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Abstract. Given a Steiner triple system S, we say that a cubic graph G is S-colourable if its edges can
be coloured by points of S in such way that the colours of any three edges meeting at a vertex form a
triple of S. We prove that there is Steiner triple system U of order 21 which is universal in the sense that
every simple cubic graph is U-colourable. This improves the result of Grannell et al. [J. Graph Theory
46 (2004), 15–24] who found a similar system of order 381. On the other hand, it is known that any
universal Steiner triple system must have order at least 13, and it has been conjectured that this bound is
sharp (Holroyd and Škoviera [J. Combin. Theory Ser. B 91 (2004), 57–66]).
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1. Introduction

The celebrated Vizing’s edge-colouring theorem asserts that any cubic graph can be edge-
coloured by three or four colours in such a way that adjacent edges receive distinct colours.
While three colours are not enough to colour all cubic graphs, and the corresponding deci-
sion problem is difficult [9], edge-colourings by four or more colours are easy to deal with. It
is therefore reasonable to focus on edge-colourings of cubic graphs where the occurrence of
colours at vertices is controlled by a certain list S of permitted triples of colours. An edge-
colouring according to such a list is then referred to as an S-colouring. It is quite natural to take
S to be a Steiner triple system because this choice offers a natural generalisation of the usual
3-edge-colouring which preserves the property that any two colours at a vertex determine the
third colour. The study of such colourings was proposed by Archdeacon [1,2] in 1986 and is
the main purpose of the present paper.

Recall that a Steiner triple system S = (X,T ) of order n is a collection T of three-element
subsets (called triples or blocks) of a set X of n points such that each pair of points is together
present in exactly one triple. The smallest Steiner triple system is the trivial system I which has
three points and a single triple. In general, a Steiner triple system of order n exists if and only
if n ≡ 1 or 3 (mod 6), and such values of n are called admissible; for more information consult
Colbourn and Rosa [4].
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In the context of edge-colourings, two infinite classes of Steiner triple systems are of par-
ticular interest. The projective Steiner triple system PG(n, 2), n ≥ 1, has Zn+1

2 − {0} as its
point set, the blocks of the system being the triples {x, y, z} of points such that x+ y + z = 0.
The affine Steiner triple system AG(n, 3), n ≥ 1, has point set Zn

3 , the triples of the system
being again the triples with zero sum. The first of these classes includes the smallest non-trivial
Steiner triple system PG(2, 2), the Fano plane of order 7. Observe that the trivial Steiner triple
system I is included in both families as their first member.

It has been shown by Holroyd and Škoviera [8] that if S is the projective system PG(n, 2)
with n ≥ 2, then a cubic graph (with possibly parallel edges but no loops) is S-colourable if
and only if it is bridgeless, and that every bridgeless cubic graph has an S-colouring for every
non-trivial Steiner triple system.

Theorem 1. [8] Let G be a cubic graph with no loops, and let S = PG(n, 2) where n ≥ 2.
Then G is S-colourable if and only if G is bridgeless.

Theorem 2. [8] Let G be a bridgeless cubic graph with no loops, and let S be a Steiner triple
system of order greater than 3. Then G is S-colourable.

The study of Steiner colourings of cubic graphs with bridges is slightly more delicate. On the
one hand, there are infinitely many Steiner triple systems which do not colour any cubic graph
having a bridge (such as the projective systems), and, on the other hand, there are infinitely
many cubic graphs with bridges which cannot be coloured by any Steiner triple system (for
example, cubic graphs which contain a triangle with one doubled edge).

The reasons why some cubic graphs cannot be coloured by any Steiner triple system are easy
to explain. If we are to colour a cubic graph G containing a pair of parallel edges, we can form
a smaller cubic graph G′ by contracting these two edges and suppressing the resulting 2-valent
vertex. Observe that G is S-colourable precisely when G′ is. Thus if the repeated use of the
above reduction eventually results in a cubic graph having a loop, we can conclude thatG cannot
be coloured by any Steiner triple system. The latter occurs precisely when G contains a bridge
whose removal leaves a 2-connected component with no subdivision of the complete graph K4.
In this case we say that G has a bridge with a series-parallel end, because the corresponding
2-connected component is a series-parallel cubic graph with a single subdivided edge (see [6]
for details).

