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Abstract

We study the potential benefits of unlabeled data
to classification prediction to the learner. We com-
pare learning in the semi-supervised model to the
standard, supervised PAC (distribution free) model,
considering both the realizable and the unrealiz-
able (agnostic) settings.

Roughly speaking, our conclusion is that access
to unlabeled samples cannot provide sample size
guarantees that are better than those obtainable with-
out access to unlabeled data, unless one postulates
very strong assumptions about the distribution of
the labels.

In particular, we prove that for basic hypothesis
classes over the real line, if the distribution of un-
labeled data is ‘smooth’, knowledge of that dis-
tribution cannot improve the labeled sample com-
plexity by more than a constant factor (e.g., 2). We
conjecture that a similar phenomena holds for any
hypothesis class and any unlabeled data distribu-
tion. We also discuss the utility of semi-supervised
learning under the commoncluster assumptioncon-
cerning the distribution of labels, and show that
even in the most accommodating cases, where data
is generated by two uni-modal label-homogeneous
distributions, common SSL paradigms may be mis-
leading and inflict poor prediction performance.

1 Introduction

While supervised classification has received a lot of research
attention and is reasonably well understood, in many practi-
cal learning scenarios, labeled data is hard to come by and
unlabeled data is readily available. Consequently, users try
to utilize available unlabeled data to assist with the classi-
fication learning process. Learning from both labeled and
unlabeled data is commonly called semi-supervised learning
(SSL). Due to its wide potential applications, this approach
is gaining attention in both the application oriented and the
theoretical machine learning communities.

However, theoretical analysis of semi-supervised learn-
ing has, so far, been scarce and it falls short of providing
unequivocal explanation of merits of using unlabeled exam-
ples in learning. We take steps toward rectifying this theory-

practice gap by providing formal analysis of some semi-supervised
learning settings. The question we focus on is whether un-
labeled data can be utilized to provably improve the sample
complexity of classification learning.

We investigate what type of assumptions about the data
generating distribution (or which circumstances) are suffi-
cient to make the SSL approach yield better predictions than
fully supervised learning. The bulk of this paper focuses on
showing that without prior knowledge about the distribution
of labels, SSL cannot guarantee any significant advantages in
sample complexity (no more than a constant factor for learn-
ing tasks over the real line).

The basis for our theory is a simplified, utopian, model
of semi-supervised learning, in which the learning algorithm
has perfect knowledge of the probability distribution of the
unlabeled data. We focus on estimating thelabeled sample
complexity of learning. Since our model provides the learner
with more information than just a sample of the unlabeled
data distribution, lower bounds on the labeled sample com-
plexity of learning in our model imply similar lower bounds
for common notions of semi-supervised learning. Upper bounds,
or sample size sufficiency results (for the labeled samples) in
our model, apply to the common SSL setting only once suf-
ficiently large unlabeled samples are available to the learner.
In this paper we mainly discuss lower bounds, and when we
address upper bounds we settle for stating that they apply
eventually as the unlabeled sample sizes grow.

Our model of semi-supervised learning can be viewed as
learning with respect to a fixed distribution, (see Benedek
and Itai [5]). However, our emphasis is different. Our goal
is to compare how theknowledgeof the unlabeled distribu-
tion helps, as opposed to learning when the only access to
the underlying unlabeled data distribution is via the training
labeled sample. We call the former settingsemi-supervised
and the lattersupervisedor fully supervisedlearning.

We present explicit formalization of different ways in
which the merits of the semi-supervised paradigm can be
measured. We then investigate the extent by which SSL can
provide provable advantages over fully supervised learning
with respect to these measures.

Roughly speaking, we conclude that no special unlabeled
data distribution (like, say, one that breaks into clear data
clusters) suffices to render SSL an advantage over fully su-
pervised learning. Unlabeled data can make a difference
only under strong assumptions (or prior knowledge) about
the conditionallabeleddistribution.



One should note however, that in many cases such knowl-
edge can also be utilized by a fully supervised algorithm.
The search for justification to the SSL paradigm therefore
leaves us with one setting - the cases where there exists prior
knowledge about therelationshipbetween the labels and the
unlabeled data structure (and not just about the labels per se).
However, we show in Section 3 that common applications of
SSL paradigms for utilizing such relationship (like the popu-
lar cluster assumptionor the related algorithmic bias towards
class boundaries that pass through low-density data regions)
may lead to poor prediction accuracy, even when the data
does comply with the underlying data model (say, the data
is generated by a mixture of two Gaussian distributions, one
for each label, each generating a homogeneously labeled set
of examples).

The potential merits of SSL, in both settings - either with
or without making assumptions about the labeled distribu-
tion, have been investigated before. Vapnik’s model of trans-
ductive learning [21], as well as K̈aäriäinen’s paper [17] ad-
dress the setting without restrictions on the way labels are
generated while Balcan-Blum’s augmented PAC model for
semi-supervised learning [3, 4] offers a framework for for-
malizing prior knowledge about the relationship between la-
bels and the structure of the unlabeled distribution. We elab-
orate more about these in the next section on related work.
One basic difference between these works and ours is that
they try to provide explanations of the success of the SSL
paradigm while we focus on investigating its inherent limi-
tations.

We do not resolve the issue of the utility of unlabeled
data in full generality. Rather, we demonstrate the answers
for relatively simple classes of concepts over the real line
(thresholds and unions ofd intervals). We believe that the
answers generalize to other classes in an obvious way. Along
the way we also pose some conjectures and open questions.

The paper is organized as follows. We start by discussing
previous related work in section 2. Then, we take a detour
in section 3 and show that a commonly held assumption can
result in performance degradation of SSL. We continue on
our main path in section 4 where we formally define our
model of semi-supervised learning and introduce notation.
Section 5 casts the previous paradigms in our model and for-
mally poses the question of in what sense unlabeled data can
help. This question will guide the rest of the paper as we
tackle it. Then section 6 analyzes this question for basic
learning tasks on the real line. The section finishes off by
asking a slightly different question how one might compare
SSL and supervised learning. We conclude our paper in sec-
tion 7 where we also discuss open questions and directions
for further research.

2 Related Work

As we mentioned above, analysis of performance guarantees
for semi-supervised learning can be carried out in two main
setups. The first focuses on the unlabeled marginal data dis-
tribution and does not make any prior assumptions about the
conditional label distribution. The second approach focuses
on assumptions about the conditional labeled distribution,
under which the SSL approach has potentially better label
prediction performance than learning based on just labeled

samples. The investigation of the first setup was pioneered
by Vapnik in the late 70s in his model of transductive learn-
ing, e.g. [21]. There has been growing interest in this model
in the recent years due to the popularity of using unlabeled
data in practical label prediction tasks. This model assumes
that unlabeled examples are drawn IID from an unknown dis-
tribution, and then the labels of some randomly picked sub-
set of these examples are revealed to the learner. The goal
of the learner is to label the remaining examples minimizing
the error. The main difference with SSL is that the error of
learner’s hypothesis is judged only with respect to the known
initial sample.

