Online-to-Confidence-Set Conversions and Application to Sparse Stochastic Bandits

Yasin Abbasi-Yadkori Dávid Pál Csaba Szepesvári

Google

AISTATS 2012, La Palma, Canary Islands April 22, 2012 Confidence sets for linear model:

$$Y = \theta_*^T X +$$
noise

- Linear bandit problem with side information
- Sparse θ_*

Linear Model

$$Y_t = \theta_*^T X_t + \eta_t \qquad t = 1, 2, \dots$$

- η_t is zero-mean, *R*-sub-Gaussian
- We observe $(X_1, Y_1), (X_2, Y_2), ...$
- $X_t \in \mathbb{R}^d$ and can depend on past observations

Goal: Estimate θ_* and construct a confidence set for it.

Confidence Set

Given $\delta \in (0, 1)$, construct

$$C_n := C_n(X_1, Y_1, \ldots, X_n, Y_n, \delta) \subseteq \mathbb{R}^d$$

such that

$$\Pr[\theta_* \in C_n] \geq \delta$$

Previous Construction: Least Squares

Least squares solution

$$\mathbf{X} = \begin{pmatrix} X_1^T \\ \vdots \\ X_n^T \end{pmatrix} \qquad \mathbf{Y} = \begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix} \qquad \boldsymbol{\theta}_{\mathsf{LS}} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{Y}$$

• Confidence set is an ellipsoid centered at θ_{LS}

$$C_n = \left\{ \boldsymbol{\theta} \in \mathbb{R}^d : (\boldsymbol{\theta} - \boldsymbol{\theta}_{\mathsf{LS}})^{\mathsf{T}} (\mathbf{X}^{\mathsf{T}} \mathbf{X} + \lambda \mathbf{I}) (\boldsymbol{\theta} - \boldsymbol{\theta}_{\mathsf{LS}}) \le \text{``radius''} \right\}$$

• "Radius" depends on $n, d, \delta, X, \lambda, R$ etc.

Previous Construction: Theorem

[Dani et al., 2008], [Rusmevichientong and Tsitsiklis, 2010] Theorem ([Abbasi-Yadkori et al., 2011]) Assume $\|\theta_*\|_2 \leq S$ and $\|X_t\|_2 \leq L$. With probability $\geq 1 - \delta$, θ_* lies in the set

$$C_n = \left\{ \theta \in \mathbb{R}^d : \sqrt{(\theta - \theta_{LS})^T (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})(\theta - \theta_{LS})} \\ \leq R \sqrt{2d \log\left(\frac{1 + nL^2/\lambda}{\delta}\right)} + S\sqrt{\lambda} \right\}$$

Note: More refined version exists.

Why a different confidence set?

- There are algorithms that are good at **estimating** sparse θ_*
- Can "radius" of the ellipsoid be smaller if θ_* is sparse? (Yes!)

Our construction: Reduction

Assume that we have a black-box prediction algorithm

$$(X_1, Y_1), \dots, (X_{t-1}, Y_{t-1}), X_t \longrightarrow$$
Black-Box
Prediction Algorithm \widehat{Y}_t

with regret at most B_n

$$\mathsf{Regret} = \sum_{t=1}^{n} (\widehat{Y}_t - Y_t)^2 - \sum_{t=1}^{n} (\widehat{Y}_t - \theta_*^T X_t)^2 \le B_n$$

Such black-boxes do exist!

Our construction, continued

- Collect black-box predictions $\widehat{Y}_1, \ldots, \widehat{Y}_n$
- Confidence set

$$C_n = \left\{ \boldsymbol{\theta} \in \mathbb{R}^d : \sum_{t=1}^n (\widehat{Y}_t - \boldsymbol{\theta}^T X_t)^2 \le \operatorname{poly}(B_n, R, \log(1/\delta)) \right\}$$

Note 1: It's an ellipsoid centered at unregularized least squares solution

$$\theta'_{\mathsf{LS}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{\dagger}\mathbf{X}^{\mathsf{T}}\widehat{\mathbf{Y}}$$

where we **replaced** \mathbf{Y} by $\widehat{\mathbf{Y}}$!

• Note 2: The smaller B_n , the tighter the confidence set.

Aside: Low-regret Prediction Algorithms

Assume $\|X_t\|_2 \leq 1$ and $|Y_t| \leq 1$

Theorem ([Vovk, 2001] & [Azoury and Warmuth, 2001]) If $\|\theta_*\|_2 \leq 1$, online regularized least squares has regret $O(d \log n)$

Theorem ([Gerchinovitz, 2011]) If $\|\theta_*\|_{\infty} \leq 1$ and $\|\theta\|_0 \leq p$, SEQSEW has regret $O(p \log(nd))$

Note: Confidence set via Vovk-Azoury is roughly the same as best known confidence set for least squares.

Application: Linear Bandits

Online game. In round t

- 1. receive set of actions $D_t \subseteq \mathbb{R}^d$
- 2. choose an action $X_t \in D_t$
- 3. receive reward $Y_t = \theta_*^T X_t + \eta_t$

Minimize regret

$$\rho = \sum_{t=1}^{n} \left(\max_{X_t^* \in D_t} \theta_*^T X_t^* \right) - \sum_{t=1}^{n} \theta_*^T X_t$$

▶ Note: Classical *d*-armed bandit problem is $D_t = \{e_1, \ldots, e_d\}$

Optimistic Algorithm

- Maintain confidence set C_t
- In round t choose

$$(\widehat{\theta}_t, X_t) = \underset{(\theta, X) \in C_{t-1} \times D_t}{\operatorname{argmax}} \ \theta^T X$$

• Note: This reduces to UCB for $D_t = \{e_1, \ldots, e_d\}$

Regret of Optimistic Algorithm

Theorem If $|\theta_*^T X| \le 1$ for all $X \in D_t$ and t, then with probability $\ge 1 - \delta$, for all n, regret is

$$O\left(\sqrt{dnB_n}\cdot\mathsf{polylog}(n,d,1/\delta,B_n)
ight)$$

For $\|\theta\|_0 \leq p$ using SEQSEW we get

$$O\left(\sqrt{pdn} \cdot \mathsf{polylog}(n, d, 1/\delta)\right)$$

Improvement over $O(d\sqrt{n} \cdot \text{polylog}(n, d, 1/\delta))$ in [Dani et al., 2008]

References

Abbasi-Yadkori, Y., Pál, D., and Szepesvári, C. (2011).

Improved algorithms for linear stochastic bandits.

In Shawe-Taylor, J., Zemel, R. S., Bartlett, P., Pereira, F., and Weinberger, K. Q., editors, Advances in Neural Information Processing Systems 24, (NIPS 2011).

Azoury, K. S. and Warmuth, M. K. (2001).

Relative loss bounds for on-line density estimation with the exponential family of distributions.

Machine Learning, 43:211-246.

Dani, V., Hayes, T. P., and Kakade, S. M.

(2008).

Stochastic linear optimization under bandit feedback.

In Servedio, R. and Zhang, T., editors, Proceedings of the 21st Annual Conference on Learning Theory (COLT 2008), pages 355–366.

Gerchinovitz, S. (2011).

Sparsity regret bounds for individual sequences in online linear regression.

In Proceedings of the 24st Annual Conference on Learning Theory (COLT 2011).

Rusmevichientong, P. and Tsitsiklis, J. N.

(2010).

Linearly parameterized bandits. Mathematics of Operations Research, 35(2):395–411.

Vovk, V. (2001).

Competitive on-line statistics. International Statistical Review, 69:213–248.