Scale-Free Algorithms for Online Linear Optimization

Francesco Orabona Dávid Pál

Yahoo Labs NYC

October 9, 2015

AI Seminar @ University of Alberta

Overview

- 1 Online Linear Optimization
- 2 Applications
- 3 Non-adaptive algorithms
- 4 Adaptive (i.e. scale-free) algorithms
- **6** Lower bounds, Recent developments, Open problems

Overview

- 1 Online Linear Optimization
- 2 Applications
- 3 Non-adaptive algorithms
- 4 Adaptive (i.e. scale-free) algorithms
- 5 Lower bounds, Recent developments, Open problems

Remember $\mathrm{GD}\,\mathrm{step}\,\mathrm{size} = \frac{1}{\sqrt{\sum\limits_{\mathrm{past}\,\mathrm{iterations}}\|\mathrm{gradient}_t\|^2}}$

Online Linear Optimization

For t = 1, 2, ...

- predict $w_t \in K \subseteq \mathbb{R}^d$
- receive loss vector $g_t \in \mathbb{R}^d$
- suffer loss $\langle g_t, w_t \rangle$

Competitive analysis w.r.t. static strategy $u \in K$:

$$Regret_{T}(u) = \sum_{t=1}^{T} \langle g_{t}, w_{t} \rangle - \sum_{t=1}^{T} \langle g_{t}, u \rangle$$
algorithm's loss comparator's loss

Goal: Design algorithms with *sublinear* Regret $_T$.

Applications

- 1 Batch convex optimization
- 2 Stochastic optimization i.e. minimization of test error
- 3 Genuinely online/control problems

Regret bound implies results in all of these areas.

(Take Csaba's Online learning course!)

Application 1: Batch convex optimization

We want to solve

$$\underset{w \in K}{\operatorname{minimize}} f(w)$$

- Suppose $f: K \to \mathbb{R}$ is convex
- $w^* = \operatorname{argmin}_{w \in K} f(w)$
- Feed online algorithm with $g_t = \nabla f(w_t)$
- $\hat{w} = \frac{1}{T} \sum_{t=1}^{T} w_t$ is approximately optimal:

$$f(\widehat{w}) \le f(w^*) + \frac{\operatorname{Regret}_T(w^*)}{T}$$

Application 2: Stochastic optimization

• We want to solve

$$\label{eq:minimize} \underset{w \in K}{\operatorname{minimize}} \ \operatorname{Risk}(w) \qquad \text{where} \qquad \operatorname{Risk}(w) = \underset{z \sim D}{\operatorname{E}} \left[\ell(w, z) \right]$$

- *D* is unknown; we have i.i.d. sample $z_1, z_2, ..., z_T$ from *D*
- $\ell(w,z)$ is convex in w
- $w^* = \operatorname{argmin}_{w \in K} \operatorname{Risk}(w)$
- Feed online algorithm with $g_t = \nabla \ell(w_t, z_t)$
- $\hat{w} = \frac{1}{T} \sum_{t=1}^{T} w_t$ is approximately optimal:

$$\mathbf{E}\left[\mathrm{Risk}(\widehat{w})\right] \leq \mathrm{Risk}(w^*) + \frac{\mathbf{E}\left[\mathrm{Regret}_T(w^*)\right]}{T}$$

Application 3: Online Shortest Path

• Given graph G = (V, E) and source-sink pair a, b

- Algorithm chooses path p_t from a to b
- Receives loss of each edge: $\ell_t : E \to \mathbb{R}$
- Regret w.r.t. a path q

$$Regret_T(q) = \sum_{t=1}^{T} \ell_t(p_t) - \sum_{t=1}^{T} \ell_t(q)$$

• Vector $w \in K \subseteq \mathbb{R}^{|E|}$ is a unit flow from a to b

Typical Yahoo/Google applications

Stochastic optimization problem

$$\underset{w \in \mathbb{R}^d}{\operatorname{minimize}} \mathop{\mathbf{E}}_{z \sim D} \left[\ell(w, z) \right]$$

where w is a vector of parameters and z is a data record

- i.i.d. sample z_1, z_2, \ldots, z_T from D
- A data record z_t could be:
 - "Hi, My name is Nastasjushka:)" is a spam email.
 - Coca-Cola ad on www.cbc.ca was not clicked on by Csaba at 3:14:15pm
- Data is huge
 - T is between 10^6 and 10^{10}
 - w has dimension between 10^5 and 10^8

Follow The Regularized Leader (FTRL)

Let be $R: K \to \mathbb{R}$ be a convex and $\eta_t > 0$. FTRL chooses

$$w_t = \underset{w \in K}{\operatorname{argmin}} \left(\frac{1}{\eta_t} R(w) + \sum_{i=1}^{t-1} \langle g_i, w \rangle \right)$$

For example with $R(w) = \frac{1}{2} ||w||_2^2$

$$w_t = \Pi_K \left(-\eta_t \sum_{i=1}^{t-1} g_i \right)$$

where $\Pi_K(u)$ is the projection of u to K.

