimmed down by a compatibility threshold, if the presumed

label-structure relationship fails to hold, the learner may be
left with only poorly performing classifiers. One serious con-
2 Related Work cern about this approach is that it provides no way of veri-
As we mentioned above, analysis of performance guaranteedYing these crucial modeling assumptions. In section 3 we
for semi-supervised learning can be carried out in two main demonstrate that this approach may damage learning even
setups. The first focuses on the unlabeled marginal data disWhen the underlying assumptions seem to hold. In Claim 2
tribution and does not make any prior assumptions about thewe show that without prior knowledge of such relationship
conditional label distribution. The second approach focuses that the Balcan and Blum approach has poor worst-case gen-
on assumptions about the conditional labeled distribution, €ralization performance.
under which the SSL approach has potentially better label = Common assumptions include tsenoothness assump-
prediction performance than learning based on just labeledtion and the relatetbw density assumptiofi0] which sug-



gests that the decision boundary should lie in a low density risk minimization that ignores unlabeled data will succeed

region. In section 3, we give examples of mixtures of two based on a small number of labeled samples).

Gaussians showing that the low density assumption may be

misleading even under favourable data generation models4 A No Prior Knowledge Model of

resulting in low density bounda_ry SSL classifiers v_vith larger Semi-Supervised Learning

error than the outcome of straightforward supervised learn-

ing that ignores the unlabeled data. We adopt the common (agnostic) PAC in which a learning
Many other assumptions about the labels/unlabeled dataproblem is modeled by a probability distributiéhover X x

structure relationship have been investigated, most notably{0, 1} for some domain setX. Any function from X to

co-training [6] and explicit generative data models [11]. {0,1} is called ahypothesis Examplesare pairs,(z,y) €
However, in all these approaches, the assumptions limit- X % {0, 1}, and asampleis a finite sequencg = {(z;, y:)}{~,

ing the family of distributions” belongs to are quite strong  Of examples. The fundamental definition of our paper is:

and hard to verify. Definition 1 (SL and SSL).

3 Issues with Approaches Based on the e Asupervisedearning (SL) algorithm is a functior?, :
; U, en(X x {0,1H)™ — {0,1}*, that mapping sam-
Cluster Assumption pleseto a hypotheses.
This paper has several results of the form “as long as one e A semi-supervisetearning (SSL) algorithm is a func-
does not make any assumptions about the behavior of the  tion L : |J,, (X x {0,1})™ x P — {0,1}*, where

labels SSL cannot help much over algorithms that ignore P is a set of probability distributions oveX. Namely,
the unlabeled data.” an SSL algorithm takes as input not only a finite labeled

However, two arguments can be raised against such claims. sample but also a probability distribution over the do-
First, SSL is not really intended to be used without any prior main set (and outputs a hypothesis, as before).

assumption about the distribution of labels. In fact, SSL can
be viewed as applying some prior knowledge (or just belief)

that the labels are somehow correlated with the unlabeled
structure of the data. Can we say anything (anything nega-
tive, naturally ...) under such an assumption?

Second, maybe using unlabeled data cahitayshelp
you, but if it can helpsometimesvhy not use it (always)?
Well, can we show that in some cases the use of unlabele | iexitvof . ised I . laorithey
data can indeed hurt the learner? Of course, nothing of thatP'.c, COMPIEXIoT-a Semi-SUpervised learning algori
kind can apply for all potential learners, since a learner can W'th respect toP, confidence) > 0 andaccuracye > 0,
choose to ignore the unlabeled data and then of course not ge
hurt by "using” it. We are therefore left with asking, “can — .
the use of unlabeled data hurt the performanceanfcrete m(A, H, P,e, ) = min{m €N :
common SSL paradigms?” Pll;m[ErrP(A(S,D(P>)) - hi’nfl.ﬁl ErrP(h/) > 6] < (5} .

We briefly address these two questions below by demon- - ] © ) ) ]
strating that for certaitommonSSL strategies (“low den-  1he sample complexity of a supervised learning algorithm
sity cut” and Balcan-Blum style use of “compatibility thresh- iS defined similarly, except that the second input parameter
old”) SSL can sometimes hurt you even when the (vaguely P(£) is omitted. . _ _
stated) “cluster assumption” does hold (when the data breaks ~ We consider two settings, realizable and agnostic. In the
into clear clusters). agnosticsetting, P> can be arb|trary._ Th&aahzable_settmg is

In Figures 1, 2, and 3 we depict three examples of sim- defined by assuming that there exists hypothesisH such

ple data distributions in which the data is generated by a thatErr” (k) = 0; consequentlynfy, e Err” (h') = 0. In
mixture of two uni-modal distributions, and if each of these Particular, this implies that for any € X, the conditional
modes generated examples labeled homogeneously, each bgrobabilities, P(y = 0[ z) and P(y = 1| z) are always
a different label, then the minimum density of the unlabeled €ither 0 or 1. In the agnostic setting we do not make any
mixture data is significantly off the optimal label prediction Such requirement. ) .
decision boundary. Figure 1 shows a mixture of two equal-  Following the common PAC terminology and notation,
variance symmetric Gaussians, Figure 2 is a mixture of dif- theempirical error, Err® (h), of a hypothesi& on a sample
ferent Gaussians and Figure 3 shows an extreme case of unis is defined a&rr® (h) = L |{i : i € {1,2,...,m}, h(x;) #
modal density functions for which the error of the minimum 4, }|.
density partition has classification error that is twice that of Without reference to any learning problem,ariabeled
the optimal decision boundary. distribution D is simply any distribution oveX. We use
Note that in all such examples, not only does the minimumExt (D) to denote all possiblextensionsf D, that is,Ext(D)
density bias mislead the learning process, but also, if oneis the family of all possible distribution8 such thaD(P) =
follows the paradigm suggested by Balcan and Blum [4], a D. For an unlabeled distributioR and hypothesia, D;, de-
wrong choice of the compatibility threshold level will doom notes the probability distribution ifixt(D) over X x {0, 1}
the learning process to failure (whereas a simple empirical such thatDy, (y = h(z) | ) = 1.

