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Abstract

We introduce a novel technique, which
we call online-to-confidence-set conversion.
The technique allows us to construct high-
probability confidence sets for linear pre-
diction with correlated inputs given the
predictions of any algorithm (e.g., online
LASSO, exponentiated gradient algorithm,
online least-squares, p-norm algorithm) tar-
geting online learning with linear predictors
and the quadratic loss. By construction,
the size of the confidence set is directly gov-
erned by the regret of the online learning al-
gorithm. Constructing tight confidence sets
is interesting on its own, but the new tech-
nique is given extra weight by the fact hav-
ing access tight confidence sets underlies a
number of important problems. The advan-
tage of our construction here is that progress
in constructing better algorithms for online
prediction problems directly translates into
tighter confidence sets. In this paper, this is
demonstrated in the case of linear stochas-
tic bandits. In particular, we introduce the
sparse variant of linear stochastic bandits
and show that a recent online algorithm to-
gether with our online-to-confidence-set con-
version allows one to derive algorithms that
can exploit if the reward is a function of a
sparse linear combination of the components
of the chosen action.
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W&CP XX. Copyright 2012 by the authors.

1 Introduction

A large portion of machine learning is devoted to con-
structing point estimates of some unknown quantity
given some “noisy data”. A main issue with point es-
timates is that they lack a description of the remain-
ing uncertainty about the unknown quantity. Confi-
dence sets, on the other hand, allow one to charac-
terize the remaining uncertainty. Wasserman’s maxim
“never give an estimator without giving a confidence
set” (Wasserman, 1998, p. vii.) clearly illustrates the
importance of confidence sets. However useful confi-
dence sets are on their own, in a number of sequen-
tial tasks they are in fact indispensable. Examples
include stopping problems (Mnih et al., 2008), ban-
dit problems (Auer et al., 2002a, Auer, 2002, Dani
et al., 2008), variants of the pick-the-winner problem
(Even-Dar et al., 2002, Mannor and Tsitsiklis, 2004,
Mnih et al., 2008), reinforcement learning (Bartlett
and Tewari, 2009, Jaksch et al., 2010), or active learn-
ing (Even-Dar et al., 2002).

In this paper we investigate the problem of construct-
ing confidence sets for the vector of coefficients of a
linear function observed at a finite number of points
under martingale noise (the exact conditions will be
stated in the next section). We take a very general
approach to the construction of the confidence sets. In
particular, we propose a new technique which we call
online-to-confidence-set conversion. The basic idea is
that the predictions of any online algorithm that pre-
dicts the responses of the chosen inputs in a sequen-
tial manner can be “converted” to a confidence set.
The only assumption is that the online prediction al-
gorithm comes with an upper bound on its regret1 with
respect to the best linear predictor using the quadratic
prediction loss. The details of this conversion are ex-
plained in Section 2.

One strength of our method is that it allows one to

1This notion of regret, to be defined in the next section,
is different from the regret of the bandit problem!
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use any linear prediction algorithm as the underly-
ing online algorithm, such as (online) least squares
(regularized or constrained) (Lai et al., 1979, Auer
et al., 2002b, Vovk, 2001), online LASSO, the ex-
ponentiated gradient (EG) algorithm2 (Kivinen and
Warmuth, 1997), the p-norm algorithm (Grove et al.,
1997, Gentile and Littlestone, 1999), the SeqSEW al-
gorithm (Gerchinovitz, 2011), etc. These algorithm
differ in terms of what solutions they are biased to.
For example, some of these algorithms are biased to-
wards sparse solutions, some of them are biased to-
wards sparse inputs, etc. However, all the algorithms
just mentioned satisfy the assumptions of the conver-
sion, i.e., they work with quadratic prediction loss and
for most of these algorithms a regret bound is known.
Thanks to generality of our solution we can obtain a
confidence set for each of these algorithms and, in fact,
for any algorithm that might be developed in the fu-
ture, too. These allows one to derive confidence sets
which are similarly “‘biased” towards different quali-
ties.

Conversions and reductions between machine learn-
ing tasks were studied by Langford and colleagues;
see Langford (2011). Our online-to-confidence-set con-
version can be compared with the online-to-batch con-
versions (Littlestone, 1989, Cesa-Bianchi et al., 2004,
Dekel and Singer, 2006). However, there are two big
differences between these two. First, online-to-batch
conversions convert the predictions of a low-regret on-
line algorithm into a single prediction with a low risk,
whereas in our online-to-confidence-set conversion we
combine the predictions to construct a confidence set.
Second, in online-to-batch conversions one assumes
that the data (i.e., covariate-response pairs) are gen-
erated in an i.i.d.3 fashion (in fact, the risk is de-
fined with respect to the underlying joint distribution),
while in online-to-confidence-set conversion the covari-
ates can be chosen adversarially and only responses are
stochastic. In summary, we are not aware of previous
results on reductions of the type we consider.

A second major contribution of this paper is the intro-
duction and study of a variant of stochastic linear ban-
dit problems (Dani et al., 2008), which we call sparse
stochastic linear bandits. Sparsity, in recent years, be-
came the line of attack for statistical problems which
were previously thought unsolvable. The assumption
that the underlying statistical model is sparse greatly
decreases the sample size required to learn the model
provided, of course, that the model is indeed sparse.
Several examples of algorithms that take advantage of
sparsity are the Winnow algorithm (Littlestone, 1988),

2EG is a variant of Winnow for linear prediction.
3The abbreviation i.i.d. stands for “independent and

identically distributed”.

the LASSO (Tibshirani, 1996) and algorithms for com-
pressed sensing (Candès, 2006).

With sparsity in mind, we investigate the sparse vari-
ant of the linear stochastic bandit problem. The
“dense” versions of this problem has been studied pre-
viously by Auer (2002), Dani et al. (2008), Abbasi-
Yadkori et al. (2009), Rusmevichientong and Tsitsiklis
(2010), Li et al. (2010). Recall that the linear stochas-
tic bandit problem is a sequential decision problem,
where in each round the learner chooses an action and
he receives a reward, which is an unknown linear func-
tion of the action, corrupted with random zero-mean
noise. The goal of the learner is to maximize his reward
accumulated over the course of multiple rounds. Pre-
cise description of the model is given in Subsection 4.1.
In this paper we focus on the situation when the under-
lying linear function is potentially sparse, i.e., many of
its coefficients are zero, as can be expected to be the
case in applications when the feature space is high-
dimensional but only a few features are relevant (e.g.,
in web advertisement applications).

