Scale-Free Algorithms

 forOnline Linear Optimization

Francesco Orabona Dávid Pál

Yahoo Labs NYC
October 9, 2015
AI Seminar @ University of Alberta

Overview

(1) Online Linear Optimization
(2) Applications
(3) Non-adaptive algorithms
4) Adaptive (i.e. scale-free) algorithms
(5) Lower bounds, Recent developments, Open problems

Overview

(1) Online Linear Optimization
(2) Applications
(3) Non-adaptive algorithms
(4) Adaptive (i.e. scale-free) algorithms
(5) Lower bounds, Recent developments, Open problems

Remember

$$
\text { GD step size }=\frac{1}{\sqrt{\sum_{\text {past iterations }} \| \text { gradient }_{t} \|^{2}}}
$$

Online Linear Optimization

For $t=1,2, \ldots$

- predict $w_{t} \in K \subseteq \mathbb{R}^{d}$
- receive loss vector $g_{t} \in \mathbb{R}^{d}$
- suffer loss $\left\langle g_{t}, w_{t}\right\rangle$

Competitive analysis w.r.t. static strategy $u \in K$:

$$
\operatorname{Regret}_{T}(u)=\underbrace{\sum_{t=1}^{T}\left\langle g_{t}, w_{t}\right\rangle}_{\text {algorithm's loss }}-\underbrace{\sum_{t=1}^{T}\left\langle g_{t}, u\right\rangle}_{\text {comparator's loss }}
$$

Goal: Design algorithms with sublinear $\operatorname{Regret}_{T}$.

Applications

(1) Batch convex optimization
(2) Stochastic optimization i.e. minimization of test error
(3) Genuinely online/control problems

Regret bound implies results in all of these areas.
(Take Csaba's Online learning course!)

Application 1: Batch convex optimization

- We want to solve

$$
\underset{w \in K}{\operatorname{minimize}} f(w)
$$

- Suppose $f: K \rightarrow \mathbb{R}$ is convex
- $w^{*}=\operatorname{argmin}_{w \in K} f(w)$
- Feed online algorithm with $g_{t}=\nabla f\left(w_{t}\right)$
- $\widehat{w}=\frac{1}{T} \sum_{t=1}^{T} w_{t}$ is approximately optimal:

$$
f(\widehat{w}) \leq f\left(w^{*}\right)+\frac{\operatorname{Regret}_{T}\left(w^{*}\right)}{T}
$$

Application 2: Stochastic optimization

- We want to solve $\underset{w \in K}{\operatorname{minimize}} \operatorname{Risk}(w) \quad$ where $\quad \operatorname{Risk}(w)=\underset{z \sim D}{\mathbf{E}}[\ell(w, z)]$
- D is unknown; we have i.i.d. sample $z_{1}, z_{2}, \ldots, z_{T}$ from D
- $\ell(w, z)$ is convex in w
- $w^{*}=\operatorname{argmin}_{w \in K} \operatorname{Risk}(w)$
- Feed online algorithm with $g_{t}=\nabla \ell\left(w_{t}, z_{t}\right)$
- $\widehat{w}=\frac{1}{T} \sum_{t=1}^{T} w_{t}$ is approximately optimal:

$$
\mathbf{E}[\operatorname{Risk}(\widehat{w})] \leq \operatorname{Risk}\left(w^{*}\right)+\frac{\mathbf{E}\left[\operatorname{Regret}_{T}\left(w^{*}\right)\right]}{T}
$$

Application 3: Online Shortest Path

- Given graph $G=(V, E)$ and source-sink pair a, b

- Algorithm chooses path p_{t} from a to b
- Receives loss of each edge: $\ell_{t}: E \rightarrow \mathbb{R}$
- Regret w.r.t. a path q

$$
\operatorname{Regret}_{T}(q)=\sum_{t=1}^{T} \ell_{t}\left(p_{t}\right)-\sum_{t=1}^{T} \ell_{t}(q)
$$