For such a distributio, let D(P) denote the marginal
distribution overX. That is, formally, forX’ C X we define
D(P)(X') = P(X' x {0,1}) provided thatX’ x {0,1} is
P-measurable. For a learning problemwe callD(P) the
unlabeled distributiorof P.

Theerror of a hypothesig, with respect td?, isErr” (h) =
dPI'(m’y)Np[h(x) # y]. For a clasd7 of hypotheses, theam-



For a subsef’ of some universal set, we u3é" to de-
note its characteristic function. In particularZifC X then
1T is a hypothesis ovek. For two hypothesig, i we use
gAh to denote their “symmetric difference”, that ig\h is
a hypothesis defined @z € X : g(x) # h(x)}. Letus
also defineVC(H) to be the VC-dimension [20] of hypoth-
esis clasdd.

g(zv‘(o, 1) ‘+ N(é, 1)

5 Previous No Prior Knowledge Paradigms

Previous approaches to SSL algorithms for the no prior knowl-
edge paradigm have used the unlabeled sample to figure out
the “geometry” of the hypothesis space with respect to the
i unlabeled (marginal) distribution. A common approach is to
opr 2 2 4+ %0 use that knowledge to reduce the hypothesis search space. In
doing so, one may improve the generalization upper bounds.
. . . Recall that given an unlabeled distributi@hand a hy-
Figure 1: Mixture of two Gaussian¥'(0, 1) (-) and (2, 1) pothesis clas#l, ane-coveris a subsefl’ C H such that
(+)' shows that the optimum threshold is at 1, the densestf,, anyh € H there existgy € H' such thatD(gAh) < e.
point. The sum of these two Gaussians is unimodal. Note that if H' is ane-cover for H with respect taD, then
for every extensionP ¢ Ext(D) the inf, ey Err’’(g) <
infje g Err”’ (h) 4 €. The smaller am-cover is the better its
< L(N(0,1) + N(4,2)) ggn:rralization bound one for the ERM algorithm over this
ver.

In some cases the construction of a smatiover is a
major use of unlabeled data. Benedek and lItai [5] analyze
IN(0,1) the approach, in the case when the unlabeled distribution is
fixed and therefore can thought of as known to the learner.

The Balcan-Blum [4] suggest a different way of using
the unlabeled data to reduce the hypothesis space. However,
we claim that without making any prior assumptions about
the relationship between the labeled and unlabeled distribu-
: : tions, their approach boils down to tlhecover construction
-2 1 0 1 P 4 described above.

min density

Claim 2. Let H be any hypotheses classy > 0, and D

Figure 2: Mixture of two Gaussian¥'(0, 1) (-) and A/ (4, 2) Pe any unlabeled distribytion. Lef’ C H be the set of
(+) with difference variances. The minimum density point ‘compatible hypotheses” Supposéis an SSL algorithm
does not coincide with the optimum threshold where the two that outputs any hypothesis ##’. If 7" does not contain an

Gaussians intersect. The error of optimunvi§.17 and that ~ €-cover of i with respect taD, the error of the hypothesis
of the minimum density point is- 0.21. that A outputs is at leastregardless of the size of the labeled

sample.

Proof. SinceH’ does not-cover of H, there exist a hypoth-
esish € H such that for aly € H’, D(gAh) > €. Thus,
foranyg € H', Err”"(g) > e. Algorithm A outputs some
g € H' and the proof follows. O

Py, slope =1— E&'T
I
I
Ps ]
1
I
]
1

K&ariainen [17] utilizes the unlabeled data in a different
way. Given the labeled data his algorithm constructs the ver-

: sion spacd” C H of all sample-consistent hypotheses, and
min'density then applies the knowledge of the unlabeled distribuficto

! find the “center” of that version space. Namely, a hypothesis
\ g € F that minimizesmax;¢c r D(gAh).
! Clearly, all the above paradigms depend on the knowl-
edge of the unlabeled distributial. In return, better up-
per bounds on the sample complexity of the respective al-
gorithms (or equivalently on the errors of the hypotheses
Figure 3: The solid line indicates the distributiéh (-) and produced by such algorithms) can be shown. For exam-
the dotted line isP, (+). Their intersection is the optimum.  ple, Benedek and Itai give (for the realizable case) an up-
The slope of the solid line is slightly steeper than that of the per bound on the sample complexity that depends on the size
dotted line { — 1| > 1 — ¢). The minimum density point
occurs whereP; falls to 0. So error of the minimum density
threshold is twice that of the optimum.

