A Sober look at Clustering Stability

Shai Ben-David¹ Ulrike von Luxburg² Dávid Pál¹

¹School of Computer Science University of Waterloo

²Fraunhofer IPSI, Darmstadt, Germany

COLT 2006

What is clustering?

By clustering we mean grouping data according to some distance/similarity measure.

What is clustering?

By clustering we mean grouping data according to some distance/similarity measure.

Clusters (Linkage algorithm)

What is clustering?

By clustering we mean grouping data according to some distance/similarity measure.

Clusters (Center-based algorithm)

Correctness of clustering

Q: Clustering is not well defined problem. How do we know that we cluster correctly?

A: Common solution - Stability.

Correctness of clustering

Q: Clustering is not well defined problem. How do we know that we cluster correctly?

A: Common solution - Stability.

Stability: Idea of our definition

- Pick your favorite clustering algorithm A.
- Generate two independent samples S_1 and S_2 .

Stability

How much will clusterings $A(S_1)$ and $A(S_2)$ differ?

If for large sample sizes clusterings $A(S_1)$ and $A(S_2)$ are almost identical, we say that A is *stable*. Otherwise *unstable*.

Stability: Idea of our definition

- Pick your favorite clustering algorithm A.
- Generate two independent samples S_1 and S_2 .

Stability

How much will clusterings $A(S_1)$ and $A(S_2)$ differ?

If for large sample sizes clusterings $A(S_1)$ and $A(S_2)$ are almost identical, we say that A is *stable*. Otherwise *unstable*.

Stability: Idea of our definition

- Pick your favorite clustering algorithm A.
- Generate two independent samples S_1 and S_2 .

Stability

How much will clusterings $A(S_1)$ and $A(S_2)$ differ?

If for large sample sizes clusterings $A(S_1)$ and $A(S_2)$ are almost identical, we say that A is *stable*. Otherwise *unstable*.

Probability distribution

Sample S₁

Clustering $A(S_1)$

Sample S₂

Clustering $A(S_2)$

Clusterings $A(S_1)$ and $A(S_2)$ are equivalent.

Probability distribution

Sample S₁

Clustering $A(S_1)$

Sample S₂

Clustering $A(S_2)$

Clusterings $A(S_1)$ and $A(S_2)$ are different

Why do people think stability is important?

- For tuning parameters of clusterings algorithms, such as number of clusters
- To verify meaningfulness of clustering outputted by algorithm.

Why do people think stability is important?

- For tuning parameters of clusterings algorithms, such as number of clusters
- To verify meaningfulness of clustering outputted by algorithm.

Our intention:

Provide theoretical justification.

We discovered

The popular belief is false.

Our intention:

Provide theoretical justification.

We discovered:

The popular belief is false.

1D probability distribution

2 centers - stable

3 centers - solution #1

3 centers – solution #2 ⇒ unstable

slightly asymmetric distribution

2 centers - stable

3 centers - stable

Second example

1D probability distribution

Second example

2 centers - unstable

Second example

3 centers - stable

Our results

Theorem

For a cost based algorithm (e.g. k-means, k-medians):

- If the optimization problem has unique optimum, then the algorithm is stable.
- If the underlying probability distribution is symmetric and the optimization problem has multiple symmetric optima, then the algorithm is unstable.

Our results

Theorem

For a cost based algorithm (e.g. k-means, k-medians):

- If the optimization problem has unique optimum, then the algorithm is stable.
- If the underlying probability distribution is symmetric and the optimization problem has multiple symmetric optima, then the algorithm is unstable.

Our results

Theorem

For a cost based algorithm (e.g. k-means, k-medians):

- If the optimization problem has unique optimum, then the algorithm is stable.
- If the underlying probability distribution is symmetric and the optimization problem has multiple symmetric optima, then the algorithm is unstable.

Conclusion

- Stability, contrary to common belief, does not measure validity of a clustering or meaningfulness of choice of number of clusters.
- Instead, it measures the number of solutions to the clustering optimization problem for the underlying probability distribution.

Q: Is symmetry really needed for instability?

A: No!

(Work in progress, together with Shai Ben-David & Hans Ulrich Simon)

Analyze finite sample sizes, and give explicit bounds.

Q: Is symmetry really needed for instability?

A: No!
(Work in progress, together with Shai Ben-David & Hans Ulrich Simon)

Analyze finite sample sizes, and give explicit bounds.

Q: Is symmetry really needed for instability?

A: No!
(Work in progress, together with Shai Ben-David & Hans Ulrich Simon)

Analyze finite sample sizes, and give explicit bounds.

Q: Is symmetry really needed for instability?

A: No!
(Work in progress, together with Shai Ben-David & Hans Ulrich Simon)

Analyze finite sample sizes, and give explicit bounds.

Consider k-means in metric space (X, ℓ) .

Given a sample $S = \{x_1, x_2, \dots, x_m\}$, we search centers c_1, c_2, \dots, c_k . The k-means algorithm minimizes the *empirical* cost

$$cost(S; c_1, c_2, ..., c_k) = \frac{1}{m} \sum_{x \in S} \min_{1 \le i \le k} (\ell(c_i, x))^2$$

As $m o \infty$ this converges to the *true cost* [Ben-David, COLT04

$$cost(P; c_1, c_2, \dots, c_k) = \underset{x \in P}{\text{Exp min}} (\ell(c_i, x))^2$$

Minimizing cost(S; .) is for large samples almost the same as minimizing cost(P; .).

Consider k-means in metric space (X, ℓ) .

Given a sample $S = \{x_1, x_2, \dots, x_m\}$, we search centers c_1, c_2, \dots, c_k . The k-means algorithm minimizes the *empirical* cost

$$cost(S; c_1, c_2, ..., c_k) = \frac{1}{m} \sum_{x \in S} \min_{1 \le i \le k} (\ell(c_i, x))^2$$

As $m \to \infty$ this converges to the *true cost* [Ben-David, COLT04]

$$cost(P; c_1, c_2, \ldots, c_k) = \underset{x \in P}{\operatorname{exp}} \min_{1 \leq i \leq k} (\ell(c_i, x))^2$$

Minimizing cost(S; .) is for large samples almost the same as minimizing cost(P; .).

What happens if the function $cost(P; c_1, c_2, ..., c_k)$ has more than one k-tuple of centers minimizing it?

Instability!

What happens if the function $cost(P; c_1, c_2, ..., c_k)$ has more than one k-tuple of centers minimizing it?

Instability!

What happens if the function $cost(P; c_1, c_2, ..., c_k)$ has more than one k-tuple of centers minimizing it?

Instability!

Searching 2 centers

Probability distribution (perfectly symmetric)

Searching 2 centers

Optimal solution #1

Searching 2 centers

Optimal solution #2

Searching 2 centers

Optimal solution #3

