The Problem

e Distribution D over a domain X
e Unknown target function f from a known hypothesis class H C {0, 1}-.

e Learner receives S = ((x1, f(x1)), (zo, f(x2)), ..., (Tm, f(Tm))).

Does knowing D help?

Sample Complexity

e Learning algorithm outputs a classifier g = A(S).
e Its error is

errp(g) = Pr [f(z) # g(x)]

x~D
e Sample complexity is the smallest m = m(e, §, D) such that for any tar-
get f € H, with probability > 1 — ¢

errp(g) < €

e Without knowing D the sample complexity is

; <VC(H) + log(1 /5))

€

Modulo log factors this is achieved by any constistent algorithm, I.e.
ERM.

e With knowledge of D, the sample complexity is at most

. <1og Npejo+ 1og<1/e>)

0
where Np ., Is 5-covering number of H under the metric

d(f.g) = Pr|f(z) # g(z)] .

e Covering number upper bound
VC(H)

Np, < (4_e> 1 —1/e

€

e There exists a distribution D such that even with knowledge of D, any
algorithm needs at least

, (vcm) + log(1 /5)>

€

labeled examples.

e There are distributions D such that any constistent algorithm has sam-
ple complexity only O(log(1/d)/¢).
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Summary of Known Results
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How big is the gap between the black and the green curve?

Domainis X = {0, 1}" and hypothesis class is H = {h4, ho, ..., h,} where

Vapnik-Chervonenkis dimension is VC(H) = |log,(n)].

Theorem. Fix ¢ and . There are distributions Dy, Ds. .. .. D, such that
1. With knowledge of the distribution D;, sample complexity is O(1).
2. Without knowledge of D;, sample complexity is €)(logn).
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Each D, is a product distribution such that

1/2 ifi=j
Pr [2j] = 1] = < o
x~D; \6/4 Ifl#].
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Sketch of Proof

e D, has ¢/2-cover of size 2. Thus O (
enough to e-learn if D; iIs known to the learner.

1ogND,E/2€+10g(1/5)> — O(1) samples are

e Choose 7 € {1,2,...,n} at random.
e Choose distribution D; and the target to be the projection ;.

e Algorithm that does not know D, and h;, sees only the matrix

(@[] a1[2] - aln] oy
Do[1] wol2] -+ waln] |

\fl] 2f2] - Efr] o /

e Column z|i| matches column y.

o If m < log(n) then with constant probability at least one other column
x|7] matches column y.

e Learner has to pick a column : or j.

For non-proper learners, the proof is more complicated.

Conclusions

e Unlabeled data help for projections.
e For the class of all functions, unlabeled data do not help.

e The problem is open for halfspaces and axis-aligned rectangles in R”,
and conjuctions and disjuctions in {0, 1}". They have VC(H) = O(n).
The gap could be potentially as big as 2(n).
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