- Vector $w \in K \subseteq \mathbb{R}^{|E|}$ is a unit flow from a to b

Typical Yahoo/Google applications

Stochastic optimization problem

$$
\underset{w \in \mathbb{R}^{d}}{\operatorname{minimize}} \underset{z \sim D}{\mathbf{E}}[\ell(w, z)]
$$

where w is a vector of parameters and z is a data record

- i.i.d. sample $z_{1}, z_{2}, \ldots, z_{T}$ from D
- A data record z_{t} could be:
- "Hi, My name is Nastasjushka :)" is a spam email.
- Coca-Cola ad on www. cbc. ca was not clicked on by Csaba at $3: 14: 15 \mathrm{pm}$
- Data is huge
- T is between 10^{6} and 10^{10}
- w has dimension between 10^{5} and 10^{8}

Follow The Regularized Leader (FTRL)

Let be $R: K \rightarrow \mathbb{R}$ be a convex and $\eta_{t}>0$. FTRL chooses

$$
w_{t}=\underset{w \in K}{\operatorname{argmin}}\left(\frac{1}{\eta_{t}} R(w)+\sum_{i=1}^{t-1}\left\langle g_{i}, w\right\rangle\right)
$$

For example with $R(w)=\frac{1}{2}\|w\|_{2}^{2}$

$$
w_{t}=\Pi_{K}\left(-\eta_{t} \sum_{i=1}^{t-1} g_{i}\right)
$$

where $\Pi_{K}(u)$ is the projection of u to K.

FTRL \approx Gradient Descent

Suppose $K=\mathbb{R}^{d}$ and $R(w)=\frac{1}{2}\|w\|_{2}^{2}$.
FTRL:

$$
w_{t}=-\eta_{t} \sum_{i=1}^{t-1} g_{i}
$$

Gradient Descent:

$$
w_{t}=-\sum_{i=1}^{t-1} \eta_{i} g_{i}
$$

Strong Convexity

A convex function $R: K \rightarrow \mathbb{R}$ is λ-strongly convex w.r.t. $\|\cdot\|$ iff

$$
\begin{aligned}
& \forall x, y \in K \quad \forall t \in[0,1] \\
& R(t x+(1-t) y) \leq t R(x)+(1-t) R(y)-\frac{\lambda}{2} t(1-t)\|x-y\|^{2}
\end{aligned}
$$

If R is differentiable, this is equivalent to

$$
\forall x, y \in K \quad R(y) \geq R(x)+\langle\nabla R(x), y-x\rangle+\frac{\lambda}{2}\|x-y\|^{2}
$$

For example,

- $R(w)=\frac{1}{2}\|w\|_{2}^{2}$ is 1 -strongly convex w.r.t. $\|\cdot\|_{2}$
- $R(w)=\sum_{i=1}^{d} w_{i} \ln w_{i}$ is 1 -strongly convex w.r.t. $\|\cdot\|_{1}$ on

$$
K=\left\{w \in \mathbb{R}^{d}: w \geq 0, \sum_{i=1}^{d} w_{i}=1\right\}
$$

Regret of FTRL for Bounded K

Theorem (Abernethy et al. '08; Rakhlin '09)
Let $K \subseteq \mathbb{R}^{d}$ be convex bounded.
Let $R: K \rightarrow \mathbb{R}$ be non-negative, 1-strongly convex w.r.t. $\|\cdot\|$.
FTRL with $\eta_{1}=\eta_{2} \cdots=\eta_{T}=\sqrt{\frac{\sup _{v \in K} R(v)}{\sum_{t=1}^{T}\left\|g_{t}\right\|_{*}^{2}}}$ satisfies

$$
\operatorname{Regret}_{T}(u) \leq 2 \sqrt{\sup _{v \in K} R(v) \sum_{t=1}^{T}\left\|g_{t}\right\|_{*}^{2}}
$$

Corollary
If $\left\|g_{t}\right\|_{*} \leq B$ then $\operatorname{Regret}_{T}(u) \leq 2 B \sqrt{T \sup _{v \in K} R(v)}$.
Algorithm needs to know $T, B, \sum_{t=1}^{T}\left\|g_{t}\right\|_{*}^{2}$ in advance.

Adaptive algorithm?