However, there are no known bounds in the transduc-
tive setting that are strictly better than supervised learning
bounds (Vapnik’s bounds [21] are almost identical). El-Yaniv
and Pechyony [14] prove bounds that are similar to the usual
margin bounds using Rademacher complexity, except that
the learner is allowed to decidea posteriorithe concept class
given the unlabeled examples. But they do not show whether
it can be advantageous to choose the class in this way. Their
earlier paper [13] give bounds in terms of a notion ofuni-
form stabilityof the learning algorithm, and in the broader
setting where examples are not assumed to come IID from
an unknown distribution. But again, it’s not clear whether
and when it beats the supervised learning bounds.

Methods for semi-supervised learning without prior as-
sumption of conditional label distributions have been devel-
oped by Benedek and Itai [5], and Kääriäinen [17]. The
idea of Benedek and Itai’s algorithm is to construct a min-
imum ε-cover and apply empirical risk minimization (ERM)
on the functions in the cover. Of course thisε-cover algo-
rithm makes sense when we have knowledge of the unlabeled
distribution. The algorithm of K̈aäriäinen is inspired by the
clever observation that one can output the function that mini-
mizes the distance to all other functions of the version space.
This algorithmcanbe twice as good as in supervised ERM.
For more details on these algorithms, see section 5.

The second, certainly more popular, set of semi-supervised
approaches focuses on assumptions about the conditional la-
beled distributions. A recent PAC model of SSL proposed
by Balcan and Blum [3, 4] attempts to formally capture such
assumptions. They propose a notion of a compatibility func-
tion that assigns a higher score to classifiers which “fit nicely”
with respect to the unlabeled distribution. The rational is that
by narrowing down the set of classifiers to only compatible
ones, the capacity of the set of potential classifiers goes down
and the generalization bounds of empirical risk minimization
improve. However, since the set of potential classifiers is
trimmed down by a compatibility threshold, if the presumed
label-structure relationship fails to hold, the learner may be
left with only poorly performing classifiers. One serious con-
cern about this approach is that it provides no way of veri-
fying these crucial modeling assumptions. In section 3 we
demonstrate that this approach may damage learning even
when the underlying assumptions seem to hold. In Claim 2
we show that without prior knowledge of such relationship
that the Balcan and Blum approach has poor worst-case gen-
eralization performance.

Common assumptions include thesmoothness assump-
tion and the relatedlow density assumption[10] which sug-



gests that the decision boundary should lie in a low density
region. In section 3, we give examples of mixtures of two
Gaussians showing that the low density assumption may be
misleading even under favourable data generation models,
resulting in low density boundary SSL classifiers with larger
error than the outcome of straightforward supervised learn-
ing that ignores the unlabeled data.

Many other assumptions about the labels/unlabeled data
structure relationship have been investigated, most notably
co-training [6] and explicit generative data models [11].

However, in all these approaches, the assumptions limit-
ing the family of distributionsP belongs to are quite strong
and hard to verify.

3 Issues with Approaches Based on the
Cluster Assumption

This paper has several results of the form “as long as one
does not make any assumptions about the behavior of the
labels, SSL cannot help much over algorithms that ignore
the unlabeled data.”

However, two arguments can be raised against such claims.
First, SSL is not really intended to be used without any prior
assumption about the distribution of labels. In fact, SSL can
be viewed as applying some prior knowledge (or just belief)
that the labels are somehow correlated with the unlabeled
structure of the data. Can we say anything (anything nega-
tive, naturally . . . ) under such an assumption?

Second, maybe using unlabeled data can’talwayshelp
you, but if it can helpsometimeswhy not use it (always)?
Well, can we show that in some cases the use of unlabeled
data can indeed hurt the learner? Of course, nothing of that
kind can apply for all potential learners, since a learner can
choose to ignore the unlabeled data and then of course not get
hurt by ”using” it. We are therefore left with asking, “can
the use of unlabeled data hurt the performance ofconcrete
common SSL paradigms?”

We briefly address these two questions below by demon-
strating that for certaincommonSSL strategies (“low den-
sity cut” and Balcan-Blum style use of “compatibility thresh-
old”) SSL can sometimes hurt you even when the (vaguely
stated) “cluster assumption” does hold (when the data breaks
into clear clusters).

In Figures 1, 2, and 3 we depict three examples of sim-
ple data distributions in which the data is generated by a
mixture of two uni-modal distributions, and if each of these
modes generated examples labeled homogeneously, each by
a different label, then the minimum density of the unlabeled
mixture data is significantly off the optimal label prediction
decision boundary. Figure 1 shows a mixture of two equal-
variance symmetric Gaussians, Figure 2 is a mixture of dif-
ferent Gaussians and Figure 3 shows an extreme case of uni-
modal density functions for which the error of the minimum
density partition has classification error that is twice that of
the optimal decision boundary.

Note that in all such examples, not only does the minimum-
density bias mislead the learning process, but also, if one
follows the paradigm suggested by Balcan and Blum [4], a
wrong choice of the compatibility threshold level will doom
the learning process to failure (whereas a simple empirical

risk minimization that ignores unlabeled data will succeed
based on a small number of labeled samples).

4 A No Prior Knowledge Model of
Semi-Supervised Learning

We adopt the common (agnostic) PAC in which a learning
problem is modeled by a probability distributionP overX×
{0, 1} for some domain set,X. Any function fromX to
{0, 1} is called ahypothesis. Examplesare pairs,(x, y) ∈
X×{0, 1}, and asampleis a finite sequenceS = {(xi, yi)}mi=1
of examples. The fundamental definition of our paper is:

Definition 1 (SL and SSL).

• A supervisedlearning (SL) algorithm is a function,L :⋃
m∈N(X × {0, 1})m → {0, 1}X , that mapping sam-

ples to a hypotheses.

• A semi-supervisedlearning (SSL) algorithm is a func-
tion L :

⋃
m∈N(X × {0, 1})m × P → {0, 1}X , where

P is a set of probability distributions overX. Namely,
an SSL algorithm takes as input not only a finite labeled
sample but also a probability distribution over the do-
main set (and outputs a hypothesis, as before).

For such a distributionP , letD(P ) denote the marginal
distribution overX. That is, formally, forX ′ ⊆ X we define
D(P )(X ′) = P (X ′ × {0, 1}) provided thatX ′ × {0, 1} is
P -measurable. For a learning problemP , we callD(P ) the
unlabeled distributionof P .

Theerror of a hypothesish, with respect toP , isErrP (h) =
Pr(x,y)∼P [h(x) 6= y]. For a classH of hypotheses, thesam-
ple complexityof a semi-supervised learning algorithmA
with respect toP , confidenceδ > 0 andaccuracyε > 0,
is

m(A,H,P, ε, δ) = min
{
m ∈ N :

Pr
S∼Pm

[ErrP (A(S,D(P )))− inf
h′∈H

ErrP (h′) > ε] < δ
}
.

The sample complexity of a supervised learning algorithmA
is defined similarly, except that the second input parameter
D(P ) is omitted.

We consider two settings, realizable and agnostic. In the
agnosticsetting,P can be arbitrary. Therealizablesetting is
defined by assuming that there exists hypothesish ∈ H such
thatErrP (h) = 0; consequentlyinfh′∈H ErrP (h′) = 0. In
particular, this implies that for anyx ∈ X, the conditional
probabilities,P (y = 0| x) andP (y = 1| x) are always
either 0 or 1. In the agnostic setting we do not make any
such requirement.

Following the common PAC terminology and notation,
theempirical error, ErrS(h), of a hypothesish on a sample
S is defined asErrS(h) = 1

m |{i : i ∈ {1, 2, . . . ,m}, h(xi) 6=
yi}|.