.
RErr(min density) ~ 2Brr(OPT)
I

Py, slope = —1

Err(OPT

.OPT




of the e-cover—the smallee-cover, the smaller the upper classes, since under any rescaling an interval remains an in-
bound. terval. The rescaling will apply also on the unlabeled distri-
In the next section we analyze the gains that such knowl- bution over the real line and it will allow us to go from any
edge of unlabeled data distribution can make in the no prior absolutely continuous distribution to the uniform distribution
knowledge setting. We prove that over the real line for any over (0, 1).
“smooth” unlabeled distributio, ERM over the full hy- More formally, arescalingis a continuous increasing
pothesis clas$ has worst case sample complexity that is function f from an open interval onto an open interval.
at most by constant factor bigger than the worst case samplewe denote byH |4 the restriction of a clas#/ to a subset
complexity ofany SSL algorithm. We conjecture thatthisa A, that is, H|4 = {hla : h € H}. We useo to de-
more general phenomenon. note function composition. We say that a hypothesis ctass
Conjecture3. For any hypothesis clagg, there exists acon-  OVerR is closed under rescalinghenever for any rescaling
stantc > 1 and a supervised algorithm, such that for ~ / : [ — J,if hl; € H|;, thenh|; o f € H];. If H is any
any distributionD over the domain and any semi-supervised ¢lass closed under rescaling, then any rescafimduces a

learning algorithmb, bijection betweerk| ; — h|; o f bijection betweerf |; and
H]|;. (This follows sincef ~! is also rescaling.) Clearly, the
sup m(A, H, Dp,€,0) < c- Sup m(B, H, Dy, ¢, 0) class of thresholds and the class of uniond aftervals are
e 2SS

closed under rescaling.

for anye andd small enough, say smaller thayic. We show that the sample complexity of is unaffected by
Conijectured. For any hypothesis clagé, there exists acon- ~ '€Scalings provided the the hypothesis class is closed under
stantc > 1 and a supervised algorithm, such that for rescalings. We split the results into two lemmas—Lemma 5
any distributionD over the domain and any semi-supervised and Lemma 6. The first lemma shows that if we have a su-

learning algorithmp, pervised algorithm with certain sample complexity for the
case when the unlabeled distribution is the uniform distribu-

sup m(A, H,P,e,6) <c- sup m(B,H, Pe0) tion over(0, 1), then the algorithm can be translated into an
Pebxt D PeExtD SSL algorithm with the same sample complexity for the case
for anye andé small enough, say smaller thayic. when the unlabeled distribution is any absolutely continuous
distribution. The second lemma shows the translation in the

6 Inherent Limitations of Semi-Supervised other direction. Namely, that a SSL algorithm with certain
Learning sample complexity on some absolutely continuous unlabeled

distribution can be translated to a supervised algorithm for

This section is devoted to proving the inherent limitations the case when unlabeled distribution is uniform oféer ).
of SSL paradigm in the no prior knowledge model over the
real line. In section 6.2 we prove Conjecture 3 for thresholds Lemma 5 (Rescaling trick I). Let H be a hypothesis class
on the real line in the realizable setting, under the condition overR closed under rescaling. Lét be the uniform distri-
that the unlabeled distribution is absolutely continuous. In bution over(0, 1). Lete, § > 0.
section 6.3 we prove Conjecture 4 for thresholds and union (&) (Realizable case)lf A is any supervised or semi-
of d intervals over the real line in the agnostic setting (under supervised algorithm, then there exists an semi-supervised
the same unlabeled distribution condition). learning algorithmB such that for any distributiorD over

The former follows from Theorems 7 and 9. The latter an open intervall which is absolutely continuous with re-
follows from Corollary 12 (for thresholds) and from Corol- spect to Lebesgue measurebn
lary 15 (for union ofd intervals).

Let us start by defining the hypothesis classes. The class ~ Sup m(B, H, Dy, €,6) < sup m(A, H,Ug,€,6) . (1)
of thresholds is defined @ = {1(—o0,#] : t € R} and hed gett
the class of union of intervals (b) (Agnostic case)lf A is any supervised or semi-supervised

algorithm, then there exists an semi-supervised learning al-

Ula = {la1,a2) Ulas, a4) U -+ Ulaze—1, az) : gorithm B such that for any distributio® over an open in-

0<d, ap <ag <--- Zage) terval I which is absolutely continuous with respect to Lebesgue
To prove the results we rely on a simple “rescaling trick” Measure off
that we explain section 6.1.
! . . . sup m(B,H,Pe,d) < sup m(A,H,Q,¢,6). (2
In section 6.4 we discuss other potential formulations of peEXIB(D) ( 69) _Q;EXIS(U) ( @) ()

the comparison between SL and SSL algorithms.

i i Proof. Fix H and A. We construct algorithn® as follows.
6.1 Rescaling Trick The algorithmB has two inputs, a sampke = {(z;,v;)}7™,

In this section we show that learning any “natural” hypothe- and a distributionD. Based onD the algorithm computes
sis class on the real has the same sample complexity for anythe cumulative distribution functiof' : I — (0,1), F(t) =
absolutely continuous unlabeled distribution independent of D(I N (—oo,t]). Then, B computes fromS transformed
its shape. Intuitively, if we imagine the real axis made of sampleS’ = {(z},y;)}7, wherez, = F(z;). On a sample
rubber, then a natural hypothesis class is one that is closedS’ the algorithmB simulates algorithm and computes =
under rescaling (stretching) of the axis. Classes of thresh-A(S’). (If A is semi-supervised we fix its second input to be
olds and union off intervals are examples of such natural U). Finally, B outputsg = h o F.



It remains to show that for an with continuous cumu-
lative distribution function (1) and (2) holds for anyd > 0.
We prove (2), the other equality is proved similarly.