FTRL ≈ Gradient Descent

Suppose $K = \mathbb{R}^d$ and $R(w) = \frac{1}{2} ||w||_2^2$.

FTRL:

$$w_t = -\eta_t \sum_{i=1}^{t-1} g_i$$

Gradient Descent:

$$w_t = -\sum_{i=1}^{t-1} \eta_i g_i$$

Strong Convexity

A convex function $R: K \to \mathbb{R}$ is λ -strongly convex w.r.t. $\|\cdot\|$ iff

$$\forall x, y \in K \quad \forall t \in [0, 1]$$

$$R(tx + (1-t)y) \le tR(x) + (1-t)R(y) - \frac{\lambda}{2}t(1-t)\|x - y\|^2$$

If *R* is differentiable, this is equivalent to

$$\forall x, y \in K$$
 $R(y) \ge R(x) + \langle \nabla R(x), y - x \rangle + \frac{\lambda}{2} ||x - y||^2$

For example,

- $R(w) = \frac{1}{2} ||w||_2^2$ is 1-strongly convex w.r.t. $||\cdot||_2$
- $R(w) = \sum_{i=1}^{d} w_i \ln w_i$ is 1-strongly convex w.r.t. $\|\cdot\|_1$ on

$$K = \left\{ w \in \mathbb{R}^d : w \ge 0, \sum_{i=1}^d w_i = 1 \right\}$$

Regret of FTRL for Bounded *K*

Theorem (Abernethy et al. '08; Rakhlin '09)

Let $K \subseteq \mathbb{R}^d$ be convex bounded.

Let $R: K \to \mathbb{R}$ *be non-negative,* 1-strongly convex w.r.t. $\|\cdot\|$.

FTRL with
$$\eta_1 = \eta_2 \cdots = \eta_T = \sqrt{\frac{\sup_{v \in K} R(v)}{\sum_{t=1}^T \|g_t\|_*^2}}$$
 satisfies

$$\operatorname{Regret}_{T}(u) \leq 2 \sqrt{\sup_{v \in K} R(v) \sum_{t=1}^{T} \|g_{t}\|_{*}^{2}}.$$

Corollary

If
$$||g_t||_* \le B$$
 then $\operatorname{Regret}_T(u) \le 2B \sqrt{T \sup_{v \in K} R(v)}$.

Algorithm needs to know T, B, $\sum_{t=1}^{T} \|g_t\|_*^2$ in advance.

Adaptive algorithm?

Is there an algorithm such that

Regret_T(u)
$$\leq 100 \sqrt{\sup_{v \in K} R(v) \sum_{t=1}^{T} ||g_t||_*^2}$$

for any T and any sequence g_1, g_2, \ldots, g_T without knowing T, B, or $\sum_{t=1}^{T} \|g_t\|_*^2$ in advance?

Scale-Free Property

Multiply loss vectors by c > 0:

$$g_1,g_2,\cdots \rightarrow cg_1,cg_2,\ldots$$

An algorithm is **scale-free** if w_1, w_2, \ldots remains the same.

For a scale-free algorithm

$$\operatorname{Regret}_{T}(u) \to \operatorname{\mathbf{c}} \operatorname{Regret}_{T}(u) \qquad \sum_{t=1}^{T} \langle g_{t}, w_{t} \rangle \to \operatorname{\mathbf{c}} \sum_{t=1}^{T} \langle g_{t}, w_{t} \rangle$$

$$\sqrt{\sum_{t=1}^{T} \|g_{t}\|_{*}^{2}} \to \operatorname{\mathbf{c}} \sqrt{\sum_{t=1}^{T} \|g_{t}\|_{*}^{2}}$$

Scale-Free FTRL

For FTRL

$$w_t = \underset{w \in K}{\operatorname{argmin}} \left(\frac{1}{\eta_t} R(w) + \sum_{i=1}^{t-1} \langle \ell_i, w \rangle \right)$$

to be scale-free $1/\eta_t$ needs to be **positive** 1**-homogeneous** function of $\ell_1, \ell_2, \dots, \ell_{t-1}$.

