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The Problem

•Distribution D over a domain X
•Unknown target function f from a known hypothesis class H ⊆ {0, 1}X.
• Learner receives S = ((x1, f (x1)), (x2, f (x2)), . . . , (xm, f (xm))).

Does knowing D help?

Sample Complexity

• Learning algorithm outputs a classifier g = A(S).
• Its error is

errD(g) = Pr
x∼D

[f (x) 6= g(x)]

•Sample complexity is the smallest m = m(ε, δ,D) such that for any tar-
get f ∈ H, with probability ≥ 1− δ

errD(g) ≤ ε

Known Results

•Without knowing D the sample complexity is

O

(
VC(H) + log(1/δ)

ε

)
Modulo log factors this is achieved by any constistent algorithm, i.e.
ERM.

•With knowledge of D, the sample complexity is at most

O

(
logND,ε/2 + log(1/ε)

δ

)
where ND,ε/2 is ε

2-covering number of H under the metric

d(f, g) = Pr
x∼D

[f (x) 6= g(x)] .

•Covering number upper bound

ND,ε ≤
(

4e

ε

)V C(H)

1− 1/e

•There exists a distribution D such that even with knowledge of D, any
algorithm needs at least

Ω

(
VC(H) + log(1/δ)

ε

)
labeled examples.

•There are distributions D such that any constistent algorithm has sam-
ple complexity only O(log(1/δ)/ε).

Summary of Known Results

Fix ε and δ.
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How big is the gap between the black and the green curve?

Projections

Domain is X = {0, 1}n and hypothesis class is H = {h1, h2, . . . , hn} where

hi(x) = h(x[1], x[2], . . . , x[n]) = x[i]

Vapnik-Chervonenkis dimension is VC(H) = blog2(n)c.

Theorem. Fix ε and δ. There are distributions D1, D2, . . . , Dn such that

1. With knowledge of the distribution Di, sample complexity is O(1).

2. Without knowledge of Di, sample complexity is Ω(log n).
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Each Di is a product distribution such that

Pr
x∼Di

[x[j] = 1] =

{
1/2 if i = j,
ε/4 if i 6= j.

Sketch of Proof

•Di has ε/2-cover of size 2. Thus O
(

logND,ε/2+log(1/δ)

ε

)
= O(1) samples are

enough to ε-learn if Di is known to the learner.

•Choose i ∈ {1, 2, . . . , n} at random.

•Choose distribution Di and the target to be the projection hi.

•Algorithm that does not know Di and hi, sees only the matrix
x1[1] x1[2] · · · x1[n] y1

x2[1] x2[2] · · · x2[n] y2
... ... . . . ... ...

xm[1] xm[2] · · · xm[n] ym

 .

•Column x[i] matches column y.

• If m ≤ log(n) then with constant probability at least one other column
x[j] matches column y.

• Learner has to pick a column i or j.

For non-proper learners, the proof is more complicated.

Conclusions

•Unlabeled data help for projections.

•For the class of all functions, unlabeled data do not help.

•The problem is open for halfspaces and axis-aligned rectangles in Rn,
and conjuctions and disjuctions in {0, 1}n. They have VC(H) = Θ(n).
The gap could be potentially as big as Ω(n).
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