Grannell et al. [7] have recently shown that the occurrence of a bridge with a series-parallel
end in a cubic graph is the only obstruction to having an S-colouring by some Steiner triple
system S. In fact, they proved that there is a single Steiner triple system T such that every cubic
graph with no series-parallel end (in particular, every simple cubic graph) has a T -colouring. To
put it differently, T is a universal Steiner triple system, one which colours all Steiner colourable
cubic graphs.

The system T has 381 points, but only a small part of them is used for colouring. Moreover,
it is not highly symmetrical. Therefore it seems unlikely that T could be the smallest universal
Steiner triple system. Indeed, our first main result improves the result of Grannell et al. [7] by
displaying a point-transitive universal Steiner triple system of order 21.

Theorem 3. Every cubic graph with no series-parallel end has a U-colouring where U is the
direct product PG(2, 2)× I of the Fano plane and the trivial Steiner triple system.

As follows from the following discussion, our system is minimal in the sense that it does not
contain any universal Steiner triple system of a smaller order.
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Fig. 1. A cubic graph with a bridge coloured by the affine Steiner triple system AG(2, 3).

By Theorem 1, cubic graphs with bridges fail to have projective colourings. Therefore no
projective Steiner triple system is universal. Although affine systems can colour certain cubic
graphs with bridges (see Fig. 1), they do not colour all such graphs. For example, if a cubic
graph contains a bridge whose removal yields a component which becomes bipartite after the
suppression of the resulting 2-valent vertex, it cannot be coloured by any affine Steiner triple
system [8, Theorem 1.3]. In such a case, the suppressed vertex is called a bipartite end of the
bridge. Thus bridges with a bipartite end are an obstruction to affine colourings.

Since PG(2, 2) and AG(2, 3) are the only Steiner triple systems of order 7 and 9, respec-
tively, all this implies that the order of any universal system is at least 13. On the other hand, a
Steiner triple system of order n containing a Steiner triple system of order m must clearly have
at least 2m+ 1 elements. Therefore all universal systems of order smaller than 27 are minimal.
In addition, a result of Doyen and Wilson [5] implies that any Steiner triple system of order m
may be embedded in a Steiner triple system of order n for any admissible n ≥ 2m + 1. Con-
sequently, Theorem 3 implies that for each admissible n ≥ 43, there exists a universal Steiner
triple system of order n.

In [8, Conjecture 1.4] Holroyd and Škoviera conjecture that bipartite ends of bridges are in
fact the only obstruction to affine colourings, and moreover that all non-projective and non-
affine Steiner triple systems are universal.

Conjecture 1. Let G be a cubic graph with no series-parallel end, and let S be a non-projective
Steiner triple system. Then G fails to have an S-colouring if and only if S is affine and G has a
bridge with a bipartite end.

The conjecture claims, in particular, that every cubic graph without a bipartite end admits a
colouring by any affine system AG(n, 3) where n ≥ 2. Although we are unable to prove this
claim, we offer the following weaker result.

Theorem 4. Every cubic graph with no bipartite end has an AG(n, 3)-colouring for each n ≥
3.

We leave it as an open problem to prove that every cubic graph with no bipartite end has an
AG(2, 3)-colouring.

2. Preliminaries

Given a Steiner triple system R = (P,B) of order m and a Steiner triple system S = (Q,C)
of order n, we can construct a Steiner triple system of order mn, their direct product R×S, as
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follows. We take the point-set of R×S to be P ×Q and the triples to be all three-element sets
of the form

– {(p, q1), (p, q2), (p, q3)}, where p ∈ P and {q1, q2, q3} ∈ C,
– {(p1, q), (p2, q), (p3, q)}, where {p1, p2, p3} ∈ B and q ∈ Q, and
– {(p1, q1), (p2, q2), (p3, q3)}, where {p1, p2, p3} ∈ B and {q1, q2, q3} ∈ C.

This definition extends to the direct product of any finite number of Steiner triple systems. For
example, the direct product of n copies of the trivial system I is isomorphic to the affine Steiner
triple system AG(n, 3). It is therefore convenient to treat the trivial Steiner triple system as the
affine system AG(1, 3) with point-set Z3.