Without reference to any learning problem, anunlabeled
distributionD is simply any distribution overX. We use
Ext(D) to denote all possibleextensionsofD, that is,Ext(D)
is the family of all possible distributionsP such thatD(P ) =
D. For an unlabeled distributionD and hypothesish,Dh de-
notes the probability distribution inExt(D) overX×{0, 1}
such thatDh(y = h(x) | x) = 1.
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Figure 1: Mixture of two GaussiansN (0, 1) (-) andN (2, 1)
(+) shows that the optimum threshold is at 1, the densest
point. The sum of these two Gaussians is unimodal.
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Figure 2: Mixture of two GaussiansN (0, 1) (-) andN (4, 2)
(+) with difference variances. The minimum density point
does not coincide with the optimum threshold where the two
Gaussians intersect. The error of optimum is≈ 0.17 and that
of the minimum density point is≈ 0.21.
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Figure 3: The solid line indicates the distributionP1 (-) and
the dotted line isP2 (+). Their intersection is the optimum.
The slope of the solid line is slightly steeper than that of the
dotted line (| − 1| > 1 − ε). The minimum density point
occurs whereP1 falls to 0. So error of the minimum density
threshold is twice that of the optimum.

For a subsetT of some universal set, we use1T to de-
note its characteristic function. In particular, ifT ⊆ X then
1T is a hypothesis overX. For two hypothesisg, h we use
g∆h to denote their “symmetric difference”, that is,g∆h is
a hypothesis defined as1{x ∈ X : g(x) 6= h(x)}. Let us
also defineVC(H) to be the VC-dimension [20] of hypoth-
esis classH.

5 Previous No Prior Knowledge Paradigms

Previous approaches to SSL algorithms for the no prior knowl-
edge paradigm have used the unlabeled sample to figure out
the “geometry” of the hypothesis space with respect to the
unlabeled (marginal) distribution. A common approach is to
use that knowledge to reduce the hypothesis search space. In
doing so, one may improve the generalization upper bounds.

Recall that given an unlabeled distributionD and a hy-
pothesis classH, anε-cover is a subsetH ′ ⊆ H such that
for anyh ∈ H there existsg ∈ H ′ such thatD(g∆h) ≤ ε.
Note that ifH ′ is anε-cover forH with respect toD, then
for every extensionP ∈ Ext(D) the infg∈H′ ErrP (g) ≤
infh∈H ErrP (h) + ε. The smaller anε-cover is the better its
generalization bound one for the ERM algorithm over this
cover.

In some cases the construction of a smallε-cover is a
major use of unlabeled data. Benedek and Itai [5] analyze
the approach, in the case when the unlabeled distribution is
fixed and therefore can thought of as known to the learner.

The Balcan-Blum [4] suggest a different way of using
the unlabeled data to reduce the hypothesis space. However,
we claim that without making any prior assumptions about
the relationship between the labeled and unlabeled distribu-
tions, their approach boils down to theε-cover construction
described above.

Claim 2. LetH be any hypotheses class,ε, δ > 0, andD
be any unlabeled distribution. LetH ′ ⊆ H be the set of
“compatible hypotheses.” SupposeA is an SSL algorithm
that outputs any hypothesis inH ′. If H ′ does not contain an
ε-cover ofH with respect toD, the error of the hypothesis
thatA outputs is at leastε regardless of the size of the labeled
sample.

Proof. SinceH ′ does notε-cover ofH, there exist a hypoth-
esish ∈ H such that for allg ∈ H ′, D(g∆h) > ε. Thus,
for anyg ∈ H ′, ErrDh(g) > ε. AlgorithmA outputs some
g ∈ H ′ and the proof follows.

Kääriäinen [17] utilizes the unlabeled data in a different
way. Given the labeled data his algorithm constructs the ver-
sion spaceF ⊆ H of all sample-consistent hypotheses, and
then applies the knowledge of the unlabeled distributionD to
find the “center” of that version space. Namely, a hypothesis
g ∈ F that minimizesmaxh∈F D(g∆h).

Clearly, all the above paradigms depend on the knowl-
edge of the unlabeled distributionD. In return, better up-
per bounds on the sample complexity of the respective al-
gorithms (or equivalently on the errors of the hypotheses
produced by such algorithms) can be shown. For exam-
ple, Benedek and Itai give (for the realizable case) an up-
per bound on the sample complexity that depends on the size



of the ε-cover—the smallerε-cover, the smaller the upper
bound.

In the next section we analyze the gains that such knowl-
edge of unlabeled data distribution can make in the no prior
knowledge setting. We prove that over the real line for any
“smooth” unlabeled distributionD, ERM over the full hy-
pothesis classH has worst case sample complexity that is
at most by constant factor bigger than the worst case sample
complexity ofanySSL algorithm. We conjecture that this a
more general phenomenon.

Conjecture3. For any hypothesis classH, there exists a con-
stant c ≥ 1 and a supervised algorithmA, such that for
any distributionD over the domain and any semi-supervised
learning algorithmB,

sup
h∈H

m(A,H,Dh, ε, δ) ≤ c · sup
h∈H

m(B,H,Dh, ε, δ)

for anyε andδ small enough, say smaller than1/c.
Conjecture4. For any hypothesis classH, there exists a con-
stant c ≥ 1 and a supervised algorithmA, such that for
any distributionD over the domain and any semi-supervised
learning algorithmB,

sup
P∈ExtD

m(A,H,P, ε, δ) ≤ c · sup
P∈ExtD

m(B,H,P, ε, δ)

for anyε andδ small enough, say smaller than1/c.

6 Inherent Limitations of Semi-Supervised
Learning

This section is devoted to proving the inherent limitations
of SSL paradigm in the no prior knowledge model over the
real line. In section 6.2 we prove Conjecture 3 for thresholds
on the real line in the realizable setting, under the condition
that the unlabeled distribution is absolutely continuous. In
section 6.3 we prove Conjecture 4 for thresholds and union
of d intervals over the real line in the agnostic setting (under
the same unlabeled distribution condition).

The former follows from Theorems 7 and 9. The latter
follows from Corollary 12 (for thresholds) and from Corol-
lary 15 (for union ofd intervals).

Let us start by defining the hypothesis classes. The class
of thresholds is defined asH = {1(−∞, t] : t ∈ R} and
the class of union ofd intervals

UId = {[a1, a2) ∪ [a3, a4) ∪ · · · ∪ [a2`−1, a2`) :
` ≤ d, a1 ≤ a2 ≤ · · · ≤ a2`} .

To prove the results we rely on a simple “rescaling trick”
that we explain section 6.1.

In section 6.4 we discuss other potential formulations of
the comparison between SL and SSL algorithms.

6.1 Rescaling Trick

In this section we show that learning any “natural” hypothe-
sis class on the real has the same sample complexity for any
absolutely continuous unlabeled distribution independent of
its shape. Intuitively, if we imagine the real axis made of
rubber, then a natural hypothesis class is one that is closed
under rescaling (stretching) of the axis. Classes of thresh-
olds and union ofd intervals are examples of such natural

classes, since under any rescaling an interval remains an in-
terval. The rescaling will apply also on the unlabeled distri-
bution over the real line and it will allow us to go from any
absolutely continuous distribution to the uniform distribution
over(0, 1).