Sparse linear bandit problem can be viewed as sequen-
tial decision making version of the feature selection
problem. Its potential applications include medical
trials, web advertising, content optimization, and re-
inforcement learning. To the best of our knowledge
this problem is new and we are not aware of any prior
work.

In order to design an algorithm in this learning model
we use the standard optimism-in-the-face-uncertainty
principle. This principle has been used to design algo-
rithms for the linear stochastic bandit problem and re-
lated problems (Auer, 2002, Dani et al., 2008, Li et al.,
2010, Walsh et al., 2009). The basic idea is that the al-
gorithm maintains a confidence set for the vector of the
coefficients of the linear function, and in each round it
chooses an action and a vector from the confidence set
that maximize the predicted reward, i.e., the choice of
the algorithm is optimistic.

2 Online-to-Confidence-Set
Conversion

The confidence set construction problem is as fol-
lows: Consider a stochastic sequence {(Xt, Yt)}∞t=1,
where Xt ∈ Rd are the d-dimensional inputs, Yt =
〈θ∗, Xt〉 + ηt are the real-valued responses, θ∗ ∈ Rd
is an unknown parameter vector and ηt is “random
noise” satisfying E[ ηt |X1:t, η1:t−1] = 0 and some tail-
constraints, to be specified soon (here, X1:t denotes
the sequence X1, X2, . . . , Xt and, similarly, η1:t−1 de-
notes the sequence η1, η2, . . . , ηt−1). The problem is to
construct a confidence set Cn ⊆ Rd for the unknown
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parameter vector θ∗ given data (X1, Y1, . . . , Xn, Yn).
In particular, given n, one is interested in construct-
ing a (measurable) map Cn from (Rd × R)n × (0, δ0)
to the measurable subsets of Rd such that for any
0 < δ < δ0 and data {(Xt, Yt)}nt=1 that satisfies the
above conditions, Cn = Cn(X1, Y1, . . . , Xn, Yn, δ) sat-
isfies Pr[θ∗ ∈ Cn] ≥ 1 − δ. As will be explained,
we shall in fact construct confidence sets that hold
simultaneously: Pr[θ∗ ∈ ∩n≥1Cn] ≥ 1 − δ, which is
much stronger and correspondingly more useful from
the point of view of applications.

The tail-constraint on the noise sequence that was
mentioned is as follows: We assume that {ηt}∞t=1 is
conditionally R-sub-Gaussian for some R ≥ 0 in the
sense that for any t ≥ 1,

∀λ ∈ R E[eληt | X1:t, η1:t−1] ≤ exp

(
λ2R2

2

)
. (1)

The conditional sub-Gaussianity of ηt automatically
implies that E[ ηt |X1:t, η1:t−1] = 0. Furthermore, it
also implies that Var[ ηt |X1:t, η1:t−1] ≤ R2 and thus
we can think of R2 as (a bound on) the variance of the
noise. An example of R-sub-Gaussian random vari-
able ηt is a zero-mean Gaussian random variable with
variance at most R2, or a bounded zero-mean random
variable lying in an interval of length at most 2R.

In this section we show how to convert regret bounds
of an online algorithm for online linear prediction to
confidence sets for θ∗. In online linear prediction we
assume that in round t an online algorithm receives
xt ∈ Rd, predicts ŷt ∈ R, receives yt ∈ R and suffers
a loss `t(ŷt) where `t(y) = (y − yt)2 is the quadratic
prediction loss. In online linear prediction, one makes
no assumptions on the sequence {(xt, yt)}∞t=1, perhaps
except for bounds on the norm of xt and magnitude of
yt. In fact, the sequence {(xt, yt)}∞t=1 can be chosen in
an adversarial fashion.

The task of the online algorithm is to keep its n-step
cumulative loss

∑n
t=1 `t(ŷt) as low as possible. We

compare the loss of the algorithm with the loss of the
strategy that uses a fixed weight vector θ ∈ Rd and
in round t predicts 〈θ, xt〉 – this is why the problem
is called linear prediction. The difference of the losses
is called the regret with respect to θ and formally we
write it as

ρn(θ) =

n∑
t=1

`t(ŷt)−
n∑
t=1

`t(〈θ, xt〉) .

The construction of algorithms with “small” regret
ρn(θ) is an important topic in the online learning liter-
ature. Examples of algorithms designed to achieve this
include variants of the least squares method (projected
or regularized), the exponentiated gradient algorithm,

the p-norm regularized algorithm, online LASSO, Seq-
SEW, etc.

Suppose now that we feed an online algorithm for lin-
ear prediction with a stochastic sequence {(Xt, Yt)}∞t=1

generated according to the model described above. Let
the sequence of predictions produced by the algorithm
{ŷt}∞t=1. The following theorem states that from the
sequence {ŷt}∞t=1 of predictions we can construct high-
probability confidence sets Cn for θ∗. Moreover, as we
will see the volume of the set Cn will be related to
the regret of the algorithm; the smaller the regret of
the algorithm, the smaller the volume of Cn is. The
theorem below states the precise result.

Theorem 1 (Online-to-Confidence-Set Conversion).
Assume that {Ft}∞t=0 is a filtration and for any t ≥ 1,
Xt is an Rd-valued, Ft-measurable random variable
and ηt is a real-valued, Ft+1-measurable random vari-
able that is conditionally R-sub-Gaussian in the sense
that

∀λ ∈ R E[ eληt |Ft] ≤ exp

(
λ2R2

2

)
. (2)

Define Yt = 〈θ∗, Xt〉 + ηt, where θ∗ ∈ Rd is the true
parameter. Suppose that we feed {(Xt, Yt)}∞t=1 into an
online prediction algorithm which, for all t ≥ 0, admits
a regret bound

ρt(θ∗) ≤ Bt, (almost surely)

where {Bt}∞t=0 is some sequence of {Ft}∞t=0-adapted
non-negative random variables. Then, for any δ ∈
(0, 1/4], with probability at least 1 − δ, the true pa-
rameter θ∗ lies in the intersection of the sets

Cn =

{
θ ∈ Rd :

n∑
t=1

(ŷt − 〈θ,Xt〉)2 ≤

1 + 2Bn + 32R2 ln

(
R
√

8 +
√

1 +Bn
δ

)}
,

where n ≥ 0.