Let P € Ext(D). Slightly abusing notation, we define
the “image” distributionF'(P) over (0, 1) x {0,1} to be

F(P)(M) = P({(z,y) : (F(z),y) € M})

for any (measurable)/ C (0,1) x {0,1}. Itis not hard
to see that ifS is distributed according t@™, then S’ is
distributed according t¢F'(P))™. Clearly, D(F'(P)) = U
i.e. F(P) € Ext(U). Further note that sinc® is abso-
lutely continuous,F is a rescaling. Henc&rr” (") (n) =
Errp(h o F) andinfpecp Errp(h) = infpeqy Err?(?) (h).
Henceforth, for any and anym € N

Pr [Err”(B(S,D)) — hlgg Err? (h) > €

S~ pm
= Pr [Ex?(A(S) o F)— inf Ex?®)(h
o P, B (A(S) 0 F) = inf B (1) > o
_ F(P) N F(P)
S/lem)(rp)m [Err™ "/ (A(S)) hllellf;[ Err" Y (h) > €] .

Therefore, for any, § > 0,

m(B’ H’ P7 67 6) = m(A7 H7 F(P)7 6’ 6)

< sup m(A HQ,e€0).
QEExt(P)

Taking supremum oveP € Ext(D) finishes the proof. O

Lemma 6 (Rescaling trick Il). Let H be a hypothesis class
overR closed under rescaling. Léf be the uniform distri-
bution over(0, 1). Lete, 6 > 0.

(a) (Realizable case)lf B is any supervised or semi-
supervised algorithm anf) is any distribution over an open
interval I, which is absolutely continuous with respect to the
Lebesgue measure dnthen there exists a supervised learn-
ing algorithm A such that

sup m(A, H,Uy,€,0) < sup m(B, H,Dj,€,0) . (3)
geH heH

(b) (Agnostic case)lf B is any supervised or semi-supervis

algorithm andD is any distribution over an open interva)

Let @ € Ext(U). Slightly abusing notation, we define
the “pre-image” distributior"~1(Q) overI x {0, 1} to be

FTHQ)M) = Q({(F(x),y) : (z,y) € M})

for any (measurable)/ C I x {0,1}. Itis not hard to see
that if S’ is distributed according t@, thenS is distributed
according to(F~1(Q))™. Clearly, D(F~1(U) = D i.e.
F~Y(Q) € Ext(D). SinceF—! is arescalingfrr’ (¥ (h) =
Err®?(hoF~1) andinfp,c i Err®(h) = infjcq ErrFﬁl(Q)(h).
Henceforth, for any > 0 and anym € N

Q AN Q
S/E’Cr;)"L[Err (A(S") hlg}qurr (h)]

= Pr [Ex®B(S,D)oF~ ') — inf En’  @(n)]
S~F=1(Q)m heH

_ FY(Q) s FY(Q)
SNFEr(Q)m[Err (B(S,D)) }}g}f{ Err (h)] .

Therefore, for any,§ > 0,

m(AaHaQa€76) = m(B7H7F_1(Q)a€76)

< sup m(B,H,P,e0)
PEExt(D)

Taking supremum ovep € Ext(U) finishes the proof. O

6.2 Sample Complexity of Learning Thresholds in the
Realizable Case

In this section we consider learning the class of thresholds,
H = {1(—o00,t] : t € R}, on the real line in the real-
izable setting and show that for absolutely continuous unla-
beled distributions SSL has at most fackoadvantage over
SL in the sample complexity.

First, in Theorem 7, we sho@w‘)@ upper bound on the
sample complexity of supervised learning. This seems to be
a folklore result. Second, we consider sample complexity
of semi-supervised learning in the case wiiP) is abso-
lutely continuous with respect to the Lebesgue measure on
EqIn Theorems 8 and 9 we show that the sample complexity

is betweer”/%) + O(1) and2/% — (1)1 ignoring the

which is absolutely continuous with respect to the Lebesguelower order terms, we see that the sample complexity of su-

measure o/, then there exists a supervised learning algo-
rithm A such that

sup WL(AvHanGa(S) S sup m(B,H,P76,6) N (4)
QeExt(U) PcExt(D)

Proof. Fix H, BandD. LetF : I — (0,1) be the be
cumulative distribution function ab, that is,F'(t) = D(IN
(—o0,t)). SinceD is absolutely continuoudy is a rescaling
and inversg"—! exists.

Now, we construct algorithmll. Algorithm A maps in-
put samples’ = {(a/,y:)}7, to sampleS = {(z;,v:)},
wherez; = F~1(z}). On a sample the algorithmA sim-
ulates algorithmB and computeg = B(S,D). (If B is
supervised, then the second input is omitted.) Finalgut-
putsh = go F~1.

It remains to show that for ang with continuous cumu-
lative distribution function (3) and (4) holds for anyd > 0.
We prove (4), the other equality is proved similarly.

pervised learning is (asymptotically) at mastimes larger
than that of semi-supervised learning.

We will make use the following of two algorithms: su-
pervised algorithnl, and semi-supervised algorithB pro-
posed by Kariainen [17]. Both algorithms on a samffe=
((1'1» y2)7 (‘T27 y2)7 R (xma ym)) first compute

¢ =max{z; ;i€ {1,2,...,m}, yi =1},
r=min{z; : 1 € {1,2,...,m}, y; =0} .

Algorithm L simply outputs the hypothesig—oo, ¢]. Algo-
rithm B makes use of its second input, distributibn Pro-
vided that! < r, B computes” = sup{t' : D((¢,t']) <
D((¢,7])/2} and outputs hypothesig —oo, ¢].

1The2.01 in the lower bound can be replaced by arbitrary num-
ber strictly greater tha®. This slight imperfection is a consequence
of that the true dependence of the sample complexity, dn this
case, is of the form/ In(1 — 2¢) and notl /(2e¢).