More formally, a rescaling is a continuous increasing
functionf from an open intervalI onto an open intervalJ .
We denote byH|A the restriction of a classH to a subset
A, that is,H|A = {h|A : h ∈ H}. We use◦ to de-
note function composition. We say that a hypothesis classH
overR is closed under rescalingwhenever for any rescaling
f : I → J , if h|J ∈ H|J , thenh|J ◦ f ∈ H|I . If H is any
class closed under rescaling, then any rescalingf induces a
bijection betweenh|J 7→ h|J ◦ f bijection betweenH|I and
H|J . (This follows sincef−1 is also rescaling.) Clearly, the
class of thresholds and the class of unions ofd intervals are
closed under rescaling.

We show that the sample complexity of is unaffected by
rescalings provided the the hypothesis class is closed under
rescalings. We split the results into two lemmas—Lemma 5
and Lemma 6. The first lemma shows that if we have a su-
pervised algorithm with certain sample complexity for the
case when the unlabeled distribution is the uniform distribu-
tion over(0, 1), then the algorithm can be translated into an
SSL algorithm with the same sample complexity for the case
when the unlabeled distribution is any absolutely continuous
distribution. The second lemma shows the translation in the
other direction. Namely, that a SSL algorithm with certain
sample complexity on some absolutely continuous unlabeled
distribution can be translated to a supervised algorithm for
the case when unlabeled distribution is uniform over(0, 1).

Lemma 5 (Rescaling trick I). LetH be a hypothesis class
overR closed under rescaling. LetU be the uniform distri-
bution over(0, 1). Letε, δ > 0.

(a) (Realizable case): If A is any supervised or semi-
supervised algorithm, then there exists an semi-supervised
learning algorithmB such that for any distributionD over
an open intervalI which is absolutely continuous with re-
spect to Lebesgue measure onI

sup
h∈H

m(B,H,Dh, ε, δ) ≤ sup
g∈H

m(A,H,Ug, ε, δ) . (1)

(b) (Agnostic case): If A is any supervised or semi-supervised
algorithm, then there exists an semi-supervised learning al-
gorithmB such that for any distributionD over an open in-
tervalI which is absolutely continuous with respect to Lebesgue
measure onI

sup
P∈Ext(D)

m(B,H,P, ε, δ) ≤ sup
Q∈Ext(U)

m(A,H,Q, ε, δ) . (2)

Proof. Fix H andA. We construct algorithmB as follows.
The algorithmB has two inputs, a sampleS = {(xi, yi)}mi=1
and a distributionD. Based onD the algorithm computes
the cumulative distribution functionF : I → (0, 1), F (t) =
D(I ∩ (−∞, t]). Then,B computes fromS transformed
sampleS′ = {(x′i, yi)}mi=1 wherex′i = F (xi). On a sample
S′ the algorithmB simulates algorithmA and computesh =
A(S′). (If A is semi-supervised we fix its second input to be
U ). Finally,B outputsg = h ◦ F .



It remains to show that for anyD with continuous cumu-
lative distribution function (1) and (2) holds for anyε, δ > 0.
We prove (2), the other equality is proved similarly.

Let P ∈ Ext(D). Slightly abusing notation, we define
the “image” distributionF (P ) over(0, 1)× {0, 1} to be

F (P )(M) = P ({(x, y) : (F (x), y) ∈M})

for any (measurable)M ⊆ (0, 1) × {0, 1}. It is not hard
to see that ifS is distributed according toPm, thenS′ is
distributed according to(F (P ))m. Clearly,D(F (P )) = U
i.e. F (P ) ∈ Ext(U). Further note that sinceD is abso-
lutely continuous,F is a rescaling. HenceErrF (P )(h) =
ErrP (h ◦ F ) and infh∈H ErrP (h) = infh∈H ErrF (P )(h).
Henceforth, for anyε and anym ∈ N

Pr
S∼Pm

[ErrP (B(S,D))− inf
h∈H

ErrP (h) > ε]

= Pr
S′∼F (P )m

[ErrP (A(S′) ◦ F )− inf
h∈H

ErrF (P )(h) > ε]

= Pr
S′∼F (P )m

[ErrF (P )(A(S′))− inf
h∈H

ErrF (P )(h) > ε] .

Therefore, for anyε, δ > 0,

m(B,H,P, ε, δ) = m(A,H,F (P ), ε, δ)
≤ sup
Q∈Ext(P )

m(A,H,Q, ε, δ) .

Taking supremum overP ∈ Ext(D) finishes the proof.

Lemma 6 (Rescaling trick II). LetH be a hypothesis class
overR closed under rescaling. LetU be the uniform distri-
bution over(0, 1). Letε, δ > 0.

(a) (Realizable case): If B is any supervised or semi-
supervised algorithm andD is any distribution over an open
intervalI, which is absolutely continuous with respect to the
Lebesgue measure onI, then there exists a supervised learn-
ing algorithmA such that

sup
g∈H

m(A,H,Ug, ε, δ) ≤ sup
h∈H

m(B,H,Dh, ε, δ) . (3)

(b) (Agnostic case): If B is any supervised or semi-supervised
algorithm andD is any distribution over an open intervalI,
which is absolutely continuous with respect to the Lebesgue
measure onI, then there exists a supervised learning algo-
rithmA such that

sup
Q∈Ext(U)

m(A,H,Q, ε, δ) ≤ sup
P∈Ext(D)

m(B,H,P, ε, δ) . (4)

Proof. Fix H, B andD. Let F : I → (0, 1) be the be
cumulative distribution function ofD, that is,F (t) = D(I ∩
(−∞, t)). SinceD is absolutely continuous,F is a rescaling
and inverseF−1 exists.

Now, we construct algorithmA. AlgorithmA maps in-
put sampleS′ = {(x′i, yi)}mi=1 to sampleS = {(xi, yi)}mi=1
wherexi = F−1(x′i). On a sampleS the algorithmA sim-
ulates algorithmB and computesg = B(S,D). (If B is
supervised, then the second input is omitted.) Finally,A out-
putsh = g ◦ F−1.

It remains to show that for anyD with continuous cumu-
lative distribution function (3) and (4) holds for anyε, δ > 0.
We prove (4), the other equality is proved similarly.

Let Q ∈ Ext(U). Slightly abusing notation, we define
the “pre-image” distributionF−1(Q) overI × {0, 1} to be

F−1(Q)(M) = Q ({(F (x), y) : (x, y) ∈M})

for any (measurable)M ⊆ I × {0, 1}. It is not hard to see
that if S′ is distributed according toQ, thenS is distributed
according to(F−1(Q))m. Clearly,D(F−1(U) = D i.e.

F−1(Q) ∈ Ext(D). SinceF−1 is a rescaling,ErrF
−1(Q)(h) =

ErrQ(h◦F−1) andinfh∈H ErrQ(h) = infh∈H ErrF
−1(Q)(h).

Henceforth, for anyε > 0 and anym ∈ N

Pr
S′∼Qm

[ErrQ(A(S′))− inf
h∈H

ErrQ(h)]

= Pr
S∼F−1(Q)m

[ErrQ(B(S,D) ◦ F−1)− inf
h∈H

ErrF
−1(Q)(h)]

= Pr
S∼F−1(Q)m

[ErrF
−1(Q)(B(S,D))− inf

h∈H
ErrF

−1(Q)(h)] .