The proof of the theorem can be found in Section 3.

Notice that, as expected, the confidence sets Cn in
the theorem can be constructed from observable quan-
tities: the data X1, X2, . . . , Xn, Y1, Y2, . . . , Yn, the
predictions ŷ1, ŷ2, . . . , ŷn of the linear prediction al-
gorithm, the regret bound Bn, the “variance” of the
noise R2 and the confidence parameter δ. Finally, it
is not hard to see that since Cn is a sub-level set of a
non-negative quadratic function in θ, it is an ellipsoid,
possibly, with some of the axes infinitely long.

An important feature of the confidence sets con-
structed in Theorem 1 is that they are based on regret
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bounds Bn which can themselves be data-dependent
bounds on the regret. Although we will not exploit
this in the later sections of the paper, in practice, the
use of such data dependent bounds (which exists for
a large number of the algorithms mentioned) is highly
recommended.

Another important feature of the bound is that the
unknown parameter vector belongs to the intersection
of all the the confidence sets constructed, i.e., the con-
fidence sets hold the true parameter vector uniformly
in time. This property is useful both because it leads
to simpler algorithm designs and also to simpler anal-
ysis. Note that usually this property is achieved by
taking a union bound, where the failure probability δ
at time step n would be divided by a diverging function
of n in the definition of the confidence set. With our
techniques, we were able to avoid this union bound,
which is expected to give better results in practice. In
particular, if the online algorithm is “lucky” in that
its regret Bn does not grow, or grows very slowly, our
confidence set shrink faster than if a union bound was
used to ensure uniformity in time.

It turns out that the fact that confidence sets con-
structed in Theorem 1 can be unbounded, might po-
tentially lead to trouble. To deal with this issue, we
slightly modify the confidence sets: If we know a pri-
ori that ‖θ∗‖2 ≤ E we can add ‖θ‖22 ≤ E2 to the
inequality defining Cn in the theorem. This leads to
the following obvious corollary.

Corollary 2 (Regularized Confidence Sets). Assume
the same as in Theorem 1 and additionally assume
that ‖θ∗‖2 ≤ E. Then, for any δ ∈ (0, 1/4], with prob-
ability at least 1− δ, the true parameter θ∗ lies in the
intersections of the sets

Cn =

{
θ ∈ Rd : ‖θ‖22 +

n∑
t=1

(ŷt − 〈θ,Xt〉)2 ≤

E2 + 1 + 2Bn + 32R2 ln

(
R
√

8 +
√

1 +Bn
δ

)}
,

where n ≥ 0.

Of course, it would be better to take intersection
of the confidence sets from Theorem 1 and the set
{θ : ‖θ‖2 ≤ E} instead, since the resulting con-
fidence set would be smaller than the confidence set
constructed in the corollary. However, the resulting
confidence set would no longer be an ellipsoid and this
might complicate matters later. The confidence set
constructed in the corollary is always a bounded non-
degenerate ellipsoid and this allows a relatively simple
analysis.

3 Proof of Theorem 1

To prove Theorem 1, we will need Corollary 8 from Ap-
pendix A and Propositions 9 and 10 from Appendix B.

Proof of Theorem 1. With probability one,

Bn ≥ ρn(θ∗)

=

n∑
t=1

`t(Ŷt)− `t(〈θ∗, Xt〉)

=

n∑
t=1

(Ŷt − Yt)2 − (〈θ∗, Xt〉 − Yt)2

=

n∑
t=1

(Ŷt − 〈θ∗, Xt〉 − ηt)2 − η2
t

=

n∑
t=1

(Ŷt − 〈θ∗, Xt〉)2 − 2ηt(Ŷt − 〈θ∗, Xt〉) .

Thus, with probability one,

n∑
t=1

(Ŷt−〈θ∗, Xt〉)2 ≤ Bn+2

n∑
t=1

ηt(Ŷt−〈θ∗, Xt〉) . (3)

The sequence {
∑n
t=1 ηt(Ŷt − 〈θ∗, Xt〉)}∞n=0 is a mar-

tingale adapted to {Fn+1}∞n=0. We upper bound its
tail using Corollary 8 with V = 1 (in the corollary,

Zt = Ŷt − 〈θ∗, Xt〉). Note that instead of the self-
normalized inequality we use, we could get a self-
normalized form from Freedman’s inequality by using
a peeling/stratification argument (see, e.g., inequality
(53) in the paper by Audibert et al. (2008)). The price
of doing this is a log log n factor. It does not appear
to be particularly better or easier than what we do.

Corollary 8 gives that with probability at least 1 − δ,
for all n ≥ 0∣∣∣∣∣
n∑
t=1

ηt(Ŷt − 〈θ∗, Xt〉)

∣∣∣∣∣ ≤ R
√√√√2

(
1 +

n∑
t=1

(Ŷt − 〈θ∗, Xt〉)2

)

× ln


√

1 +
∑n
t=1(Ŷt − 〈θ∗, Xt〉)2

δ

 .

Combining with (3), we get

n∑
t=1

(Ŷt − 〈θ∗, Xt〉)2 ≤ Bn

+ 2R

√√√√2

(
1 +

n∑
t=1

(Ŷt − 〈θ∗, Xt〉)2

)

×

√√√√√ln


√

1 +
∑n
t=1(Ŷt − 〈θ∗, Xt〉)2

δ

 . (4)
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From this point on, we just need to “solve” this in-
equality. More precisely, our goal is to isolate a simple
function of θ∗. We proceed as follows. We first add 1
to the both sides of the inequality and introduce the

notation z =
√

1 +
∑n
t=1(Ŷt − 〈θ∗, Xt〉)2, a = Bn + 1

and b = 2R
√

2 ln(z/δ). With this notation, we can
write the last equation equivalently in the form

z2 ≤ a+ bz .

Since a ≥ 0 and b ≥ 0 (since z ≥ 1 and δ ∈ (0, 1/4])
we can apply Proposition 9 and obtain that

z ≤ b+
√
a .

Substituting for b we have

z ≤ R
√

8 ln(z/δ) +
√
a .

Introducing the notation c =
√
a and f = R

√
8 we can

write the last inequality equivalently as

z ≤ c+ f
√

ln(z/δ) .