Is there an algorithm such that

$$
\operatorname{Regret}_{T}(u) \leq 100 \sqrt{\sup _{v \in K} R(v) \sum_{t=1}^{T}\left\|g_{t}\right\|_{*}^{2}}
$$

for any T and any sequence $g_{1}, g_{2}, \ldots, g_{T}$ without knowing T, B, or $\sum_{t=1}^{T}\left\|g_{t}\right\|_{*}^{2}$ in advance?

Scale-Free Property

Multiply loss vectors by $c>0$:

$$
g_{1}, g_{2}, \cdots \rightarrow c g_{1}, c g_{2}, \ldots
$$

An algorithm is scale-free if w_{1}, w_{2}, \ldots remains the same.

For a scale-free algorithm

$$
\begin{gathered}
\operatorname{Regret}_{T}(u) \rightarrow c \operatorname{Regret}_{T}(u) \quad \sum_{t=1}^{T}\left\langle g_{t}, w_{t}\right\rangle \rightarrow c \sum_{t=1}^{T}\left\langle g_{t}, w_{t}\right\rangle \\
\sqrt{\sum_{t=1}^{T}\left\|g_{t}\right\|_{*}^{2}} \rightarrow c \sqrt{\sum_{t=1}^{T}\left\|g_{t}\right\|_{*}^{2}}
\end{gathered}
$$

Scale-Free FTRL

For FTRL

$$
w_{t}=\underset{w \in K}{\operatorname{argmin}}\left(\frac{1}{\eta_{t}} R(w)+\sum_{i=1}^{t-1}\left\langle\ell_{i}, w\right\rangle\right)
$$

to be scale-free $1 / \eta_{t}$ needs to be positive 1-homogeneous function of $\ell_{1}, \ell_{2}, \ldots, \ell_{t-1}$.

That is, $\left(g_{1}, g_{2}, \ldots, g_{t-1}\right) \rightarrow\left(c g_{1}, c g_{2}, \ldots, c g_{t-1}\right)$ causes

$$
1 / \eta_{t} \rightarrow c / \eta_{t}
$$

$$
\begin{aligned}
w_{t} & =\underset{w \in K}{\operatorname{argmin}}\left(\frac{1}{\eta_{t}} R(w)+\sum_{s=1}^{t-1}\left\langle g_{s}, w\right\rangle\right) \\
& \downarrow \\
w_{t} & =\underset{w \in K}{\operatorname{argmin}}\left(\frac{c}{\eta_{t}} R(w)+\sum_{s=1}^{t-1}\left\langle c g_{s}, w\right\rangle\right)
\end{aligned}
$$

Two Good Scale-Free Choices of η_{t}

 SOLO FTRL:$$
\frac{1}{\eta_{t}}=\sqrt{\sum_{i=1}^{t-1}\left\|g_{i}\right\|_{*}^{2}}
$$

ADAFTRL:

$$
\frac{1}{\eta_{t}}= \begin{cases}0 & \text { if } t=1 \\ \frac{1}{\eta_{t-1}}+\frac{1}{\eta_{t-1}} D_{R^{*}}\left(-\eta_{t-1} \sum_{i=1}^{t-1} g_{i}-\eta_{t-1} \sum_{i=1}^{t-2} g_{i}\right) & \text { if } t \geq 2\end{cases}
$$

$D_{R^{*}}(\cdot, \cdot)$ is the Bregman divergence of Fenchel conjugate of R :

$$
\begin{aligned}
D_{R^{*}}(u, v) & =R^{*}(u)-R^{*}(v)-\left\langle u-v, \nabla R^{*}(v)\right\rangle \\
R^{*}(u) & =\sup _{v \in K}\langle u, v\rangle-R(v)
\end{aligned}
$$

Regret of Scale-Free FTRL

Theorem (Orabona \& P. '15)

Let $R: K \rightarrow \mathbb{R}$ be non-negative and λ-strongly convex w.r.t. $\|\cdot\|$. Suppose K has diameter D w.r.t. to $\|\cdot\|$. SOLO FTRL:

$$
\begin{aligned}
& \operatorname{Regret}_{T}(u) \leq\left(R(u)+\frac{2.75}{\lambda}\right) \sqrt{\sum_{t=1}^{T}\left\|g_{t}\right\|_{*}^{2}} \\
&+3.5 \mathrm{~min}\left\{D, \frac{\sqrt{T-1}}{\lambda}\right\} \max _{t=1,2, \ldots, T}\left\|g_{t}\right\|_{*}
\end{aligned}
$$