That is,
$$(g_1, g_2, \dots, g_{t-1}) \to (cg_1, cg_2, \dots, cg_{t-1})$$
 causes
$$1/\eta_t \to c/\eta_t$$

$$w_{t} = \underset{w \in K}{\operatorname{argmin}} \left(\frac{1}{\eta_{t}} R(w) + \sum_{s=1}^{t-1} \langle g_{s}, w \rangle \right)$$

$$\downarrow$$

$$w_{t} = \underset{w \in K}{\operatorname{argmin}} \left(\frac{c}{\eta_{t}} R(w) + \sum_{s=1}^{t-1} \langle cg_{s}, w \rangle \right)$$

Two Good Scale-Free Choices of η_t SOLO FTRL:

$$\frac{1}{\eta_t} = \sqrt{\sum_{i=1}^{t-1} \|g_i\|_*^2}$$

ADAFTRI:

$$\frac{1}{\eta_t} = \begin{cases} 0 & \text{if } t = 1\\ \frac{1}{\eta_{t-1}} + \frac{1}{\eta_{t-1}} D_{R^*} \left(-\eta_{t-1} \sum_{i=1}^{t-1} g_i, -\eta_{t-1} \sum_{i=1}^{t-2} g_i \right) & \text{if } t \ge 2 \end{cases}$$

 $D_{R^*}(\cdot, \cdot)$ is the Bregman divergence of Fenchel conjugate of R:

$$D_{R^*}(u,v) = R^*(u) - R^*(v) - \langle u - v, \nabla R^*(v) \rangle$$

$$R^*(u) = \sup_{v \in K} \langle u, v \rangle - R(v)$$

Regret of Scale-Free FTRL

Theorem (Orabona & P. '15)

Let $R: K \to \mathbb{R}$ be non-negative and λ -strongly convex w.r.t. $\|\cdot\|$. Suppose K has diameter D w.r.t. to $\|\cdot\|$.

SOLO FTRL:

$$\operatorname{Regret}_{T}(u) \leq \left(R(u) + \frac{2.75}{\lambda}\right) \sqrt{\sum_{t=1}^{T} \|g_{t}\|_{*}^{2}} \\
+ 3.5 \min \left\{D, \frac{\sqrt{T-1}}{\lambda}\right\} \max_{t=1,2,\dots,T} \|g_{t}\|_{*}$$

ADAFTRL:

$$\operatorname{Regret}_{T}(u) \leq 2 \max \left\{ D, \frac{1}{\sqrt{\lambda}} \right\} (1 + R(u)) \sqrt{\sum_{t=1}^{T} \|g_{t}\|_{*}^{2}}$$

Optimization of λ for Bounded K

- Choose $R(w) = \lambda \cdot f(w)$ where f is non-negative 1-strongly convex.
- Use $D \le \sqrt{8 \sup_{v \in K} f(v)}$
- Optimize λ . Optimal λ depends only on $\sup_{v \in K} f(v)$.

With optimal choices of λ ,

ADAFTRL:
$$\operatorname{Regret}_T(u) \leq 5.3 \sqrt{\sup_{v \in K} f(v) \sum_{t=1}^T \|g_t\|_*^2}$$
 SOLO FTRL:
$$\operatorname{Regret}_T(u) \leq 13.3 \sqrt{\sup_{v \in K} f(v) \sum_{t=1}^T \|g_t\|_*^2}$$

Proof Techniques

Lemma

For non-negative numbers C, a_1, a_2, \ldots, a_T ,

$$\sum_{t=1}^{T} \min \left\{ \frac{a_t^2}{\sqrt{\sum_{s=1}^{t-1} a_s^2}}, Ca_t \right\} \le 3.5 \sqrt{\sum_{t=1}^{T} a_t^2} + 3.5 C \max_{t=1,2,\dots,T} a_t$$

Lemma

Let a_1, a_2, \ldots, a_T be non-negative. The recurrence

$$0 \le b_t \le \min \left\{ a_t, \frac{a_t^2}{\sum_{s=1}^{t-1} b_s} \right\} \quad implies \ that \quad \sum_{t=1}^T b_t \le 2 \sqrt{\sum_{t=1}^T a_t^2}$$

Lower Bound for Bounded K

Theorem (Orabona & P. '15)

For any $a_1, a_2, ..., a_T \ge 0$ and any algorithm there exists $g_1, g_2, ..., g_T \in \mathbb{R}^d$ and $u \in K$ such that

- 2 Regret_T(u) $\geq \frac{D}{\sqrt{8}} \sqrt{\sum_{t=1}^{T} \|g_t\|_*^2}$

Proof sketch.