Theorem 7 (SL upper bound). Let H be the class of thresh- Both cases split into further subcases.
olds andL be the supervised learning algorithm defined above.

Forany D, foranye, > 0, and any "target’h € H, Subcase lalf ¢ > 2e andt +4e < 1 andt + e > 1/2,

1/6) then0 < 2t +2¢—1 <t —2e < tand
€

(f1 ff l)h,e 5) f;

Proof. Leth = 1(—o0o,t) and lets = sup{s : D((s,t]) >

e}. The eventErr”"(L(S)) > e occurs precisely when

the interval(s, t] does not contain any sample points. This 2t+2e=1 rb(f) I
happens with probabilityl — D((s,t]))™ < (1 —€¢)™. If P = -1 [/ / (1—r+1¢) drd?

¢
m > M then(l — €)™ < exp(—em) < 4. )

b(£)
m—2
Theorem 8 (SSL upper bound).Let H be the class of thresh- /2t+2e ) /(Z) (L =7+ )™= drdl
olds andB be the semi-supervised learning algorithm de- b(0)
fined above. For any absolutely contlnuous distribution (1— 7+ 0)™ 2 drdl
over an open interval, any € (0, 1), 6 € (0, 3), and any t—2¢ Ja()
“target” h € H, 2421
=m(m —1[/ / (1—r+0)m™2drde
m(B7H7Dh,e,6)§M+ln—2. 2t—0—2¢
2e 2e 2t—0+2¢ )
Proof. By rescaling trick (Lemma 5 part (a)) we can assume / / (I—=r+£)™" " drdl
that D is uniform over(0, 1). Fix e € (0, 1), € (0,3) and e 2Z+§€ 2
h € H. We show that, for anyn > 2, / / (1—r+0m= erdgil
t 26 t

SPBM[Eerh (B(S,Dp)) > ¢ <2(1—2¢)™, (5) .
T _17517%726) — (=142t +60)" — (120"

; ; e In(1/8)
from which the theorem easily follows, sincenif > =5~ + >1-2(1—2e)" .

12—3, thenm > 2 and2(1 — 2¢)™ < 2exp(—2me) < 0.

In order to prove (5), lebh = 1(—oo,t] be the “tar-
get”. Without loss of generality € [0,1]. With a little
abuse, we assume thak [0,¢] andr € [t,1]. For conve-
nience, we define : [0,¢] — [t,1], b : [0,¢] — [t,1] as
a(f) = max(2t — £ — 2¢,t) andb(f) = min(2t — £ + 2¢, 1)
respectively. It is easily verified th@irr”" (B(S, Dy,)) < €
if and only if r € [a(?), b(¢)].

We lower bound the probability of success

p=cPr, [Exr”"(B(S, Dy)) < €] .

Subcase 1bif ¢ > 2e andt+e < 1/2, then2t+2e—1 <
0<t—2<tand

There are two cases: p1 = —-1) [/ / (1—r+0)™m™2drdl

Case 1:If t > 2¢, then we integrate over all possible
choices of the rightmost positive example Sn(which de- b(e)
termines() and leftmost negative example i (which de- / / (1—r4m2 drdé}
terminesr). There aren(m — 1) choices for the rightmost t—2¢ Ja(f)
positive example and leftmost negative example. We have 2t—L+2¢ 9

= _1[/ / (I—=r4+ 0™ = drdt
b(¢) 2t—0—2¢
p=pr=m —1// (1—7r+0)m"2drdl . 2t—+2¢
/ / l-r4+0m" 2drdﬂ}

Case 2:If t < 2¢, then we integrate over all possible t=2e
choices of the rightmost positive exampleSrand leftmost —(1—2¢)™ (1 — 2t — 2e)™ (1 — 2t + 26)™
negative example i¥. Additionally we also consider sam- 2

ples without positive examples, and integrate over all possi-
ble choices of the leftmost (negative) example. We have

b(t)
p>pa=m —1// (1—r+0)™m™2drdl
a(l)

2e
+m/ (1—r)™"tdr
t

>1—

g(l —2e)™

Subcase 1clf ¢ > 2e andt + 4e > 1, then0 <t —2¢ <



2t +2¢ —1<t, and

b(0)
= —1{/ / 1—T+EW'2d7"d£
(£)
2t+2e—1
+ / / (1—7r+0)™m™2drde
/ b(f)

1—-r+0™m™ 2drd4
2t+2e—1 Ja(¥)

=m(m—1) [/
0 -
2A4+2e—1 1
—|—/ / (1—7r+0)m"2drdl
t—2e t

t 2t—042¢
+ / / (1—r+0)m2 drd[}
2t+2e—1 Jt

—1-(1-29™

t—2¢
/ (1—r+0m2drde
2t—4—2¢

1
— 5l -2t 420" -
>1—2(1—2¢)™

Subcase 2alf ¢t < 2¢ andt + ¢ > 1/2, thent — 2¢ <
0<2t+2—-1<tand

2t+2e—1  pb(£)
= 1[/ / (1—r+0)m2drdl
b(e)
/ / 1—r+£m2drd4
2t+2e—1 ()

2e
+m/ 1—r)m1dr

2+2e—1
= —1[/ / 1—r+€m_2drd€
2t—0+2¢
+ / / (1—r+0m2 drdﬁ]
2t+2e—1 Jt

+(1 =" —=(1-2)"
=1- §(1—2e)m— l(225—|—2<5—1)m
2 2
>1-2(1-2¢)™

Subcase 2bif ¢ < 2e andt + € < 1/2, thent — 2e < 0,
2t+2¢—1<0and

t b(6)
p2 = m(m — 1)/ / (1—r+0)™m™2drdl
0 Ja(e)