Therefore, by Proposition 10,

z ≤ c+ f

√
2 ln

(
f + c

δ

)
.

Substituting for c, a and f we get

z ≤
√
Bn + 1 + 4R

√√√√ln

(
R
√

8 +
√

1 +Bn
δ

)
.

Squaring both sides and using the inequality (u+v)2 ≤
2u2 + 2v2 valid for any u, v ∈ R, we have

z2 ≤ 2Bn + 2 + 32R2 ln

(
R
√

8 +
√

1 +Bn
δ

)
.

Substituting for z2 and subtracting 1 from both sides
we get

n∑
t=1

(Ŷt − 〈θ∗, Xt〉)2 ≤ 1 + 2Bn

+ 32R2 ln

(
R
√

8 +
√

1 +Bn
δ

)
.

This means that θ∗ ∈ Cn and the proof is finished.

4 Application to Sparse Stochastic
Linear Bandits

In this section we first define the stochastic linear ban-
dits and their sparse variant. Next, we review how the
so-called “optimism in the face of uncertainty” princi-
ple can be applied to this problem and how the con-
struction of the previous section gives rise to novel
results.

4.1 Stochastic Linear Bandits

In each round t, the learner is given a decision set
Dt ⊆ Rd from which he has to choose a vector Xt,
which, keeping synchrony with the literature, we shall
call an action. Subsequently, he observes the reward
Yt = 〈Xt, θ∗〉 + ηt, where θ∗ ∈ Rd is an unknown pa-
rameter. Here the “noise sequence”, {ηt}∞t=1, is a se-
quence of conditionally R-sub-Gaussian random vari-
ables, as in the previous section (cf. (1)). In particular,
E[ ηt |X1:t, η1:t−1] = 0 must hold for t = 1, 2, . . ..

The goal of the learner is to maximize his total ex-
pected reward E[

∑n
t=1 〈Xt, θ∗〉], accumulated over the

course of n rounds. Clearly, with the knowledge of
θ∗, the optimal strategy in round t is to choose the
point x∗t = argmaxx∈Dt

〈x, θ∗〉, i.e., the action that
maximizes the expected reward for that round. This
strategy would accumulate a total expected reward
E[
∑n
t=1 〈x∗t , θ∗〉]. It is natural to evaluate the learner

relative to this optimal strategy. The difference of the
learner’s total expected reward and the total expected
reward of the optimal strategy is called the expected
total regret. The expected total regret is the expected
value of the algorithm’s pseudo-regret (Audibert et al.,
2009),

Rn
def
=

(
n∑
t=1

〈x∗t , θ∗〉

)
−

(
n∑
t=1

〈Xt, θ∗〉

)

=

n∑
t=1

〈x∗t −Xt, θ∗〉 .

In what follows, for simplicity, we use the word regret
instead of the more precise pseudo-regret in connection
to Rn. Note that Rm has nothing, whatsoever, to do
with ρn(θ) of the previous section, except for sharing
the same name.

The goal of the algorithm is to keep the regret Rn
as low as possible. As a bare minimum, we require
that the algorithm is Hannan consistent, i.e., Rn/n→
0 with probability one. Our goal will be to design
algorithms for which the regret is low if θ∗ is sparse,
that is, if most coordinates of θ∗ are zero. This is
what we call the sparse variant of the stochastic linear
bandit problem.

In order to obtain meaningful upper bounds on the
regret, we will place assumptions on {Dt}∞t=1, θ∗. We
will assume that a prior bounds are known on the norm
of θ∗ and the norm of actions in {Dt}∞t=1.

4.2 Optimism in the Face of Uncertainty

A natural and successful way to design an algo-
rithm is the optimism in the face of uncertainty
principle (OFU). The basic idea is that the algo-
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for t := 1, 2, . . . do
(Xt, θ̃t) = argmax(x,θ)∈Dt×Ct−1

〈x, θ〉
Play Xt and observe reward Yt
Update Ct

end for

Figure 1: OFUL algorithm

rithm maintains a confidence set Ct−1 ⊆ Rd for
the parameter θ∗. It is required that Ct−1 can be
calculated from (X1, Y1, X2, Y2, . . . , Xt−1, Yt−1) and
(D1, . . . , Dt−1) and “with high probability” θ∗ lies in
Ct−1. The algorithm chooses an optimistic estimate

θ̃t = argmaxθ∈Ct−1
(maxx∈Dt 〈x, θ〉) and then chooses

action Xt = argmaxx∈Dt

〈
x, θ̃t

〉
which maximizes the

reward according to the estimate θ̃t. Equivalently, and
more compactly, the algorithm chooses the pair

(Xt, θ̃t) = argmax
(x,θ)∈Dt×Ct−1

〈x, θ〉 ,

which jointly maximizes the reward. We call the re-
sulting algorithm the OFUL algorithm, for “optimism
in the face of uncertainty linear bandit algorithm”.
The pseudo-code of the algorithm is given in Figure 1.

The crux of the problem is the construction of the
confidence sets Ct. One method is to use our online-to-
confidence-set construction. This is what we explore
in the next section.

4.3 Regret Analysis of OFUL

Consider the OFUL algorithm from Figure 1 that
uses the confidence set Cn constructed in Corollary 2
from an online linear prediction algorithm. To keep
the analysis general, we leave the underlying linear
prediction algorithm unspecified and we only assume
that for all n ≥ 0 it satisfies the regret bound ρn(θ∗) ≤
Bn.

We introduce a shorthand notation for the right-hand
side of the inequality in Corollary 2 specifying the con-
fidence set Cn:

βn(δ) = E2 +1+2Bn+32R2 ln

(
R
√

8 +
√

1 +Bn
δ

)
.

The next two theorems upper bound the regret Rn of
the resulting OFUL algorithm. The proofs, which
are largely based on the work of Dani et al. (2008)
and are included for completeness, can be found in
Appendix C.

Theorem 3 (Regret of OFUL). Assume that ‖θ∗‖2 ≤
E and assume that for all t ≥ 1 and for all x ∈ Dt,

‖x‖2 ≤ X and |〈x, θ∗〉| ≤ G. Then, for any δ ∈
(0, 1/4], with probability at least 1− δ, for any n ≥ 0,
the regret of the OFUL algorithm is bounded as

Rn ≤ 2 max{1, G}

√
2nd ln

(
1 +

nX2

d

)
max

0≤t<n
βt(δ) .