Therefore, for anyε, δ > 0,

m(A,H,Q, ε, δ) = m(B,H,F−1(Q), ε, δ)
≤ sup
P∈Ext(D)

m(B,H,P, ε, δ)

Taking supremum overQ ∈ Ext(U) finishes the proof.

6.2 Sample Complexity of Learning Thresholds in the
Realizable Case

In this section we consider learning the class of thresholds,
H = {1(−∞, t] : t ∈ R}, on the real line in the real-
izable setting and show that for absolutely continuous unla-
beled distributions SSL has at most factor2 advantage over
SL in the sample complexity.

First, in Theorem 7, we showln(1/δ)
ε upper bound on the

sample complexity of supervised learning. This seems to be
a folklore result. Second, we consider sample complexity
of semi-supervised learning in the case whenD(P ) is abso-
lutely continuous with respect to the Lebesgue measure on
R. In Theorems 8 and 9 we show that the sample complexity
is betweenln(1/δ)

2ε +O( 1
ε ) and ln(1/δ)

2.01 ε −O( 1
ε ).1 Ignoring the

lower order terms, we see that the sample complexity of su-
pervised learning is (asymptotically) at most2-times larger
than that of semi-supervised learning.

We will make use the following of two algorithms: su-
pervised algorithmL and semi-supervised algorithmB pro-
posed by K̈aäriäinen [17]. Both algorithms on a sampleS =
((x1, y2), (x2, y2), . . . , (xm, ym)) first compute

` = max{xi : i ∈ {1, 2, . . . ,m}, yi = 1} ,
r = min{xi : i ∈ {1, 2, . . . ,m}, yi = 0} .

AlgorithmL simply outputs the hypothesis1(−∞, `]. Algo-
rithm B makes use of its second input, distributionD. Pro-
vided that` < r, B computest′′ = sup{t′ : D((`, t′]) ≤
D((`, r])/2} and outputs hypothesis1(−∞, t].

1The2.01 in the lower bound can be replaced by arbitrary num-
ber strictly greater than2. This slight imperfection is a consequence
of that the true dependence of the sample complexity onε, in this
case, is of the form1/ ln(1− 2ε) and not1/(2ε).



Theorem 7 (SL upper bound). LetH be the class of thresh-
olds andL be the supervised learning algorithm defined above.
For anyD, for anyε, δ > 0, and any “target”h ∈ H,

m(A,H,Dh, ε, δ) ≤
ln(1/δ)

ε
.

Proof. Let h = 1(−∞, t) and lets = sup{s : D((s, t]) ≥
ε}. The eventErrDh(L(S)) ≥ ε occurs precisely when
the interval(s, t] does not contain any sample points. This
happens with probability(1 − D((s, t]))m ≤ (1 − ε)m. If
m ≥ ln(1/δ)

ε , then(1− ε)m ≤ exp(−εm) ≤ δ.

Theorem 8 (SSL upper bound).LetH be the class of thresh-
olds andB be the semi-supervised learning algorithm de-
fined above. For any absolutely continuous distributionD
over an open interval, anyε ∈ (0, 1

4 ), δ ∈ (0, 1
2 ), and any

“target” h ∈ H,

m(B,H,Dh, ε, δ) ≤
ln(1/δ)

2ε
+

ln 2
2ε

.

Proof. By rescaling trick (Lemma 5 part (a)) we can assume
thatD is uniform over(0, 1). Fix ε ∈ (0, 1

4 ), δ ∈ (0, 1
2 ) and

h ∈ H. We show that, for anym ≥ 2,

Pr
S∼Dmh

[ErrDh(B(S,Dh)) ≥ ε] ≤ 2(1− 2ε)m , (5)

from which the theorem easily follows, since ifm ≥ ln(1/δ)
2ε +

ln 2
2ε , thenm ≥ 2 and2(1− 2ε)m ≤ 2 exp(−2mε) ≤ δ.

In order to prove (5), leth = 1(−∞, t] be the “tar-
get”. Without loss of generalityt ∈ [0, 1

2 ]. With a little
abuse, we assume that` ∈ [0, t] andr ∈ [t, 1]. For conve-
nience, we definea : [0, t] → [t, 1], b : [0, t] → [t, 1] as
a(`) = max(2t− `− 2ε, t) andb(`) = min(2t− `+ 2ε, 1)
respectively. It is easily verified thatErrDh(B(S,Dh)) ≤ ε
if and only if r ∈ [a(`), b(`)].

We lower bound the probability of success

p = Pr
S∼Dmh

[ErrDh(B(S,Dh)) ≤ ε] .

There are two cases:
Case 1: If t > 2ε, then we integrate over all possible

choices of the rightmost positive example inS (which de-
termines`) and leftmost negative example inS (which de-
terminesr). There arem(m − 1) choices for the rightmost
positive example and leftmost negative example. We have

p ≥ p1 = m(m− 1)
∫ t

0

∫ b(`)

a(`)

(1− r + `)m−2 drd` .

Case 2: If t ≤ 2ε, then we integrate over all possible
choices of the rightmost positive example inS and leftmost
negative example inS. Additionally we also consider sam-
ples without positive examples, and integrate over all possi-
ble choices of the leftmost (negative) example. We have

p ≥ p2 = m(m− 1)
∫ t

0

∫ b(`)

a(`)

(1− r + `)m−2 drd`

+m

∫ 2ε

t

(1− r)m−1 dr

Both cases split into further subcases.

Subcase 1a:If t > 2ε andt + 4ε ≤ 1 andt + ε ≥ 1/2,
then0 ≤ 2t+ 2ε− 1 ≤ t− 2ε ≤ t and

p1 = m(m− 1)
[ ∫ 2t+2ε−1

0

∫ b(`)

a(`)

(1− r + `)m−2 drd`

+
∫ t−2ε

2t+2ε−1

∫ b(`)

a(`)

(1− r + `)m−2 drd`

+
∫ t

t−2ε

∫ b(`)

a(`)

(1− r + `)m−2 drd`
]

= m(m− 1)
[ ∫ 2t+2ε−1

0

∫ 1

2t−`−2ε

(1− r + `)m−2 drd`

+
∫ t−2ε

2t+2ε−1

∫ 2t−`+2ε

2t−`−2ε

(1− r + `)m−2 drd`

+
∫ t

t−2ε

∫ 2t−`+2ε

t

(1− r + `)m−2 drd`
]

= 1− 1
2

(1− 2t− 2ε)m − 1
2

(−1 + 2t+ 6ε)m − (1− 2ε)m

≥ 1− 2(1− 2ε)m .

Subcase 1b:If t > 2ε andt+ε ≤ 1/2, then2t+2ε−1 ≤
0 ≤ t− 2ε ≤ t and

p1 = m(m− 1)
[ ∫ t−2ε

0

∫ b(`)

a(`)

(1− r + `)m−2 drd`

+
∫ t

t−2ε

∫ b(`)

a(`)

(1− r + `)m−2 drd`
]

= m(m− 1)
[ ∫ t−2ε

0

∫ 2t−`+2ε

2t−`−2ε

(1− r + `)m−2 drd`

+
∫ t

t−2ε

∫ 2t−`+2ε

t

(1− r + `)m−2 drd`
]

= 1− (1− 2ε)m +
1
2

(1− 2t− 2ε)m − 1
2

(1− 2t+ 2ε)m

≥ 1− 3
2

(1− 2ε)m .