Given a Steiner triple system S, an S-colouring of a cubic graph G is a colouring of the
edges of G by points of S such that the colours of any three edges meeting at a vertex form
a triple of S. (In case S is the Fano plane, we simply speak of a Fano colouring.) A weak S-
colouring allows the colours at a vertex either to be identical or to form a triple of S. We call a
vertex regular (or strong) if the colours of the incident edges form a triple of S; otherwise we
call it weak. Observe that if φ is a weak R-colouring and ψ is a weak S-colouring of a cubic
graph G, then the product mapping (φ, ψ) : e 7→ (φ(e), ψ(e)) is a weak R × S-colouring. A
vertex v of G is weak in (φ, ψ) if and only if it is weak in both φ and ψ. Thus the product of
two weak colourings with disjoint sets of weak vertices is a regular colouring.

The concept of an S-colouring naturally extends to graphs with maximum valency three. In
a regular colouring we simply require the colours meeting at a vertex to be distinct elements of
a block of S, and in a weak colouring we allow all colours at a vertex to be equal.

Steiner colourings are sometimes related to flows on graphs. To define a flow on a graph G,
let D(G) denote the set which is obtained by replacing each edge of G with a pair of oppositely
directed darts; we call D(G) the dart-set of G. Each dart z, including those on loops, has its
inverse dart z−1 6= z which is incident with the same vertices but has opposite direction. For
an arbitrary vertex v, we let D(v) be the set of all darts emanating from v. Clearly, these sets
partition the whole dart-set.

Let A by any Abelian group, written additively. We define an A-chain on G to be a function
ξ : D(G) → A satisfying the following condition:

(F1) ξ(z−1) = −ξ(z), for each dart z ∈ D(G).

For a vertex v, let ∂ξ(v) =
∑

z∈D(v) ξ(z). This value is the outflow from v. A vertex with a non-
zero outflow will be called singular. An A-chain ξ is an A-flow if it has no singular vertices,
that is, if the following “flow-conservation property” holds:

(F2) ∂ξ(v) = 0, for each vertex v ∈ V (G).

A flow is said to be nowhere-zero if ξ(z) 6= 0 for each dart z ∈ D(G). (For example, any
S-colouring where S = PG(n, 2), n ≥ 2, is a nowhere-zero Zn+1

2 -flow.)
Observe that if every element of A is self-inverse, then ξ(z) = ξ(z−1) for each dart z, and

we may simply view an A-flow on G as a function defined on the edges of G rather than on
darts. Note that in this case the group A will be isomorphic to a direct product of copies of Z2.

3. Proofs

In this section we prove our main results, Theorem 3 and Theorem 4. We start with the obser-
vation that it is sufficient to prove these results for simple graphs. Indeed, any cubic graph G
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with no series-parallel end can be reduced to a simple cubic graph which is S-colourable by a
Steiner triple system S if and only if G is. A triple edge can be simply removed from the graph,
and a pair of parallel edges can be contracted to a vertex which can be subsequently suppressed.
If these two operations are repeated sufficiently many times, the result will be a simple cubic
graph G′ with the required property. In the rest of this section we therefore assume G to be
simple.

The main idea of both proofs is to decompose G into a set of blocks, and for each block
to construct a pair of weak Steiner colourings such that their sets of weak vertices are disjoint.
For the first coordinate we use the Fano plane in the proof of Theorem 3, and the affine plane
AG(2, 3) in the proof of Theorem 4. For the second coordinate we use the trivial system in the
proofs of both theorems. Finally, we merge all the coloured blocks together.

Throughout this section, by a block of a cubic graph G we mean a connected component of
the graph obtained from G by removing all its bridges. This definition slightly deviates from
the standard notion of a block but is better suited for our aims.

Let B be a block of a cubic graph G. Denote by B+ the subgraph obtained from B by
attaching all incident bridges, and by B− the graph obtained from B by suppressing the 2-
valent vertices of B. Thus B− is a bridgeless cubic graph, although not necessarily simple.

We distinguish between three types of blocks. A trivial block consists of a single vertex
which is incident with three bridges. Non-trivial blocks split into those which contain a bipartite
end and those which have no bipartite end. The latter blocks will be called standard. Standard
blocks can have any number of incident bridges. However, a block containing a bipartite end
has exactly one incident bridge because no bipartite cubic graph can have a bridge.

Trivial blocks can be managed easily: we simply colour the three incident bridges by any
triple of the Fano plane and by the only triple of the trivial Steiner triple system. Non-trivial
blocks are handled in the following four lemmas.