Similar to Dani et al. (2008), we can also have a
problem dependent logarithmic regret bound when the
“gap” is positive. Dani et al. (2008) defines the gap as
the difference in the rewards of the best and the sec-
ond best actions in the extremal points of the action
set.

Theorem 4 (Problem Dependent Regret Bound of
OFUL). Assume the same as in Theorem 3 and ad-
ditionally assume that the gap ∆ is positive, then, for
any δ ∈ (0, 1/4], with probability at least 1− δ, for any
n ≥ 0, the regret of the OFUL algorithm is bounded
as

Rn ≤
8d

∆
ln

(
1 +

nX2

d

)
max

0≤t<n
βt(δ) max{1, G2} .

To simplify things a bit, here and in the rest of the pa-
per we view E,X,G,R as constants. Then the prob-
lem dependent and independent regrets of OFUL are
Õ(dBn lnn/∆) and Õ(

√
ndBn), respectively. 4 Conse-

quently, smaller regret bound for the online prediction
algorithm translates (via Theorem 3) into a smaller
regret bound regret of OFUL.

As the theorems show the regret of OFUL depends
on the regret of the online learning algorithm that we
use as a sub-routine to construct the confidence set. In
particular, in order to achieve O(polylog(n)

√
n) uni-

form regret for OFUL, one needs an online learning
algorithm with O(polylog(n)) regret bound.

Unfortunately, for some of the popular algorithms,
such as the exponentiated gradient, the p-norm algo-
rithms, and also for online LASSO the best known
regret bounds are of the order O(

√
n); see (Kivinen

and Warmuth, 1997) and (Cesa-Bianchi and Lugosi,
2006, Chapter 11). The main reason for the mediocre
O(
√
n) regret bounds seems to be that these algorithm

use only gradient information about the quadratic pre-
diction loss function `t(〈·, Xt〉).

Better bounds are available for, e.g., the online regu-
larized least squares algorithm (i.e., ridge regression)
that also uses Hessian information:

Theorem 5 (Regret of ridge regression (Cesa-Bianchi
and Lugosi, 2006)). Let {θt}n+1

t=1 be the sequence gen-
erated by the Follow the Regularized Leader algorithm

4Õ(·) hides polylogarithmic factors in n, d,X, ‖θ∗‖0 and
‖θ∗‖1.
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on the quadratic loss with the quadratic regularizer
R(θ) = ‖θ‖22/2. The FTRL algorithm with learning
rate η > 0 satisfies the following bound that holds for
all n ≥ 1 and all (x1, y1), . . . , (xn, yn)

n∑
t=1

`t(ŷt) ≤ inf
θ∈Rd

{
n∑
t=1

`t(〈θ, xt〉) +
‖θ‖22
2η

}

+
Lnd

2
ln

(
1 +

ηX2n

d

)
,

where Ln = max1≤t≤n `t(〈θt, xt〉).

By combining Theorems 3 and 5, we get that the re-
gret of OFUL with ridge regression is Õ(d

√
n). Note

that this latter bound essentially matches the bound
obtained by Dani et al. (2008).

In online linear prediction one approach to exploit
sparsity (when present) is to use an online `1-
regularized least-squares method. To be able to
demonstrate that sparsity can indeed be exploited in
stochastic linear bandits, one then needs results sim-
ilar to Theorem 5 for this algorithm, under sparsity
assumption. This was an open problem until recently,
when Gerchinovitz (2011) proposed the SeqSEW al-
gorithm, which is based on the sparse exponential
weighting algorithm introduced by Dalalyan and Tsy-
bakov (2007), and proved the following logarithmic re-
gret bound for it.

Theorem 6 (Regret of SeqSEW (Gerchinovitz,
2011)). The SeqSEW algorithm introduced
by Gerchinovitz (2011) satisfies the following bound
that holds for all n ≥ 1 and all (x1, y1), . . . , (xn, yn)

n∑
t=1

`t(ŷt) ≤ inf
θ∈Rd

{
n∑
t=1

`t(〈θ, xt〉) +Hn(θ)

}
+ (1 + 38 max

1≤t≤n
y2
t )An,

where

Hn(θ) = 256

(
max

1≤t≤n
y2
t

)
‖θ‖0 ln

e+

√√√√ n∑
t=1

‖xt‖2


+ 64

(
max

1≤t≤n
y2
t

)
An‖θ‖0 ln

(
1 +
‖θ‖1
‖θ‖0

)
(5)

and

An = 2 + log2 ln

e+

√√√√ n∑
t=1

‖xt‖2

 .

Theorem 6 motivates the OFUL algorithm presented
in Figure 2 that uses the SeqSEW algorithm of
Gerchinovitz (2011) as an online learning sub-routine.
By combining Theorems 3 and 6, we get that the regret

for t := 1, 2, . . . do
Construct Ct−1 from Corollary 2

(Xt, θ̃t) = argmax(x,θ)∈Dt×Ct−1
〈x, θ〉

Predict Ŷt from SeqSEW
Play Xt and observe reward Yt
Update Ct

end for

Figure 2: OFUL with SeqSEW

of the OFUL with SeqSEW algorithm is bounded,
with probability at least 1− δ, as

Rn ≤ 2 max{1, G}

√
2nd log

(
1 +

nX2

d

)
max

0≤t<n
βt(δ) ,

(6)
where

βt(δ) = E2 + 1 + 2Bn(θ∗)

+ 32R2 ln

(
R
√

8 +
√

1 +Bn(θ∗)

δ

)

Bn(θ∗) = Hn(θ∗)+(1+38 max1≤t≤n y
2
t )An andHn, An

are defined as in Theorem 6.

From the sub-Gaussianity assumption (1), we have
that with probability 1− δ, for any time t ≤ n,

|yt| ≤ G+R
√

2 log(n/δ).

Thus the regret (6) can be compactly written as

Õ(
√
d‖θ∗‖0n). Compared to the Õ(d

√
n) bound

of Dani et al. (2008), the regret bound of OFUL
with SeqSEW is lower when ‖θ∗‖0 < d, which is the
case for sparse vectors. Similarly, by application of
Theorem 6 to the problem dependent regret bound of
OFUL in Theorem 4, the Õ(d2 log3 n/∆) problem de-
pendent bound of Dani et al. (2008) can be improved

to Õ(d‖θ∗‖0 log2 n/∆).