ADAFTRL:

$$
\operatorname{Regret}_{T}(u) \leq 2 \max \left\{D, \frac{1}{\sqrt{\lambda}}\right\}(1+R(u)) \sqrt{\sum_{t=1}^{T}\left\|g_{t}\right\|_{*}^{2}}
$$

Optimization of λ for Bounded K

- Choose $R(w)=\lambda \cdot f(w)$ where f is non-negative 1-strongly convex.
- Use $D \leq \sqrt{8 \sup _{v \in K} f(v)}$
- Optimize λ. Optimal λ depends only on $\sup _{v \in K} f(v)$.

With optimal choices of λ,
ADAFTRL: $\quad \operatorname{Regret}_{T}(u) \leq 5.3 \sqrt{\sup _{v \in K} f(v) \sum_{t=1}^{T}\left\|g_{t}\right\|_{*}^{2}}$
SOLO FTRL: $\quad \operatorname{Regret}_{T}(u) \leq 13.3 \sqrt{\sup _{v \in K} f(v) \sum_{t=1}^{T}\left\|g_{t}\right\|_{*}^{2}}$

Proof Techniques

Lemma

For non-negative numbers $C, a_{1}, a_{2}, \ldots, a_{T}$,

$$
\sum_{t=1}^{T} \min \left\{\frac{a_{t}^{2}}{\sqrt{\sum_{s=1}^{t-1} a_{s}^{2}}}, C a_{t}\right\} \leq 3.5 \sqrt{\sum_{t=1}^{T} a_{t}^{2}}+3.5 C \max _{t=1,2, \ldots, T} a_{t}
$$

Lemma

Let $a_{1}, a_{2}, \ldots, a_{T}$ be non-negative. The recurrence

$$
0 \leq b_{t} \leq \min \left\{a_{t}, \frac{a_{t}^{2}}{\sum_{s=1}^{t-1} b_{s}}\right\} \quad \text { implies that } \quad \sum_{t=1}^{T} b_{t} \leq 2 \sqrt{\sum_{t=1}^{T} a_{t}^{2}}
$$

Lower Bound for Bounded K

Theorem (Orabona \& P. '15)

For any $a_{1}, a_{2}, \ldots, a_{T} \geq 0$ and any algorithm there exists $g_{1}, g_{2}, \ldots, g_{T} \in \mathbb{R}^{d}$ and $u \in K$ such that
(1) $\left\|g_{1}\right\|_{*}=a_{1},\left\|g_{2}\right\|_{*}=a_{2}, \ldots,\left\|g_{T}\right\|_{*}=a_{T}$
(2) $\operatorname{Regret}_{T}(u) \geq \frac{D}{\sqrt{8}} \sqrt{\sum_{t=1}^{T}\left\|g_{t}\right\|_{*}^{2}}$

Proof sketch.

- Choose $g \in \mathbb{R}^{d}$ and $x, y \in K$ such that

$$
\begin{aligned}
\|x-y\| & =D & \|g\|_{*} & =1 \\
\underset{w \in K}{\operatorname{argmin}}\langle g, w\rangle & =x & \underset{w \in K}{\operatorname{argmax}}\langle g, w\rangle & =y
\end{aligned}
$$

- Set $g_{t}= \pm a_{t} g$ where signs are i.i.d.
 random

Open Problem: Bounded K

- Lower vs. upper bound

$$
\frac{D}{\sqrt{8}} \sqrt{\sum_{t=1}^{T}\left\|g_{t}\right\|_{*}^{2}} \quad \text { vs. } \quad 5.3 \sqrt{\sup _{u \in K} f(u) \sum_{t=1}^{T}\left\|g_{t}\right\|_{*}^{2}}
$$

where $f: K \rightarrow \mathbb{R}$ is 1 -strongly convex w.r.t. $\|\cdot\|$.