2e€
+m/ (1- )™ dr
t

=m(m—1) /t /2t”26(1 —r 0™ 2 drdl
+A-8)" = (1=29™

1
=1- 2(1—26)’"—5(1—%—26)’”
>1-2(1—29)™

1

Theorem 9 (SSL lower bound).For any (randomized) semi-
supervised algorithmd, anye € (0,0.001), anyd > 0,
any absolutely continuous probability distributiéhover an
open interval, there exists € H, such that

In(1/6) In2

m(A,H,Dh,G,(S)Z .
2.01e 2.01e

Proof. By rescaling trick (Lemma 6 part (a)) we can as-

sume thatD is uniform over(0,1). Fix A,¢,6. We show

the existence of requirefd by a probabilistic argument. We

consider picking uniformly at random from(0, 1) and let

h = 1(—o0, t]. We prove that for anyn > 0,

1
Dy, S > 2(1 — 926y
IEISE’[I;}T[EH (A(S,Dp)) > €] > 2(1 2€)

or equivalently

E Pr[Eer’L(A(S,Dh))Z €] >

JE.P (1-29". ()

l\DI»—t

To lower bound the left side, fix unlabeled poilts< z; <
9 < --- < 2, < 1. For convenience, let, = 0 and
Tm+1 = 1. We claim that

m

Zmax Tip1 — ; — 2€6,0) .
(7)

To prove that we also fix € {0,1,2,...,m} and restrict
t to lie in the interval(z;, x;11]. The labels inS are hence
fixed. If we also fix the random bits used blyfor random
its internal randomization, the hypothegis= A(S, D;) is

fixed. It is not hard to see that regardlesg of

f;r[Eer’l (A(S, Dp))

Ti+1
/ 1{t : Err? (g) > e} dt > max(w;41—x;—2€,0)
xT

2

it follows from that the seft : Err””(g) < ¢} is contained
in an interval of length at mok. We obtain (7) by taking
expectation over the random bits used Ayand summing
over alli.

In order to prove (6) we will compute expectation over
S ~ D7 of both sides of (7). Expectation of the left side of
(7) equals to the left side of (6). The expectation of the right
side of (7) is equal to

Tm+1 Tm Tm—1 T2
Im - m!/ / / h ./
0 0 0 0

m times

Z max(z;11 — x; — 2¢,0)
i=0

dzy - -dzy,_odxy,_1dx,, ,

since there aren! equiprobable choices for the order of the
pointszy, xs, . . . , x,, @among which we choose, without loss
of generality, the one with; < 25 < --- < 2,,,. We look at
1., as a function of,,,,; and we prove that

Ion(Zmg1) = 2¢,0))" (8)

foranym > 0 and anyz,, 1 € [0, 1]. The bound (6) follows
from (8), sincel,,, = I,,,(1) = (1 — 2¢)™*! > L(1 — 2¢)™

(max(zpm41 —



for e < 1/4. In turn, (8) follows, by induction omn, from
the recurrence

Tm+1
I’m(xm-‘rl) - m/ Im—l(ajm)
0
m—

+max(Tp,y1 — T — 26,0) - 2™ da,, ,

which is valid for allm > 1. In the base casen = 0,
Iy(z1) = max(z; — 2¢,0) trivially follows by definition.

In the inductive casen > 1, we consider two cases. First
casexrm+1 < 2¢, holds sincanax(z;y1 — x; — 2¢,0) = 0
and hence by definitiod,, (z,,+1) = 0. In the second case,
Tmi1 > 2¢, from the recurrence and the induction hypothe-
sis we have

Tm41
I (Zme1) = m/ (max(z,, — 2¢,0))™
0

+ max(Ty,11 — T — 2€,0) - xﬁ_l dz,,
Tm+41
2¢

$7n+1_25
+ m/ (Tmt1 — T — 26)m2_1 dz,,
0

m

= mgmn — 2™
j(xmﬂ _ 26)m+1
m

= (.Tm+1 — 26)m+1 .

In(1/6)

To finish the proof of the theorem, suppase< — 5=

2 Theni (1 —2¢)™ > 4, since

(S 207 -

—In2+mln(l —2¢) > —In2 — m(2.0le) > Inéd

where we have used that(1 — 2¢) > —2.01e for anye €
(0,0.001). Therefore from (6), for at least one target=
1(—o0, t], with probability greater than, algorithm A fails
to output a hypothesis with error less than |
Remark. The 1'21%1/5) — O(%) lower bound applies to su-

pervised learning as well. However, we do not know of

any supervised algorithm (deterministic or randomized) that

has asymptotic sample complex'ttif(leﬂ for any constant

main lower bound of this section are for such distributions
(see Theorem 14). We show how this lower bound results
in tight sample complexity bounds for two concrete prob-
lems. The first is learning thresholds on the real line where
we show a bound o®(In(1/46)/e?). Then we show sample

complexity of© (%‘;}1/5)) for the union ofd intervals on

the real line.

The sample complexity of the union dfintervals for a
fixed distribution in a noisy setting has also been investigated
by Gentile and Helmbold [15]. They show a lower bound
of Q (2dlog +/(A(1 —2n)?)) whereA is the distance to
the target that the learning algorithm should guarantee with
high probability, and; is the probability of a wrong label ap-
pearing (see classification noise model of [1]). This notation
implies that the difference in true error of target and the algo-
rithm’s outputise = (1—2n)A. Settingn = 1/2—¢/4 gives
(2d/€?). We note that we do not make the assumption of a
constant level of noise for each unlabeled example. It turns
out, however, that in our proofs we do construct worst case
distributions that have a constant noise rate that is slightly
below1/2.