Lemma 1. Let B be a non-trivial block of a simple cubic graph, and let S be any non-trivial
Steiner triple system. Then B+ has a weak S-colouring such that each weak vertex is a bridge
end.

Proof. Consider the graph B−. Since B− is bridgeless, Theorem 2 implies that it admits an
S-colouring. We reinsert the bridges and assign each bridge and the other two adjacent edges of
B+ the colour of the corresponding edge of B−. The result is a weak S-colouring of B+ whose
weak vertices are exactly the bridge ends in B.

Since a bipartite cubic graph is 3-edge-colourable, the same argument yields a weak colour-
ing by the trivial Steiner triple system for each block B such that B− is bipartite.

Lemma 2. Let B be a non-trivial block of a simple cubic graph such that B− is bipartite. Then
B+ has a weak I-colouring such that each weak vertex is a bridge end.

Lemma 3. LetB be a standard block of a simple cubic graph. ThenB+ has a weak I-colouring
such that all bridge ends in B are regular vertices.

Proof. If B+ has no bridges, then the all-zero I-colouring suffices. If B+ does have some
bridges, we consider two cases.

Case 1. Let B+ have exactly one bridge, and let v be its end in B. To find the required
colouring we first show that B contains an even cycle through v. Since v is not a bipartite end,
B contains either an odd cycle avoiding v or an even cycle containing v. In the former case,
take such an odd cycle C and choose two internally disjoint paths P and Q of minimum length
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which connect v to C. Their respective end-vertices on C divide C into two paths C ′ and C ′′.
As the lengths of these paths are of different parity, one of the cycles PC ′Q and PC ′′Q is even
and passes through v. Thus B has an even cycle through v in each case.

The required colouring is now easy to construct. We colour the edges of an even cycle
through v alternately 1 and 2 and let all other edges of B+ carry the colour 0. The result is
a weak I-colouring of B+ under which the vertex v will be regular.

Case 2. Assume that B+ has more than one bridge. Denote the bridges by u1v1, u2v2, . . . ,
umvm in such a way that each vi lies in B and the other end-vertex ui lies outside B. For each
ui take the nearest uj , j 6= i, and let Pi be the shortest path from ui to uj . Clearly, no ul or vl can
lie on Pi if l 6= i and l 6= j. We now construct a sequence of weak colourings φ0, φ1, . . . , φm of
B+ starting with the all-zero colouring φ0. The colouring φm will be the colouring sought.

Assume that we have already constructed a colouring φi−1 under which all the vertices vk

with 1 ≤ k ≤ i − 1 are regular. If vi is a regular vertex with respect to φi−1, we set φi = φi−1.
Otherwise, if vi is a weak vertex, we recolour B+ along the path Pi as follows. We construct
an auxiliary weak colouring ψi that is all-zero except on Pi where we assign the colours 1 and
2 alternately, either starting with 1 or starting with 2. The initial colour on Pi will be chosen in
such way that it will make both vi and the other vertex vj on Pi regular with respect to φi. This
is always possible: if vj is weak, both possibilities for ψi are feasible, but when vj is regular,
only of them will be good and the other possibility will make vj a weak vertex. By setting
φi(e) = φi−1(e) + ψi(e) for each edge e of B+ we obtain a correct weak colouring, because
at any internal vertex w of Pi the sum of colours on the three edges x, y and z incident with w
remains zero. If, for example, x and y lie on Pi, then indeed

φi(x) + φi(y) + φi(z) = φi−1(x) + ψi(x) + φi−1(y) + ψi(y) + φi−1(z)

= φi−1(x) + φi−1(y) + 1 + 2 + φi−1(z) = 0.

This completes the proof.

Recall that a Steiner triple system is said to be point-transitive if for any two points x and
y there exists an automorphism mapping x to y. If for any two ordered pairs of distinct points
(x, y) and (z, w) there is an automorphism taking x to y and z to w, the system is said to be
2-point-transitive. The trivial system is obviously 2-point-transitive and so are all affine and
projective Steiner triple systems. Their automorphisms are respectively the affine transforma-
tions and the collineations of the corresponding geometric spaces (see, for example, Biggs and
White [3, Chapter 2]). It is easy to see that the direct product of two 2-point-transitive Steiner
triple systems is 2-point-transitive too.

We proceed to our last lemma.