• Choose $g \in \mathbb{R}^d$ and $x, y \in K$ such that

$$\|x - y\| = D$$
 $\|g\|_* = 1$
 $\underset{w \in K}{\operatorname{argmin}} \langle g, w \rangle = x$ $\underset{w \in K}{\operatorname{argmax}} \langle g, w \rangle = y$

• Set $g_t = \pm a_t g$ where signs are i.i.d. random

Open Problem: Bounded K

Lower vs. upper bound

$$\frac{D}{\sqrt{8}} \sqrt{\sum_{t=1}^{T} \|g_t\|_*^2} \quad \text{vs.} \quad 5.3 \sqrt{\sup_{u \in K} f(u) \sum_{t=1}^{T} \|g_t\|_*^2}$$

where $f: K \to \mathbb{R}$ is 1-strongly convex w.r.t. $\|\cdot\|$.

- Upper bound is (almost) tight. [Srebro, Sridharan, Tewari '11]
- Open problem: [Kwon & Mertikopoulos '14]

Given a convex set K and a norm $\|\cdot\|$, construct non-negative 1-strongly convex $f:K\to\mathbb{R}$ that minimizes

$$\sup_{u\in K}f(u).$$

Suboptimality of SOLO for Unbounded K

• SOLO for λ -strongly convex R,

$$\operatorname{Regret}_{T}(u) \leq R(u) \sqrt{\sum_{t=1}^{T} \|g_{t}\|_{*}^{2} + 6.25 \frac{\sqrt{T}}{\lambda} \max_{t=1,2,\dots,T} \|g_{t}\|_{*}}$$

• SOLO for $R(u) = ||u||_2^2$, which is 2-strongly convex

$$\operatorname{Regret}_{T}(u) \leq \|u\|_{2}^{2} \sqrt{\sum_{t=1}^{T} \|g_{t}\|_{*}^{2} + 3.125 \sqrt{T} \max_{t=1,2,\dots,T} \|g_{t}\|_{*}}$$

• Take $||u||_2 \le D$. SOLO with $K = \{u : ||u||_2 \le D\}$:

$$Regret_T(u) \le 13.3D \sqrt{\sum_{t=1}^{T} \|g_t\|_*^2}$$

What is the right bound for $K = \mathbb{R}^d$?

$$\operatorname{Regret}_{T}(u) \leq O\left(\|u\|_{2} \sqrt{\sum_{t=1}^{T} \|g_{t}\|_{*}^{2}}\right)$$
vs.

$$\operatorname{Regret}_{T}(u) \leq O\left(\|u\|_{2}^{2} \sqrt{\sum_{t=1}^{T} \|g_{t}\|_{*}^{2}}\right)$$

Upper Bound for $K = \mathbb{R}^d$ (Unpublished)

Theorem

If $||g_t||_2 \leq 1$, the algorithm

$$w_t = -\frac{\sum_{i=1}^{t-1} g_i}{2(t+1)} \left(\sqrt{t} - \sum_{i=1}^{t-1} \langle g_i, w_i \rangle \right)$$

has regret

$$\operatorname{Regret}_{T}(u) \leq O\left(\|u\|_{2} \sqrt{T \log(T\|u\|_{2})}\right).$$

Similar results [McMahan & Streeter '12; Orabona '13, '14; McMahan & Abernethy '13]

Lower Bound for $K = \mathbb{R}^1$ (Unpublished)

Theorem

For any algorithm there exists a sequence $g_1, g_2, ..., g_T \in \mathbb{R}^1$ such that $|g_1| = |g_2| = \cdots = |g_T| = 1$ and **one** of the following holds:

- **1** For $u = \log T$, Regret_T $(u) \ge \Omega(|u| \sqrt{T \log |u|})$.
- $2 \operatorname{Regret}_{T}(0) \geq \Omega \left(\sqrt{T \log \log T} \right).$

This rules out $O(|u|\sqrt{T})$ upper bound.

Open Problems: Unbounded *K*

• Is there an adaptive algorithm for $K = \mathbb{R}^d$ and 2-norm such that

$$||u||_2 \sqrt{T} \max_{t=1,2,...,T} ||g_t||_2 \cdot \text{poly}(\log T, \log ||u||_2)$$

for any sequence g_1, g_2, \ldots, g_T ?

- What about norms other than 2-norm?
- What about unbounded $K \neq \mathbb{R}^d$?

Questions?

Scale-Free Algorithms for Online Optimization, ALT 2015

http://arxiv.org/abs/1502.05744