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What is clustering?

By clustering we mean grouping data according to some
distance/similarity measure.

Data
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By clustering we mean grouping data according to some
distance/similarity measure.
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Correctness of clustering

Q: Clustering is not well defined problem.
How do we know that we cluster correctly?

A: Common solution – Stability.
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Stability: Idea of our definition

Pick your favorite clustering algorithm A.
Generate two independent samples S1 and S2.

Stability

How much will clusterings A(S1) and A(S2) differ?

If for large sample sizes clusterings A(S1) and A(S2) are almost
identical, we say that A is stable. Otherwise unstable.
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Example of stability

Probability distribution
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Example of stability

Sample S1
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Example of stability

Clustering A(S1)
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Example of stability

Sample S2

Shai Ben-David, Ulrike von Luxburg, Dávid Pál A Sober look at Clustering Stability



Example of stability

Clustering A(S2)
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Example of stability

Clusterings A(S1) and A(S2) are equivalent.
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Example of instability

Probability distribution
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Example of instability

Sample S1
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Example of instability

Clustering A(S1)
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Example of instability

Sample S2
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Example of instability

Clustering A(S2)
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Example of instability

Clusterings A(S1) and A(S2) are different
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Motivation

Why do people think stability is important?
For tuning parameters of clusterings algorithms, such as
number of clusters
To verify meaningfulness of clustering outputted by
algorithm.
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Motivation

Our intention:
Provide theoretical justification.

We discovered:
The popular belief is false.
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First example

1D probability distribution
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First example

2 centers – stable
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First example

3 centers – solution #1
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First example

3 centers – solution #2 =⇒ unstable
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First example

slightly asymmetric distribution
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First example

3 centers – stable

x
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Second example

1D probability distribution
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Second example

2 centers – unstable

∼ 90% ∼ 10%
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Second example

3 centers – stable

x

∼ 90% ∼ 10%
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Our results

Theorem
For a cost based algorithm (e.g. k-means, k-medians):

If the optimization problem has unique optimum, then the
algorithm is stable.
If the underlying probability distribution is symmetric and
the optimization problem has multiple symmetric optima,
then the algorithm is unstable.
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Conclusion

Stability, contrary to common belief, does not measure
validity of a clustering or meaningfulness of choice of
number of clusters.
Instead, it measures the number of solutions to the
clustering optimization problem for the underlying
probability distribution.
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Open problems

Q: Is symmetry really needed for instability?
A: No!

(Work in progress, together with Shai Ben-David & Hans
Ulrich Simon)

Analyze finite sample sizes, and give explicit bounds.

Analyze other types of algorithms e.g. linkage algorithms.
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Concrete demonstration of our analysis: k -means

Consider k -means in metric space (X , `).

Given a sample S = {x1, x2, . . . , xm}, we search centers
c1, c2, . . . , ck . The k -means algorithm minimizes the empirical
cost

cost(S; c1, c2, . . . , ck ) =
1
m

∑
x∈S

min
1≤i≤k

(`(ci , x))2

As m →∞ this converges to the true cost [Ben-David, COLT04]

cost(P; c1, c2, . . . , ck ) = Exp
x∈P

min
1≤i≤k

(`(ci , x))2

Minimizing cost(S; .) is for large samples almost the same as
minimizing cost(P; .).
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Concrete demonstration of our analysis: k -means

What happens if the function cost(P; c1, c2, . . . , ck ) has more
than one k -tuple of centers minimizing it?

Instability !
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Example of instability

Searching 2 centers

Probability distribution (perfectly symmetric)
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Example of instability

Searching 2 centers

Optimal solution #1
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Example of instability

Searching 2 centers

Optimal solution #2
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Example of instability

Searching 2 centers

Optimal solution #3
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