We point out two main differences between our results
and that of Gentile and Helmbold. The first being that we
explicitly construct noisy distributions to obtai? in the
denominator. The second difference is that our technique
appears to be quite different from theirs, which uses an in-
formation theory approach, whereas we make use of known
techniques based on lower bounding how well one can dis-
tinguish similar noisy distributions, and then applying an av-
eraging argument. The main tools used in this section come
from Anthony and Bartlett [2, Chapter 5].

We first cite a result on how many examples are needed to
distinguish two similar, Bernoulli distributions in Lemma 10.
Thenin Lemma 11 we prove an analogue of this for arbitrary
unlabeled distributions. The latter result is used to give us a
lower bound in Theorem 14 fadr-shatterable distributions
(see Definition 13). Corollary 12 and 15 gives us tight sam-
ple complexity bounds for thresholds and union of intervals
onR.

Lemma 10 (Anthony and Bartlett [2]). Suppose thaP is
a random variable uniformly distributed of;, P»} where
Py, P, are Bernoulli distributions ovef0, 1} with P (1)
1/2 —~vyandP(1) = 1/2 4+ vy for 0 < v < 1/2. Suppose
thatéy, ..., &, are 1D {0, 1} valued random variables with
Pr(¢ = 1) = P(1) for eachi. Let f be a function from

¢ < 1. For example, the randomized algorithm that outputs {0,1}™ — {P1, P,}. Then

with probability1 /2 the hypothesia (—oo, ¢] and with prob-
ability 1/2 the hypothesid (—oo, r) still cannot achieve the

SSL sample complexity. We conjecture that all supervised
algorithms for learning thresholds on real line in the realiz-

able setting have asymptotic sample compleiéi&@.

6.3 Sample Complexity in Agnostic Case

1 —4my?
B Pr (f6)#P]> (1— \/1—exp (1472)>

=: F(m,~).

One can view the lemma this way: if one randomly picks

In this section, we show that even in the agnostic setting SSL two weighted coins with similar biases, then there’s a lower
does not have more than constant factor improvement overbound on the confidence with which one can accurately pre-
SL. We prove some lower bounds for some classes over thedict the coin that was picked.

real line. We introduce the notion oftashatterable distri-
bution, which intuitively, are distributions where there &re

The next result is similar except an unlabeled distribution
D is fixed, and the distributions we want to distinguish will

“clusters” that can be shattered by the concept class. Thebe extensions ab.



Lemma 11. Fix any X, H, D over X, andm > 0. Sup-
pose there existd,g € H with D(hAg) > 0. Let P,
and P, be the extension dP such thatP;, ((x, h(z))|z)
Py((z,g(x))|z) = 1/24~. LetAp : (RAgx{0,1})"™ — H
be any function. Then for any, ..., z,, € hAg, there ex-
ists P € {Py, P,} such that ify; ~ P,, for all 4,

fy)ir[ErrP(AD((xl, Y1)s- s (TmyYm))) — OPTp

> yD(hAg)] > F(m,7) .

WhereP, is the conditional distribution of” givenz, and
OPTp = 1/2 — ~. Thus if the probability of failure is at
mostd, we require

1
"= ()

Proof. Suppose for a contradiction this is not true. Rt
{Ps, Py}. Then there exists aAp andz4, . . ., z,, such that

(9)

In —.
nes

VP e P, Pr[ErrP(AD((xl,yl), ey (XmyYm)))—OPTp
Yi
(10)

Then we will show that the lower bound in Lemma 10 can
be violated. NowhAg can be partitioned intd\, = {z :
h(z) = 0} andA; = {z : h(z) = 1}. Without loss of gen-
erality assumgzy,...,z;} € Ag and{z;11,...,2m} C
A1- LetA = AD((xlvyl)v LR ('Tmay’m))-

From the triangle inequaliyD(AAhR) + D(AAg) >
D(hAg). ThusifAis closer tah thenD(AAg) > D(hAg)/2
and vice versa. LeP be a random variable uniformly dis-

> vD(hAg)] < F(m,7).

tributed onP. We havePr(y; =1) =--- =Pr(yi = 1) =
Pag(1) = Pr(yip1 = 0) = - -- = Pr(ym = 0) = Pa, (0).
Let&y,...,&n ~ Pa, sOthatPr(é; = 1) = 1/2 — v

whenP = P, and equal td /2 + v whenP = P,. Letus
define the functiory : {0,1}™ — P as follows. It will take
as inputéy, . . ., &, then transform this to an input of, as
I= (x17£1)7 R (xl7£l)7 (xl+17 1_§l+1)7 R (xm7 1_§m)
so that{; and1 — ¢; is from the same distribution ag and
y;, respectively, for <[, j > . Now define

_ [Pn if D(Ap(I)Ah) < D(Ap(I)Ag)
(&) = {Pg otherwise '
We have
E 6353”6 [£(§) # P]

<EPr [D(Ap(I)AOPTp) > D(hAg)/2]
< IEP;r [Err”(Ap(I)) — OPTp > vD(hAg)]

< F(m,7)

where the last inequality follows from (10). This is a con-
tradiction, so the lower bound from Lemma 10 must apply.
If the probability of failureF'(m,~) is at most, solving the
inequality form gives (9). O

Corollary 12. The SSL sample complexity of learning thresh-
olds over the uniform distribution ovéd, 1) is ©(In(1/5)/€?).