Notice that the regret bound of OFUL with SeqSEW
still depends on d. A slight modification of the usual
lower bound for d-armed bandit (Cesa-Bianchi and Lu-
gosi, 2006, Chapter 6) will give us that even if sparsity
is p = 1 then the regret must be O(

√
dn). More specif-

ically, we cook up d arms, so that a random arm has
a small reward and all the others have reward 0. This
is equivalent to having a sparse θ∗ with one non-zero
component. Antos and Szepesvári (2009) provide an-
other lower bound of the same order when the action
set is the unit ball. This shows that the

√
d term in the

regret is unavoidable, which is in contrast to sparsity
regret bounds for the full information online learning
problems.
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5 Compressed Sensing and Bandits

In their parallel submission Carpentier and Munos
(2012) employ compressed sensing techniques to es-
timate the support of θ∗ and achieve sparsity regret
bounds of order of Õ(p

√
n). Their setting is different

than ours in two aspects. First, they consider the case
when the action set is the unit ball, which makes it
possible to satisfy the isotropic conditions that are re-
quired for compressed sensing. In contrast, our results
hold for any bounded action set. The second differ-
ence, that also explains why they can avoid the

√
d in

their upper bound, is that they assume noise “in the
parameters” in the sense that their loss function takes
the form of `t = 〈xt, θ∗〉+ 〈xt, ηt〉.

6 Conclusion

The main new technical contribution of the paper
is a novel regret-to-confidence-set construction, which
works for linear prediction problems with martingale
noise. We have also introduced stochastic sparse lin-
ear bandits, a natural framework for bandit linear op-
timization when the number of features is large, but
many of them might be irrelevant. With our reduc-
tion, we obtained the first results for this problem:
We showed that the combination of a recent algorithm
for online linear prediction and our construction gives
rise to an algorithm that is able to exploit the sparsity
of the unknown parameter vector. In particular, for
sparse parameter vectors, we can demonstrate a bet-
ter bound that was possible with previous techniques.
It is important to emphasize that the main advantage
of our approach, being based on the idea of reductions
(Langford, 2011), is that a better regret bound for on-
line linear prediction is automatically transformed into
a better regret bound for linear bandits.
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Szepesvári. Forced-exploration based algorithms for
playing in stochastic linear bandits. In COLT Work-
shop on On-line Learning with Limited Feedback,
2009.

Yasin Abbasi-Yadkori, Dávid Pál, and Csaba
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A Self-normalized Martingale Tail Inequality

The self-normalized martingale tail inequality that we present here is the scalar-valued version of the more general
vector-valued results obtained by Abbasi-Yadkori et al. (2011b,a). We include the proof for completeness.

Theorem 7 (Self-normalized bound for martingales). Let {Ft}∞t=1 be a filtration. Let τ be a stopping time w.r.t.
to the filtration {Ft+1}∞t=1 i.e. the event {τ ≤ t} belongs to Ft+1. Let {Zt}∞t=1 be a sequence of real-valued
variables such that Zt is Ft-measurable. Let {ηt}∞t=1 be a sequence of real-valued random variables such that ηt
is Ft+1-measurable and is conditionally R-sub-Gaussian. Let V > 0 be deterministic. Then, for any δ > 0, with
probability at least 1− δ,

(
∑τ
t=1 ηtZt)

2

V +
∑τ
t=1 Z

2
t

≤ 2R2 ln

(√
V +

∑τ
t=1 Z

2
t

δ
√
V

)
.

Proof. Pick λ ∈ R and let

Dλ
t = exp

(
ηtλZt
R
− 1

2
λ2Z2

t

)
,

St =

t∑
s=1

ηsλZs ,

Mλ
t = exp

(
λSt
R
− 1

2
λ2

t∑
s=1

Z2
t

)
.

We claim that {Mλ
t }∞t=1 is an {Ft+1}∞t=1-adapted supermartingale. That Mλ

t ∈ Ft+1 for t = 1, 2, . . . is clear from
the definitions. By sub-Gaussianity, E[Dλ

t | Ft] ≤ 1. Further,

E[Mλ
t |Ft] = E[Mλ

t−1D
λ
t | Ft]

= Mλ
t−1 E[Dλ

t | Ft] ≤Mλ
t−1 ,

showing that {Mt}∞t=1 is indeed a supermartingale.

Next we show that Mλ
τ is always well-defined and E[Mλ

τ ] ≤ 1. First define M̃ = Mλ
τ and note that M̃(ω) =

Mλ
τ(ω)(ω). Thus, when τ(ω) =∞, we need to argue about Mλ

∞(ω). By the convergence theorem for nonnegative

supermartingales, limt→∞Mλ
t (ω) is well-defined, which means Mλ

τ is well-defined, independently of whether
τ <∞ holds or not. Now let Qλt = Mλ

min{τ,t} be a stopped version of Mλ
t . We proceed by using Fatou’s Lemma

to show that E[Mλ
τ ] = E[lim inft→∞Qλt ] ≤ lim inft→∞E[Qλt ] ≤ 1.

Let F∞ be the σ-algebra generated by {Ft}∞t=1 i.e. the tail σ-algebra. Let Λ be a zero-mean Gaussian random
variable with variance 1/V independent of F∞. Define Mt = E[MΛ

t | F∞]. Clearly, we still have E[Mτ ] =
E[MΛ

τ ] = E[E[MΛ
τ ] | Λ] ≤ E[1 | Λ] ≤ 1.

Let us calculate Mt. We will need the density λ which is f(λ) = 1√
2π/V

e−V λ
2/2. Now, it is easy to write Mt

explicitly

Mt = E[MΛ
t | F∞]

=

∫ ∞
−∞

Mλ
t f(λ) dλ

=

√
V

2π

∫ ∞
∞

exp

(
λSt
R
− λ2

2

t∑
s=1

Z2
t

)
e−V λ

2/2 dλ

= exp

(
S2
t

2R2(V +
∑t
s=1 Z

2
t )

)√
V

V +
∑t
s=1 Z

2
t

,

where we have used that
∫∞
−∞ exp(aλ− bλ2) = exp(a2/(4b))

√
π/b.
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To finish the proof, we use Markov’s inequality and the fact that E[Mτ ] ≤ 1:

Pr

[
(
∑τ
t=1 ηtZt)

2

V +
∑τ
t=1 Z

2
t

≥ 2R2 ln

(√
V +

∑
t=1 Z

2
t

δ
√
V

)]

= Pr

[
S2
τ

2R2(V +
∑τ
t=1 Z

2
t )
≥ ln

(√
V +

∑
t=1 Z

2
t

δ
√
V

)]

= Pr

[
exp

(
S2
τ

2R2(V +
∑τ
t=1 Z

2
t )

)
≥
√
V +

∑
t=1 Z

2
t

δ
√
V

]

= Pr

[
Mτ ≥

1

δ

]
≤ δ .