Lemma 4. Let G be a simple cubic graph and let B be a block of G containing a bipartite end.
Then B+ has a weak Fano colouring such that the bipartite end is regular.

Proof. We employ induction on the number of vertices of B+. The graph B+ with the least
number of vertices is the complete bipartite graph K3,3 with a bridge attached to one of its
edges. A weak Fano colouring of this graph is displayed in Fig. 2. This forms the basis of the
induction.

Now let B be a block with a bipartite end v such that B− has order greater than 6. Let x
and y be the neighbours of v in B, and let h be the edge connecting x to y in B−. Clearly, the
vertex-set of B− has a bipartition X ∪ Y such that x ∈ X and y ∈ Y . Its edge-set can thus be
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Fig. 2. A weak Fano colouring of K3,3 with a subdivided edge and a bridge.

partitioned into three disjoint 1-factors F1, F2 and F3 where F1 denotes the one that contains the
edge h. Let us colour the edges of F1, F2 and F3 respectively by the colours (0, 1, 1), (0, 0, 1)
and (0, 1, 0). This colouring forms a nowhere-zero Z2×Z2×Z2-flow onB−. We first transform
this flow into a Z2×Z2×Z2-chain φ onB+ as follows. We colour the bridge at v by (0, 1, 1), the
edge vx by (1, 0, 1), and the edge vy by (1, 1, 0). We leave all the colours of the remaining edges
untouched. Note that v and all other vertices except x and y fulfil the flow-conservation property
(F2) and hence are regular. The vertices x and y, however, are neither regular nor weak: they
are singular with outflow (1, 1, 0) and (1, 0, 1), respectively. Our aim is to correct this anomaly
by sending certain flow values from x and y along suitable paths while keeping the regularity of
v and non-zero values on all edges of B+. By sending a value g ∈ Z2×Z2×Z2 along a path P
we mean that we form a new Z2×Z2×Z2-chain φ′ on B+ such that φ′(e) = φ(e) + g for each
edge e of P , and φ′(e) = φ(e) otherwise. In doing this we may move a singularity to another
vertex or create a new singular vertex, but eventually these singular vertices will be weak and
the result will be a weak Fano colouring of B+.

First of all observe that F2 ∪ F3 forms an even 2-factor of B−, that is, a set of disjoint even
cycles covering all the vertices. Direct all the edges of F1 from X to Y and contract the cycles
of the 2-factor to obtain a new graph H . This graph is endowed with an orientation under which
each vertex has the same number of incoming and outgoing directed edges. Thus H admits an
Euler trail following the orientation of H and therefore contains no edge-cuts of odd size. Note,
however, that H may have both parallel edges and loops.

For any vertex p of B−, let p̄ denote the corresponding vertex of H . It is easy to see that
every p̄-q̄-path P in H gives rise to a p-q-path P̃ in B− which alternately uses the edges of P
and segments of cycles of the complementary 2-factor F2 ∪ F3.

To establish the existence of the required weak Fano colouring we consider a number of
cases.

Case 1. Let H have a single vertex. Then B− is a hamiltonian graph with F2 ∪ F3 forming a
Hamilton cycle. Divide F2 ∪ F3 into a union of an x-y-path P and a y-x-path Q; without loss
of generality we may assume that P begins (and ends) with an F2-edge and that Q begins (and
ends) with an F3-edge. Consider the set of all edges in F1−{h} which have an end on P . There
are three types of such edges:

– edges with both ends on P (called Type 1);
– edges with one end in P ∩X and the other on Q (called Type 2); and
– edges with one end in P ∩ Y and the other on Q (called Type 3).

Because B− is bipartite, there is an equal number of edges of Type 2 and Type 3.
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interlace.

Subcase 1.1. Assume that there exists an edge rs of Type 2 and an edge tu of Type 3. Let r
and t be their end-vertices on P . Then C1 = P (x, r)rsQ(s, x) and C2 = P (x, t)tuQ(u, x) are
two distinct cycles through x but not through y (see Fig. 3). We send the value (1, 1, 1) along
P and the value (1, 0, 0) along Q. This makes the vertex y weak. Further, we send the value
(0, 0, 1) along C1 and the value (0, 1, 0) along C2. As a result, the vertex x becomes weak, too.
It is easy to see that all the vertices except x and y remain regular and that no edge receives
the value (0, 0, 0). Thus we have obtained a valid weak Fano colouring as claimed. (The just
described construction works also for the induction basis, and the colouring obtained here is
exactly the same as that described in Fig. 2.)