Proof. Upper bound comes from any ERM algorithm. Let
h = 1(—o00,0] andg = 1(—o0, 1] so D(hAg) = 1. Set
v =easinlLemma 11. O

Definition 13. The triple (X, H, D) is b-shatterable if there
exists disjoint set€, Cy, ..., Cy, with D(C;) = 1/b for
eachi, and for eachS C {1,2,...,b}, there existsh € H

such that \
hN <U02> = Uci~
=1

ieS
Theorem 14. If (X, H, D) is b-shatterable and? contains

h, g with D(hAg) = 1 then a lower bound on the SSL sam-
ple complexity fof < €,5 < 1/64 is

b—f—ln%
Q< , )

Proof. The proof is similar to Theorem 5.2 in Anthony and
Bartlett [2]. LetG = {hi, ho, ..., hy } be the class of func-
tions thatb-shattersD with respect toC' = {C4,...,Cp}.
We construct noisy extensions B, P = {Py, Py, ..., Py }

so that for each, P;((z, hi(z))) (1 + 2v)/(2b). For
anyh € H letsnap(h) = argmin,, .o D(RAL'). Suppose
P € P, let h* denote the optimal classifier which is some
g € G depending on the choice &f. If i # j andN (h;, h;)

is the number of sets i’ whereh; and h; disagree, then
D(h;Ahj;) > N(h;, hj)/b, and since is al/b-packing,

_ % (Exe? (snap(h)) + Enr” (7)) . (11)

Modifying the proof of Anthony and Bartlett with the use of
Lemma 11 rather than Lemma 10 we get that there exists a
P € P such that whenevern < b/(320¢?),

SP}gm [Errp(snap(A(D, S))) — Err? (h*) > 2¢] > 6.
WheneverA fails, we get from (11)
Err”(A(D, S)) — Errt”’ (h*)

> (Errp(snap(h)) +ErrP(h*)) >e.

N | =

To getQ(In(1/6)/€?), apply Lemma 11 witth andg. [

We will now apply the above theorem to give the sample
complexity for learning union of intervals on the real line.
Recall that by the rescaling trick, we only need to consider
the sample complexity with respect to the uniform distribu-
tion on (0, 1).

Corollary 15. The SSL sample complexity for learning the
class of union of at mosgtintervalsUI; = {[a1,a2)U---U
lagi—1,a2) : 1 <d,0 < a; <ap < - < agy < 1} over
uniform distribution on(0, 1) is

2d+ln%

o (™



Proof. We haveVC(U1,) = 2d, thus the upper bound fol- 7 Conclusion
lows immediately. Construdd-shatterable sets by letting
C; = [(i —1)/2d,i/2d) for i = 1,...,2d. ForanyS C
{1,...,2d} definehs = (J;cgCi- Now if S| < d then
clearlyhg € Uly, if |S| > d thenhg € Ul since|S| < d.
But then[0, 1)\ k5 can be covered by at magtintervals, so
hs € Ul,. Thus the sefhg : S C {1,...,2d}} 2d-shatters
Don|[0,1]. Alsoleth = [0,0) = f andg = [0,1). Now
apply Theorem 14 for the bound. |

We provide a formal analysis of the sample complexity of
semi-supervised learning compared to that of learning from
labeled data only. We focus on bounds that do not depend on
assumptions concerning the relationship between the labels
and unlabeled data distribution.

Our main conclusion is that in such a setting semi-supervised
learning has limited advantage. Formally, we show that for
basic concept classes over the real line this advantage is never
more than a constant factor of the sample size. We believe
that this phenomena applies much more widely.

One could imagine a different formulation of the compar- We also briefly address the error bounds under common
ison between SL and SSL paradigms. For example, oneassumptions on the relationship between unlabeled data and
might ask naively whether, for given clags there isasemi-  the labels. We demonstrate that even when such assumptions
supervised algorithnd, such that for any supervised algo- apply common SSL paradigms may be inferior to standard
rithm B, and anye, 4, on any probability distributior® the empirical risk minimization. We conclude that prior beliefs
sample complexity ofd is no higher than the sample com- like the cluster assumption should be formulated more pre-
plexity of B. The answer to the question is easily seen to be cisely to reflect the known practical merits of SSL.

negative, because for afy there exists a supervised learn- The paper calls attention to and formalizes some natu-
ing algorithmBp that ignores the labeled examples and sim- ral fundamental questions about the theory-practice gap con-
ply outputs hypothesis € H with minimum errorErrP(h) cerning semi-supervised learning. The major open question
(or even Bayes optimal classifier fét). On P the sample  we raise is whether any semi-supervised learning algorithm
complexity of Bp is zero, unfortunately, o, sufficiently can achieve sample size guarantees that are unattainable with-
different from P, the sample complexity aBp is infinite. out access to unlabeled data. This is formalized in Conjec-

One might disregard algorithms such/As and ask the ~ tures 4 and 3.
same question as above, except that one quantifies over only
the subset of algorithms that @my distribution overX x Acknowledgements We like to thank Nati (Nathan) Srebro
{0, 1} have sample complexity that is polynomialliye and and Vitaly Feldman for useful discussions.

In(1/4). Such algorithms are often called PAC (Probably

Approximately Correct). The following theorem demonstratesR eferences

that such restriction does not help and the answer to the ques-
tion is still negative.
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creasing ag andd approach zero. Thus there exists super-
vised algorithmB = L;, with lower sample complexity than
A. |
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