The theorem can be “bootstrapped” to a “stronger” statement (or at least one, that looks stronger at the first
sight) that holds uniformly for all time steps t as opposed to only a particular (stopping) time τ . The idea of
the proof goes back at least to Freedman (1975).

Corollary 8 (Uniform Bound). Under the same assumptions as the previous theorem, for any δ > 0, with
probability at least 1− δ, for all n ≥ 0,∣∣∣∣∣

n∑
t=1

ηtZt

∣∣∣∣∣ ≤ R
√√√√2

(
V +

n∑
t=1

Z2
t

)
ln

(√
V +

∑n
t=1 Z

2
t

δ
√
V

)
.

Proof. Define the “bad” event

Bt(δ) =

{
ω ∈ Ω :

(∑t
s=1 ηsZs

)2

V +
∑t
s=1 Z

2
s

> 2R2 ln


√
V +

∑t
s=1 Z

2
s

δ
√
V

} .

We are interested in bounding the probability that
⋃
t≥0Bt(δ) happens. Define τ(ω) = min{t ≥ 0 : ω ∈ Bt(δ)},

with the convention that min ∅ =∞. Then, τ is a stopping time. Further,⋃
t≥0

Bt(δ) = {ω : τ(ω) <∞}.

Thus, by Theorem 7 it holds that

Pr

⋃
t≥0

Bt(δ)

 = Pr [τ <∞]

= Pr

[
(
∑τ
t=1 ηtZt)

2

V +
∑τ
t=1 Z

2
t

> 2R2 ln

(√
V +

∑
t=1 Z

2
t

δ
√
V

)
and τ <∞

]

= Pr

[
(
∑τ
t=1 ηtZt)

2

V +
∑τ
t=1 Z

2
t

> 2R2 ln

(√
V +

∑
t=1 Z

2
t

δ
√
V

)]
≤ δ .

B Some Useful Tricks

Proposition 9 (Square-Root Trick). Let a, b ≥ 0. If z2 ≤ a+ bz then z ≤ b+
√
a.
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Proof of the Proposition 9. Let q(x) = x2− bx−a. The condition z2 ≤ a+ bz can be expressed as q(z) ≤ 0. The
quadratic polynomial q(x) has two roots

x1,2 =
b±
√
b2 + 4a

2
.

The condition q(z) ≤ 0 implies that z ≤ max{x1, x2}. Therefore,

z ≤ max{x1, x2} =
b+
√
b2 + 4a

2
≤ b+

√
a ,

where we have used that
√
u+ v ≤

√
u+
√
v holds for any u, v ≥ 0.

Proposition 10 (Logarithmic Trick). Let c ≥ 1, f > 0, δ ∈ (0, 1/4]. If z ≥ 1 and z ≤ c + f
√

ln(z/δ) then

z ≤ c+ f

√
2 ln

(
c+f
δ

)
.

Proof of the Proposition 10. Let g(x) = x − c − f
√

ln(x/δ) for any x ≥ 1. The condition z ≤ c + f
√

ln(z/δ)
can be expressed as g(z) ≤ 0. For large enough x, the function g(x) is increasing. This is easy to see, since
g′(x) = 1 − f

2x
√

ln(x/δ)
. Namely, it is not hard see g(x) is increasing for x ≥ max{1, f/2} since for any such x,

g′(x) is positive.

Clearly, c+ f

√
2 ln

(
c+f
δ

)
≥ max{1, f/2} since c ≥ 1 and δ ∈ (0, 1/4]. Therefore, it suffices to show that

g

(
c+ f

√
2 ln

(
c+ f

δ

))
≥ 0 .

This is verified by the following calculation

g

(
c+ f

√
2 ln

(
c+ f

δ

))
= c+ f

√
2 ln

(
c+ f

δ

)
− c− f

√√√√ln

(
c+ f

√
2 ln ((c+ f)/δ)

δ

)

= f

√
2 ln

(
c+ f

δ

)
− f

√√√√ln

(
c+ f

√
2 ln ((c+ f)/δ)

δ

)

= f

√
ln

(
c+ f

δ

)2

− f

√√√√ln

(
c+ f

√
2 ln ((c+ f)/δ)

δ

)

≥ f

√
ln

(
c+ f

δ

)2

− f

√√√√ln

(
(c+ f)

√
2 ln ((c+ f)/δ)

δ

)

= f
√

ln (A2)− f
√

ln
(
A
√

2 lnA
)

≥ 0,

where have defined A = (c+ f)/δ and the last inequality follows from that A2 ≥ A
√

2 lnA for any A > 0.

C Proof of Theorem 3

In this section we will need the following notation. For a given positive definite matrix A ∈ Rd×d we denote
by 〈x, y〉A = x>Ay the inner product between two vectors x, y ∈ Rd induced by A. We denote by ‖x‖A =√
〈x, x〉A =

√
x>Ax the corresponding norm.

The following lemma is a from Dani et al. (2008). We reproduce the proof for completeness.
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Lemma 11 (Elliptical Potential). Let x1, x2, . . . , xn ∈ Rd and let Vt = I +
∑t
s=1 x

>
s xs for t = 0, 1, 2, . . . , n.

Then it holds that
n∑
t=1

min
{

1, ‖xt‖2V −1
t−1

}
≤ 2 ln(det(Vn)) .

Furthermore, if ‖xt‖2 ≤ X for all t = 1, 2, . . . , n then

ln(det(Vn)) ≤ d ln

(
1 +

nX2

d

)
.

Proof of Lemma 11 . We use the inequality x ≤ 2 ln(1 + x) valid for all x ∈ [0, 1]:

n∑
t=1

min
{

1, ‖xt‖2V −1
t−1

}
≤

n∑
t=1

2 ln
(

1 + ‖xt‖2V −1
t−1

)
= 2 ln

(
n∏
t=1

(
1 + ‖xt‖2V −1

t−1

))
.