- Upper bound is (almost) tight. [Srebro, Sridharan, Tewari' 11]
- Open problem: [Kwon \& Mertikopoulos ' 14$]$

Given a convex set K and a norm $\|\cdot\|$, construct non-negative 1 -strongly convex $f: K \rightarrow \mathbb{R}$ that minimizes

$$
\sup _{u \in K} f(u) .
$$

Suboptimality of SOLO for Unbounded K

- SOLO for λ-strongly convex R,

$$
\operatorname{Regret}_{T}(u) \leq R(u) \sqrt{\sum_{t=1}^{T}\left\|g_{t}\right\|_{*}^{2}}+6.25 \frac{\sqrt{T}}{\lambda} \max _{t=1,2, \ldots, T}\left\|g_{t}\right\|_{*}
$$

- SOLO for $R(u)=\|u\|_{2}^{2}$, which is 2-strongly convex

$$
\operatorname{Regret}_{T}(u) \leq\|u\|_{2}^{2} \sqrt{\sum_{t=1}^{T}\left\|g_{t}\right\|_{*}^{2}}+3.125 \sqrt{T} \max _{t=1,2, \ldots, T}\left\|g_{t}\right\|_{*}
$$

- Take $\|u\|_{2} \leq D$. SOLO with $K=\left\{u:\|u\|_{2} \leq D\right\}$:

$$
\operatorname{Regret}_{T}(u) \leq 13.3 D \sqrt{\sum_{t=1}^{T}\left\|g_{t}\right\|_{*}^{2}}
$$

What is the right bound for $K=\mathbb{R}^{d}$?

$$
\operatorname{Regret}_{T}(u) \leq O\left(\|u\|_{2} \sqrt{\sum_{t=1}^{T}\left\|g_{t}\right\|_{*}^{2}}\right)
$$

VS.

$$
\operatorname{Regret}_{T}(u) \leq O\left(\|u\|_{2}^{2_{2}} \sqrt{\sum_{t=1}^{T}\left\|g_{t}\right\|_{*}}\right)
$$

Upper Bound for $K=\mathbb{R}^{d}$ (Unpublished)

Theorem
If $\left\|g_{t}\right\|_{2} \leq 1$, the algorithm

$$
w_{t}=-\frac{\sum_{i=1}^{t-1} g_{i}}{2(t+1)}\left(\sqrt{t}-\sum_{i=1}^{t-1}\left\langle g_{i}, w_{i}\right\rangle\right)
$$

has regret

$$
\operatorname{Regret}_{T}(u) \leq O\left(\|u\|_{2} \sqrt{T \log \left(T\|u\|_{2}\right)}\right)
$$

Similar results [McMahan \& Streeter '12; Orabona '13, '14; McMahan \& Abernethy '13]

Lower Bound for $K=\mathbb{R}^{1}$ (Unpublished)

Theorem
For any algorithm there exists a sequence $g_{1}, g_{2}, \ldots, g_{T} \in \mathbb{R}^{1}$ such that $\left|g_{1}\right|=\left|g_{2}\right|=\cdots=\left|g_{T}\right|=1$ and one of the following holds:
(1) For $u=\log T$, $\operatorname{Regret}_{T}(u) \geq \Omega(|u| \sqrt{T \log |u|})$.
(2) $\operatorname{Regret}_{T}(0) \geq \Omega(\sqrt{T \log \log T})$.

This rules out $O(|u| \sqrt{T})$ upper bound.

Open Problems: Unbounded K

- Is there an adaptive algorithm for $K=\mathbb{R}^{d}$ and 2-norm such that

$$
\|u\|_{2} \sqrt{T} \max _{t=1,2, \ldots, T}\left\|g_{t}\right\|_{2} \cdot \operatorname{poly}\left(\log T, \log \|u\|_{2}\right)
$$

for any sequence $g_{1}, g_{2}, \ldots, g_{T}$?

- What about norms other than 2-norm?
- What about unbounded $K \neq \mathbb{R}^{d}$?

Questions?

Scale-Free Algorithms for Online Optimization, ALT 2015

http://arxiv.org/abs/1502.05744