Subcase 1.2. There are no edges of Type 2 and Type 3. Since B+ is simple, this can only
happen when each of P and Q has length at least 7. Let x′ be the successor of x on P , and let
y′ be the predecessor of y on P . Send the value (1, 1, 0) = ∂φ(x) along the edge xx′ and the
value (1, 0, 1) = ∂φ(y) along the edge yy′. The edges xx′ and yy′ will now be coloured (1, 1, 1)
and (1, 0, 0), and the vertices x and y become regular. Clearly, {xx′, yy′} is an edge-cut in B+

which separates x and y from x′ and y′. In the latter component, let us connect x′ and y′ to
a new vertex v′ and add a pendant edge at v′. We have thus formed a smaller block D with a
bipartite end v′. Moreover,D is a simple graph. By the induction hypothesis,D+ admits a weak
Fano colouring such that v′ is regular. Since the Fano plane is 2-transitive, we can arrange the
colouring in such a way that v′x′ is coloured (1, 1, 1) and v′y′ is coloured (1, 0, 0). By removing
v′ from D and pasting the rest of D to its original place in B+ we obtain a weak Fano-colouring
of the whole B+.

Case 2. Let H have at least two vertices and x̄ 6= ȳ. We distinguish two subcases.

Subcase 2.1 Assume that the vertices x̄ and ȳ are separated by a 2-edge-cut. Since the edge
h joins x̄ to ȳ in H , one of these edges is h. Let k be the other one, and let u and w be its end-
vertices in B+. Remove h and k from H and let M be the component containing x̄ and one of ū
and w̄, say ū; let N be the component containing ȳ and w̄. Since h and k lie on a directed Euler
trail, k is directed from N to M forcing u to be a member of the partite set Y . Take a ȳ-ū-path
in H avoiding h. The corresponding y-u-path P in B+ necessarily uses k as its last edge. Send
the value (1, 0, 1) = ∂φ(y) along P from y to u. This will change the colour of k to (1, 1, 0),
making y a regular vertex and u a singular vertex with outflow (1, 0, 1). We now remove the
edges xv and k from B+ and connect x and u to a new vertex v′ to form a smaller block with a
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bipartite end. By using the induction hypothesis and a similar cut-and-paste construction as in
Subcase 1.2 we obtain the desired weak colouring of B+.

Subcase 2.2 There is no 2-edge-cut separating x̄ from ȳ. Since H has a directed Euler trail
and the edge h is directed from x̄ to ȳ, it is easy to see that there must be a directed x̄-ȳ-path R
in H which avoids the edge h. In B+, the last edge of R terminates at a vertex w 6= y which lies
on the same cycle C of F2 ∪ F3 as y does. Clearly, w ∈ Y . Divide C into two w-y-paths P and
Q in such a way that P starts with an F2-edge and Q starts with an F3-edge. Now let us send the
value (1, 1, 0) = ∂φ(x) along any x-w-path R̃ in B+ which corresponds to R. This turns x into
a regular vertex and w into a singular vertex at which the incident F1-edge is coloured (1, 0, 1).
To make w a weak vertex, let us send the value (1, 0, 0) along the path P and the value (1, 1, 1)
along the path Q. As a result, the vertex y becomes weak too, and the new Z2 × Z2 × Z2-chain
is a weak colouring of B+.

Case 3. Let H have at least two vertices and let x̄ = ȳ. Again there are two subcases to
consider.

Subcase 3.1. First assume that H contains a 2-edge-cut, say S = {k, l}. Let u and w be the
end-vertices of the edges k and l in B+ such that the corresponding vertices ū and w̄ belong to
the component of H − S not containing the vertex x̄. The orientation of H indicates that u and
w lie in different partite sets of B−. Since H is 2-edge-connected, there exist paths P and Q in
B− from x to u and from y to w, respectively, whose common edges are contained in F2 ∪ F3.
We now send the value (1, 1, 0) = ∂φ(x) along P and the value (1, 0, 1) = ∂φ(y) along Q. By
the choice of P and Q, no edge will receive the value (0, 0, 0), and k will be coloured (1, 0, 1)
while l will be coloured (1, 1, 0). At this point we can remove k and l from B+ and continue as
in Subcase 1.2.