Subcase 1c:If t > 2ε andt+ 4ε ≥ 1, then0 ≤ t− 2ε ≤



2t+ 2ε− 1 ≤ t, and

p1 = m(m− 1)
[ ∫ t−2ε

0

∫ b(`)

a(`)

(1− r + `)m−2 drd`

+
∫ 2t+2ε−1

t−2ε

∫ b(`)

a(`)

(1− r + `)m−2 drd`

+
∫ t

2t+2ε−1

∫ b(`)

a(`)

(1− r + `)m−2 drd`
]

= m(m− 1)
[ ∫ t−2ε

0

∫ 1

2t−`−2ε

(1− r + `)m−2 drd`

+
∫ 2t+2ε−1

t−2ε

∫ 1

t

(1− r + `)m−2 drd`

+
∫ t

2t+2ε−1

∫ 2t−`+2ε

t

(1− r + `)m−2 drd`
]

= 1− (1− 2ε)m − 1
2

(1− 2t+ 2ε)m − 1
2

(2t+ 2ε− 1)m

≥ 1− 2(1− 2ε)m .

Subcase 2a:If t ≤ 2ε andt + ε ≥ 1/2, thent − 2ε ≤
0 ≤ 2t+ 2ε− 1 ≤ t and

p2 = m(m− 1)
[ ∫ 2t+2ε−1

0

∫ b(`)

a(`)

(1− r + `)m−2 drd`

+
∫ t

2t+2ε−1

∫ b(`)

a(`)

(1− r + `)m−2 drd`
]

+m

∫ 2ε

t

(1− r)m−1 dr

= m(m− 1)
[ ∫ 2t+2ε−1

0

∫ 1

t

(1− r + `)m−2 drd`

+
∫ t

2t+2ε−1

∫ 2t−`+2ε

t

(1− r + `)m−2 drd`
]

+ (1− t)m − (1− 2ε)m

= 1− 3
2

(1− 2ε)m − 1
2

(2t+ 2ε− 1)m

≥ 1− 2(1− 2ε)m .

Subcase 2b:If t ≤ 2ε andt+ ε ≤ 1/2, thent− 2ε ≤ 0,
2t+ 2ε− 1 ≤ 0 and

p2 = m(m− 1)
∫ t

0

∫ b(`)

a(`)

(1− r + `)m−2 drd`

+m

∫ 2ε

t

(1− r)m−1 dr

= m(m− 1)
∫ t

0

∫ 2t−`+2ε

t

(1− r + `)m−2 drd`

+ (1− t)m − (1− 2ε)m

= 1− 3
2

(1− 2ε)m − 1
2

(1− 2t− 2ε)m

≥ 1− 2(1− 2ε)m .

Theorem 9 (SSL lower bound).For any (randomized) semi-
supervised algorithmA, any ε ∈ (0, 0.001), any δ > 0,
any absolutely continuous probability distributionD over an
open interval, there existsh ∈ H, such that

m(A,H,Dh, ε, δ) ≥
ln(1/δ)
2.01ε

− ln 2
2.01ε

.

Proof. By rescaling trick (Lemma 6 part (a)) we can as-
sume thatD is uniform over(0, 1). Fix A, ε, δ. We show
the existence of requiredh by a probabilistic argument. We
consider pickingt uniformly at random from(0, 1) and let
h = 1(−∞, t]. We prove that for anym ≥ 0,

E
t

Pr
S∼Dmh

[ErrDh(A(S,Dh)) ≥ ε] ≥ 1
2

(1− 2ε)m

or equivalently

E
S∼Dmh

Pr
t

[ErrDh(A(S,Dh)) ≥ ε] ≥ 1
2

(1− 2ε)m . (6)

To lower bound the left side, fix unlabeled points0 ≤ x1 ≤
x2 ≤ · · · ≤ xm ≤ 1. For convenience, letx0 = 0 and
xm+1 = 1. We claim that

Pr
t

[ErrDh(A(S,Dh)) ≥ ε] ≥
m∑
i=0

max(xi+1 − xi − 2ε, 0) .

(7)
To prove that we also fixi ∈ {0, 1, 2, . . . ,m} and restrict
t to lie in the interval(xi, xi+1]. The labels inS are hence
fixed. If we also fix the random bits used byA for random
its internal randomization, the hypothesisg = A(S,Dh) is
fixed. It is not hard to see that regardless ofg∫ xi+1

xi

1
{
t : ErrDh(g) ≥ ε

}
dt ≥ max(xi+1−xi−2ε, 0) ,

it follows from that the set{t : ErrDh(g) < ε} is contained
in an interval of length at most2ε. We obtain (7) by taking
expectation over the random bits used byA and summing
over alli.

In order to prove (6) we will compute expectation over
S ∼ Dm

h of both sides of (7). Expectation of the left side of
(7) equals to the left side of (6). The expectation of the right
side of (7) is equal to

Im = m!
∫ xm+1

0

∫ xm

0

∫ xm−1

0

· · ·
∫ x2

0︸ ︷︷ ︸
m times

m∑
i=0

max(xi+1 − xi − 2ε, 0)

dx1 · · ·dxm−2dxm−1dxm ,

since there arem! equiprobable choices for the order of the
pointsx1, x2, . . . , xm among which we choose, without loss
of generality, the one withx1 ≤ x2 ≤ · · · ≤ xm. We look at
Im as a function ofxm+1 and we prove that

Im(xm+1) = (max(xm+1 − 2ε, 0))m+1
, (8)

for anym ≥ 0 and anyxm+1 ∈ [0, 1]. The bound (6) follows
from (8), sinceIm = Im(1) = (1 − 2ε)m+1 ≥ 1

2 (1 − 2ε)m



for ε ≤ 1/4. In turn, (8) follows, by induction onm, from
the recurrence

Im(xm+1) = m

∫ xm+1

0

Im−1(xm)

+ max(xm+1 − xm − 2ε, 0) · xm−1
m dxm ,

which is valid for allm ≥ 1. In the base case,m = 0,
I0(x1) = max(x1 − 2ε, 0) trivially follows by definition.
In the inductive case,m ≥ 1, we consider two cases. First
case,xm+1 < 2ε, holds sincemax(xi+1 − xi − 2ε, 0) = 0
and hence by definitionIm(xm+1) = 0. In the second case,
xm+1 ≥ 2ε, from the recurrence and the induction hypothe-
sis we have

Im(xm+1) = m

∫ xm+1

0

(max(xm − 2ε, 0))m

+ max(xm+1 − xm − 2ε, 0) · xm−1
m dxm

= m

∫ xm+1

2ε

(xm − 2ε)m dxm

+m

∫ xm+1−2ε

0

(xm+1 − xm − 2ε)xm−1
m dxm

=
m

m+ 1
(xm+1 − 2ε)m+1

+
1

m+ 1
(xm+1 − 2ε)m+1

= (xm+1 − 2ε)m+1 .

To finish the proof of the theorem, supposem < ln(1/δ)
2.01ε −

ln 2
2.01ε . Then1

2 (1− 2ε)m > δ, since

ln
(

1
2

(1− 2ε)m
)

=

− ln 2 +m ln(1− 2ε) > − ln 2−m(2.01ε) > ln δ ,

where we have used thatln(1 − 2ε) > −2.01ε for any ε ∈
(0, 0.001). Therefore from (6), for at least one targeth =
1(−∞, t], with probability greater thanδ, algorithmA fails
to output a hypothesis with error less thanε.