We now show that det(Vn) =
∏n
t=1(1 + ‖xt‖2V −1

t−1

):

det(Vn) = det(Vn−1 + xnx
>
n )

= det
(
Vn−1(I + (V

−1/2
n−1 xn)(V

−1/2
n−1 xn)>

)
= det (Vn−1) det

(
I + (V

−1/2
n−1 xn)(V −1/2

n xn)>
)

= det (Vn−1) ·
(

1 + ‖xn‖2V −1
n−1

)
= · · ·

=

n∏
t=1

(1 + ‖xt‖2V −1
t−1

) . (since V0 = I)

In the above calculation we have used that det(I+ zz>) = 1 +‖z‖22 since all but one eigenvalue of I+ zz> equals
to 1 and the remaining eigenvalue is 1 + ‖z‖22 with associated eigenvector z.

To prove the second part, consider the eigenvalues α1, α2, . . . , αd of Vn. Since Vn is positive definite, the eigen-
values are positive. Recall that det(Vn) =

∏d
i=1 αi. The bound on ‖xt‖ ≤ X implies a bound on the trace of

Vn:

TraceVn = Trace(I) +

n∑
t=1

Trace(xtx
>
t ) = d+

n∑
t=1

‖xt‖22 ≤ d+ nX2 .

Recalling that Trace(Vn) =
∑d
i=1 αi we can apply the AM-GM inequality:

d
√
α1α2 · · ·αd ≤

α1 + α2 + · · ·+ αd
d

=
Trace(Vn)

d
,

from which the second inequality follows by taking logarithm and multiplying by d.

Proof of Theorem 3. Consider the event A when θ∗ ∈
⋂∞
t=0 Ct. By Corollary 2, the event A occurs with proba-

bility at least 1− δ.

The set Ct−1 is an ellipsoid underlying the covariance matrix Vt−1 = I +
∑t−1
s=1X

>
s Xs and center

θ̂t = argmin
θ∈Rd

(
‖θ‖22 +

t−1∑
s=1

(Ŷs − 〈θ,Xs〉)2

)
.

The ellipsoid Ct−1 is non-empty since θ∗ lies in it (on the event A). Therefore θ̂t ∈ Ct−1. We can thus express
the ellipsoid as

Ct−1 =

{
θ ∈ Rd : (θ − θ̂t)>Vt−1(θ − θ̂t) + ‖θ̂t‖22 +

t−1∑
s=1

(
Ŷs −

〈
θ̂t, Xs

〉)2

≤ βt−1(δ)

}
.
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The ellipsoid is contained in a larger ellipsoid

Ct−1 ⊆
{
θ ∈ Rd : (θ − θ̂t)>Vt−1(θ − θ̂t) ≤ βt−1(δ)

}
=
{
θ ∈ Rd : ‖θ − θ̂t‖Vt−1

≤
√
βt−1(δ)

}
.

First, we bound the instantaneous regret using that (Xt, θ̃t) = argmax(x,θ)∈Dt×Ct−1
〈x, θ〉:

〈x∗ −Xt, θ∗〉 = 〈x∗, θ∗〉 − 〈Xt, θ∗〉

≤
〈
Xt, θ̃t

〉
− 〈Xt, θ∗〉

=
〈
Xt, θ̃t − θ∗

〉
=
〈
Xt, θ̃t − θ̂t

〉
−
〈
Xt, θ̂t − θ∗

〉
≤
∣∣∣〈Xt, θ̃t − θ̂t

〉∣∣∣+
∣∣∣〈Xt, θ̂t − θ∗

〉∣∣∣
≤ ‖Xt‖V −1

t−1

∥∥∥θ̃t − θ̂t∥∥∥
Vt−1

+ ‖Xt‖V −1
t−1

∥∥∥θ̂t − θ∗∥∥∥
Vt−1

(Cauchy-Schwarz)

≤ 2
√
βt−1(δ) · ‖Xt‖V −1

t−1
. (because θ̃t, θ∗ ∈ Ct−1)

Since we assume that |〈x, θ∗〉| ≤ G for any x ∈ Dt and any t = 1, 2, . . . , n, we can upper bound 〈x∗ −Xt, θ∗〉 ≤
2 min{G,

√
βt−1(δ) · ‖Xt‖V −1

t−1
}. Summing over all t we upper bound regret

Rn =

n∑
t=1

〈x∗ −Xt, θ∗〉

≤ 2

n∑
t=1

min
{
G,
√
βt−1(δ) · ‖Xt‖V −1

t−1

}
≤ 2

n∑
t=1

√
βt−1(δ) ·min

{
G, ‖Xt‖V −1

t−1

}
(since βt−1(δ) ≥ 1)

≤ 2

(
max

0≤t<n

√
βt(δ)

) n∑
t=1

min
{
G, ‖Xt‖V −1

t−1

}
≤ 2

(
max

0≤t<n

√
βt(δ)

)
max{1, G}

n∑
t=1

min
{

1, ‖Xt‖V −1
t−1

}

≤ 2

(
max

0≤t<n

√
βt(δ)

)
max{1, G} ×

√√√√n

n∑
t=1

min

{
1, ‖Xt‖2V −1

t−1

}
(Cauchy-Schwarz)

≤ 2 max{1, G}

√
2nd log

(
1 +

nX2

d

)
max

0≤t<n
βt(δ) ,

where the last inequality follows from Lemma 11.

Proof of Theorem 4. Summing over all t we upper bound regret

Rn =

n∑
t=1

〈x∗ −Xt, θ∗〉 ≤
1

∆

n∑
t=1

〈x∗ −Xt, θ∗〉2 ,

where the last inequality follows from the fact that either 〈x∗ −Xt, θ∗〉 = 0 or 〈x∗ −Xt, θ∗〉 > ∆. Then we take
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similar steps as in the proof of Theorem 3 to obtain

Rn ≤
1

∆

n∑
t=1

〈x∗ −Xt, θ∗〉2

≤ 4

∆

(
max

0≤t<n
βt(δ)

)
max{1, G2}

n∑
t=1

min
{

1, ‖Xt‖2V −1
t−1

}
≤ 8d

∆

(
max

0≤t<n
βt(δ)

)
max{1, G2} log

(
1 +

nX2

d

)
,

finishing the proof of the problem dependent bound.