Subcase 3.2. The graph H is 4-edge-connected. Pick any vertex p of H other than x̄. Then
x̄ is connected to p by four edge-disjoint paths. From the pigeonhole principle, at least two of
the paths must have their last edges oriented consistently, that is, either both from p or both to
p. It follows that in B+ there exist two paths P and Q from x and y, respectively, to certain
vertices u and w which lie in a common cycle C of F2 ∪ F3 and belong to the same partite
set of B−. Again, the common edges of P and Q are contained in F2 ∪ F3. We now send the
value (1, 1, 0) = ∂φ(x) along the path P and the value (1, 0, 1) = ∂φ(y) along Q to make the
vertices x and y regular and the vertices u and w singular. By the choice of P and Q, no edge
has received the value (0, 0, 0). The F1-edges at u and v are now coloured (1, 0, 1) and (1, 1, 0),
respectively. To make these vertices weak, we divide C into two u-w-paths and send the value
(1, 0, 0) along the path which starts with an F2-edge and the value (1, 1, 1) along the path which
starts with an F3-edge. The result is clearly a weak Fano colouring of B+.

In all the above cases we have constructed a weak Fano colouring of B+, hence the lemma
is proved.

Proof of Theorem 3. As noted earlier in this section, we can assume G to be simple. We can
also assume that G is connected.

Let B1, B2, . . . , Bk be the blocks of G ordered in such way that for each i ≥ 1 there is
exactly one bridge connecting Bi+1 to B1 ∪ B2 ∪ · · · ∪ Bi. Such an ordering always exists
because contracting each block into a vertex results in a tree.

We now colour the graphs B+
i step by step with the increasing index. We do so by finding a

weak Fano colouring and a weak I-colouring which combine into a proper U-colouring where
U = PG(2, 2)× I.
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– If Bi is a standard block, we construct a weak Fano colouring φ of B+
i whose weak vertices

are bridge ends in Bi, and a weak I-colouring ψ under which the bridge ends are regular.
These colourings are guaranteed by Lemma 1 and Lemma 3, respectively. The pair (φ, ψ) is
clearly a proper U-colouring of B+

i .
– If the block Bi contains a bipartite end, we construct a weak Fano colouring φ of B+

i such
that the bipartite end is regular and a weak I-colouring ψ under which the bipartite end is
weak but all other vertices are regular. Such colourings exist by Lemma 4 and Lemma 2,
respectively. Again, (φ, ψ) is a proper U-colouring of B+

i .
– If Bi is a trivial block, we simply colour B+

i by a suitable triple from U .

Now we merge the colourings together. Assume that the graph B+
1 ∪ · · · ∪ B+

j , j ≥ 1, has
already been coloured as indicated above. By the ordering of the blocks, exactly one edge of
Bj+1, necessarily a bridge, has received a colour in one of the previous steps. Since the system
U is point-transitive, we can transform any U-colouring of B+

j+1 into one where the specified
bridge is coloured by the required colour. This colouring can then be combined with the colour-
ing of B+

1 ∪ · · ·∪B+
j into a U-colouring of B+

1 ∪ · · ·∪B+
j+1. By continuing this process as long

as necessary we eventually colour the whole of G. �

Proof of Theorem 4. The system AG(3, 3) isomorphically embeds into each affine system
AG(n, 3) with n ≥ 3, so it is sufficient to construct an AG(3, 3)-colouring for each cubic graph
G with no bipartite end. As in the proof of the previous theorem we assume G to be simple and
connected.

Since AG(3, 3) is point-transitive and can be expressed as AG(2, 3) × I, we can proceed
analogously as in the previous proof except the following. Let Bi be a non-trivial block of G.
As Bi does not have a bipartite end, the graph B+

i admits a weak AG(2, 3)-colouring φ whose
weak vertices are bridge ends in Bi, and a weak I-colouring ψ under which all bridge ends in
Bi are regular vertices. These colourings exist by Lemma 1 and Lemma 3, respectively. Clearly,
(φ, ψ) is a proper AG(3, 3)-colouring of B+

i .
The proof can now be finished in exactly the same manner as the previous one. �

Remark. It may be interesting to note that the universal Steiner triple system T constructed by
Grannell et al. in [7] contains a copy of our system U = PG(2, 2)×I. The fact that T is indeed
universal thus follows from our Theorem 3.
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