Remark. The ln(1/δ)
2.01 ε − O( 1

ε ) lower bound applies to su-
pervised learning as well. However, we do not know of
any supervised algorithm (deterministic or randomized) that
has asymptotic sample complexityc ln(1/δ)

ε for any constant
c < 1. For example, the randomized algorithm that outputs
with probability1/2 the hypothesis1(−∞, `] and with prob-
ability 1/2 the hypothesis1(−∞, r) still cannot achieve the
SSL sample complexity. We conjecture that all supervised
algorithms for learning thresholds on real line in the realiz-
able setting have asymptotic sample complexityln(1/δ)

ε .

6.3 Sample Complexity in Agnostic Case

In this section, we show that even in the agnostic setting SSL
does not have more than constant factor improvement over
SL. We prove some lower bounds for some classes over the
real line. We introduce the notion of ab-shatterable distri-
bution, which intuitively, are distributions where there areb
“clusters” that can be shattered by the concept class. The

main lower bound of this section are for such distributions
(see Theorem 14). We show how this lower bound results
in tight sample complexity bounds for two concrete prob-
lems. The first is learning thresholds on the real line where
we show a bound ofΘ(ln(1/δ)/ε2). Then we show sample

complexity ofΘ
(

2d+ln(1/δ)
ε2

)
for the union ofd intervals on

the real line.
The sample complexity of the union ofd intervals for a

fixed distribution in a noisy setting has also been investigated
by Gentile and Helmbold [15]. They show a lower bound
of Ω

(
2d log 1

∆/(∆(1− 2η)2)
)

where∆ is the distance to
the target that the learning algorithm should guarantee with
high probability, andη is the probability of a wrong label ap-
pearing (see classification noise model of [1]). This notation
implies that the difference in true error of target and the algo-
rithm’s output isε = (1−2η)∆. Settingη = 1/2−ε/4 gives
Ω(2d/ε2). We note that we do not make the assumption of a
constant level of noise for each unlabeled example. It turns
out, however, that in our proofs we do construct worst case
distributions that have a constant noise rate that is slightly
below1/2.

We point out two main differences between our results
and that of Gentile and Helmbold. The first being that we
explicitly construct noisy distributions to obtainε2 in the
denominator. The second difference is that our technique
appears to be quite different from theirs, which uses an in-
formation theory approach, whereas we make use of known
techniques based on lower bounding how well one can dis-
tinguish similar noisy distributions, and then applying an av-
eraging argument. The main tools used in this section come
from Anthony and Bartlett [2, Chapter 5].

We first cite a result on how many examples are needed to
distinguish two similar, Bernoulli distributions in Lemma 10.
Then in Lemma 11 we prove an analogue of this for arbitrary
unlabeled distributions. The latter result is used to give us a
lower bound in Theorem 14 forb-shatterable distributions
(see Definition 13). Corollary 12 and 15 gives us tight sam-
ple complexity bounds for thresholds and union of intervals
onR.

Lemma 10 (Anthony and Bartlett [2]). Suppose thatP is
a random variable uniformly distributed on{P1, P2} where
P1, P2 are Bernoulli distributions over{0, 1} with P1(1) =
1/2 − γ andP2(1) = 1/2 + γ for 0 < γ < 1/2. Suppose
thatξ1, . . . , ξm are IID {0, 1} valued random variables with
Pr(ξi = 1) = P (1) for eachi. Let f be a function from
{0, 1}m → {P1, P2}. Then

E
P

Pr
ξ∼Pm

[f(ξ) 6= P ] >
1
4

(
1−

√
1− exp

(
−4mγ2

1− 4γ2

))
=: F (m, γ).

One can view the lemma this way: if one randomly picks
two weighted coins with similar biases, then there’s a lower
bound on the confidence with which one can accurately pre-
dict the coin that was picked.

The next result is similar except an unlabeled distribution
D is fixed, and the distributions we want to distinguish will
be extensions ofD.



Lemma 11. Fix anyX, H, D overX, andm > 0. Sup-
pose there existsh, g ∈ H with D(h∆g) > 0. Let Ph
andPg be the extension ofD such thatPh((x, h(x))|x) =
Pg((x, g(x))|x) = 1/2+γ. LetAD : (h∆g×{0, 1})m → H
be any function. Then for anyx1, . . . , xm ∈ h∆g, there ex-
istsP ∈ {Ph, Pg} such that ifyi ∼ Pxi for all i,

Pr
yi

[ErrP (AD((x1, y1), . . . , (xm, ym)))−OPTP

> γD(h∆g)] > F (m, γ) .

WherePx is the conditional distribution ofP givenx, and
OPTP = 1/2 − γ. Thus if the probability of failure is at
mostδ, we require

m ≥
(

1
4γ2
− 1
)

ln
1
8δ
. (9)

Proof. Suppose for a contradiction this is not true. LetP =
{Ph, Pg}. Then there exists anAD andx1, . . . , xm such that

∀P ∈ P, Pr
yi

[ErrP (AD((x1, y1), . . . , (xm, ym)))−OPTP

> γD(h∆g)] ≤ F (m, γ). (10)

Then we will show that the lower bound in Lemma 10 can
be violated. Nowh∆g can be partitioned into∆0 = {x :
h(x) = 0} and∆1 = {x : h(x) = 1}. Without loss of gen-
erality assume{x1, . . . , xl} ⊆ ∆0 and{xl+1, . . . , xm} ⊆
∆1. LetA = AD((x1, y1), . . . , (xm, ym)).

From the triangle inequalityD(A∆h) + D(A∆g) ≥
D(h∆g). Thus ifA is closer toh thenD(A∆g) ≥ D(h∆g)/2
and vice versa. LetP be a random variable uniformly dis-
tributed onP. We havePr(y1 = 1) = · · · = Pr(yl = 1) =
P∆0(1) = Pr(yl+1 = 0) = · · · = Pr(ym = 0) = P∆1(0).

Let ξ1, . . . , ξm ∼ P∆0 so thatPr(ξi = 1) = 1/2 − γ
whenP = Ph and equal to1/2 + γ whenP = Pg. Let us
define the functionf : {0, 1}m → P as follows. It will take
as inputξ1, . . . , ξm then transform this to an input ofAD as
I = (x1, ξ1), . . . , (xl, ξl), (xl+1, 1−ξl+1), . . . , (xm, 1−ξm)
so thatξi and1 − ξj is from the same distribution asyi and
yj , respectively, fori ≤ l, j > l. Now define

f(ξ1, . . . , ξl) =
{
Ph if D(AD(I)∆h) < D(AD(I)∆g)
Pg otherwise

.

We have

E
P

Pr
ξ∼Pm∆0

[f(ξ) 6= P ]

≤ E
P

Pr
ξ

[D(AD(I)∆OPTP ) > D(h∆g)/2]

≤ E
P

Pr
ξ

[
ErrP (AD(I))−OPTP > γD(h∆g)

]
≤ F (m, γ)

where the last inequality follows from (10). This is a con-
tradiction, so the lower bound from Lemma 10 must apply.
If the probability of failureF (m, γ) is at mostδ, solving the
inequality form gives (9).

Corollary 12. The SSL sample complexity of learning thresh-
olds over the uniform distribution over(0, 1) isΘ(ln(1/δ)/ε2).

Proof. Upper bound comes from any ERM algorithm. Let
h = 1(−∞, 0] andg = 1(−∞, 1] soD(h∆g) = 1. Set
γ = ε as in Lemma 11.

Definition 13. The triple (X,H,D) is b-shatterable if there
exists disjoint setsC1, C2, . . . , Cb with D(Ci) = 1/b for
eachi, and for eachS ⊆ {1, 2, . . . , b}, there existsh ∈ H
such that

h ∩

(
b⋃
i=1

Ci

)
=
⋃
i∈S

Ci.

Theorem 14. If (X,H,D) is b-shatterable andH contains
h, g withD(h∆g) = 1 then a lower bound on the SSL sam-
ple complexity for0 < ε, δ < 1/64 is

Ω
(
b+ ln 1

δ

ε2

)
.

Proof. The proof is similar to Theorem 5.2 in Anthony and
Bartlett [2]. LetG = {h1, h2, . . . , h2b} be the class of func-
tions thatb-shattersD with respect toC = {C1, . . . , Cb}.
We construct noisy extensions ofD,P = {P1, P2, . . . , P2b}
so that for eachi, Pi((x, hi(x))) = (1 + 2γ)/(2b). For
anyh ∈ H let snap(h) = argminh′∈GD(h∆h′). Suppose
P ∈ P, let h∗ denote the optimal classifier which is some
g ∈ G depending on the choice ofP . If i 6= j andN(hi, hj)
is the number of sets inC wherehi andhj disagree, then
D(hi∆hj) ≥ N(hi, hj)/b, and sinceG is a1/b-packing,

ErrP (h) ≥ ErrP (h∗) +
γ

b
N(snap(h), h∗)

=
1
2
(
ErrP (snap(h)) + ErrP (h∗)

)
. (11)

Modifying the proof of Anthony and Bartlett with the use of
Lemma 11 rather than Lemma 10 we get that there exists a
P ∈ P such that wheneverm ≤ b/(320ε2),

Pr
S∼Pm

[
ErrP (snap(A(D,S)))− ErrP (h∗) > 2ε

]
> δ.

WheneverA fails, we get from (11)

ErrP (A(D,S))− ErrP (h∗)

≥ 1
2
(
ErrP (snap(h)) + ErrP (h∗)

)
≥ ε.

To getΩ(ln(1/δ)/ε2), apply Lemma 11 withh andg.

We will now apply the above theorem to give the sample
complexity for learning union of intervals on the real line.
Recall that by the rescaling trick, we only need to consider
the sample complexity with respect to the uniform distribu-
tion on(0, 1).

Corollary 15. The SSL sample complexity for learning the
class of union of at mostd intervalsUId = {[a1, a2)∪ · · · ∪
[a2l−1, a2l) : l ≤ d, 0 ≤ a1 ≤ a2 ≤ · · · ≤ a2l ≤ 1} over
uniform distribution on(0, 1) is

Θ
(

2d+ ln 1
δ

ε2

)
.



Proof. We haveVC(UId) = 2d, thus the upper bound fol-
lows immediately. Construct2d-shatterable sets by letting
Ci = [(i − 1)/2d, i/2d) for i = 1, . . . , 2d. For anyS ⊆
{1, . . . , 2d} definehS =

⋃
i∈S Ci. Now if |S| ≤ d then

clearlyhS ∈ UId, if |S| > d thenhS ∈ UId since|S| < d.
But then[0, 1)\hS can be covered by at mostd intervals, so
hS ∈ UId. Thus the set{hS : S ⊆ {1, . . . , 2d}} 2d-shatters
D on [0, 1]. Also let h = [0, 0) = ∅ andg = [0, 1). Now
apply Theorem 14 for the bound.

6.4 No Optimal Semi-Supervised Algorithm

One could imagine a different formulation of the compar-
ison between SL and SSL paradigms. For example, one
might ask naively whether, for given classH, there is a semi-
supervised algorithmA, such that for any supervised algo-
rithm B, and anyε, δ, on any probability distributionP the
sample complexity ofA is no higher than the sample com-
plexity ofB. The answer to the question is easily seen to be
negative, because for anyP there exists a supervised learn-
ing algorithmBP that ignores the labeled examples and sim-
ply outputs hypothesish ∈ H with minimum errorErrP (h)
(or even Bayes optimal classifier forP ). OnP the sample
complexity ofBP is zero, unfortunately, onP ′, sufficiently
different fromP , the sample complexity ofBP is infinite.

One might disregard algorithms such asBP and ask the
same question as above, except that one quantifies over only
the subset of algorithms that onany distribution overX ×
{0, 1} have sample complexity that is polynomial in1/ε and
ln(1/δ). Such algorithms are often called PAC (Probably
Approximately Correct). The following theorem demonstrates
that such restriction does not help and the answer to the ques-
tion is still negative.

Theorem 16. LetH = {1(−∞, t] : t ∈ R} be the class of
thresholds over the real line. For any absolutely continuous
distributionD (with respect to Lebesgue measure onR), any
semi-supervised algorithmA, any ε > 0 and δ ∈ (0, 1

2 ),
there exists a distributionP ∈ Ext(D) and a supervised
PAC learning algorithmB such that

m(A,H,P, ε, δ) > m(B,H,P, ε, δ) .

Proof. Fix anyA, D andm. Let L be the algorithm that
chooses the left most empirical error minimizer, that is, on a
sampleS, L outputs1(−∞, `], where

` = inf
{
t ∈ R : ErrS(1(−∞, t]) = min

h′∈H
ErrS(h′)

}
.

For anyh ∈ H we also define algorithmLh, which outputsh
if ErrS(h) = 0, and otherwiseLh outputsL(S). First, note
thatL ≡ L1∅. Second, for anyh, Lh outputs a hypothesis
that minimizes empirical error, and sinceVC(H) = 1, it is a
PAC algorithm. Third, clearly the sample complexity ofLh
onDh is zero (regardless ofε andδ).

Theorem 9 shows that there existsh ∈ H such that the
sample complexity ofA onDh is positive, in fact, it is in-
creasing asε andδ approach zero. Thus there exists super-
vised algorithmB = Lh with lower sample complexity than
A.

7 Conclusion

We provide a formal analysis of the sample complexity of
semi-supervised learning compared to that of learning from
labeled data only. We focus on bounds that do not depend on
assumptions concerning the relationship between the labels
and unlabeled data distribution.

Our main conclusion is that in such a setting semi-supervised
learning has limited advantage. Formally, we show that for
basic concept classes over the real line this advantage is never
more than a constant factor of the sample size. We believe
that this phenomena applies much more widely.

We also briefly address the error bounds under common
assumptions on the relationship between unlabeled data and
the labels. We demonstrate that even when such assumptions
apply common SSL paradigms may be inferior to standard
empirical risk minimization. We conclude that prior beliefs
like the cluster assumption should be formulated more pre-
cisely to reflect the known practical merits of SSL.

The paper calls attention to and formalizes some natu-
ral fundamental questions about the theory-practice gap con-
cerning semi-supervised learning. The major open question
we raise is whether any semi-supervised learning algorithm
can achieve sample size guarantees that are unattainable with-
out access to unlabeled data. This is formalized in Conjec-
tures 4 and 3.
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