Scale-Free Algorithms
for
Online Linear Optimization

Francesco Orabona David Pal

Yahoo Labs NYC

October 9, 2015

Al Seminar @ University of Alberta



Overview

@ Online Linear Optimization

® Applications

® Non-adaptive algorithms

O Adaptive (i.e. scale-free) algorithms

® Lower bounds, Recent developments, Open problems



Overview

@ Online Linear Optimization

® Applications

® Non-adaptive algorithms

O Adaptive (i.e. scale-free) algorithms

® Lower bounds, Recent developments, Open problems

1

GD step size =
Y |gradient,||?

past iterations




Online Linear Optimization

Fort=1,2,...
e predictw; € K C R
e receive loss vector g; € R?

o suffer loss (g, w)

Competitive analysis w.r.t. static strategy u € K:

T T
Regret,(u Z QW) — Z (gt,u)
t=1 t=1
~——— ———
algorithm’s loss comparator’s loss

Goal: Design algorithms with sublinear Regret.



Applications

@ Batch convex optimization
@® Stochastic optimization i.e. minimization of test error

® Genuinely online/control problems

Regret bound implies results in all of these areas.

(Take Csaba’s Online learning course!)



Application 1: Batch convex optimization

We want to solve

minimize f(w)

Suppose f : K — R is convex

o 0" = argmin,  f(w)

Feed online algorithm with ¢; = Vf(wy)

W=1 Y.L, w; is approximately optimal:

Regret,(w*)

F@) < flwr) + —2



Application 2: Stochastic optimization

We want to solve

minimize Risk(w) where Risk(w) = E [¢(w,z)]

wekK z~D

D is unknown; we have i.i.d. sample z3, 2, . .., zr from D

l(w, z) is convex in w

e w* = argmin,_, Risk(w)

Feed online algorithm with ¢; = V{(wy, z;)

w= % Zthl wy is approximately optimal:

E [Regret,(w")]

E [Risk(w)] < Risk(w*) 4+ T




Application 3: Online Shortest Path

e Given graph G = (V, E) and source-sink pair a,b

Algorithm chooses path p; froma to b

Receives loss of each edge: /; : E — R

Regret w.r.t. a path g

T T
Regretr(q) = ;Mpt) - ;Et@

Vector w € K C RIEl is a unit flow from a to b



Typical Yahoo/Google applications

Stochastic optimization problem

minimize E [{(w,z)]
weRd  z~D

where w is a vector of parameters and z is a data record

e iid. sample zy,2y,...,zr from D
e A data record z; could be:
e “Hi, My name is Nastasjushka :)” is a spam email.
e Coca-Cola ad on www. cbc. ca was not clicked on by Csaba
at 3:14:15pm
e Data is huge

e T is between 10° and 1010
e w has dimension between 10° and 108



Follow The Regularized Leader (FTRL)

Letbe R : K — R be a convex and 7; > 0. FTRL chooses

=1
wy = argmin <1R(w) +Y (si w))

wekK 1t i=1

For example with R(w) = 1||w]|3

-1
wy = Tk <—77t Zgi)
i=1

where ITg(u) is the projection of u to K.




FTRL =~ Gradient Descent

Suppose K = R? and R(w) = |w]|3.

FTRL: .
Wy = —1t Zgi
i=1

Gradient Descent:

t—1
wr=—Y 7igi
=1



Strong Convexity

A convex function R : K — R is A-strongly convex w.r.t. || - || iff
Vx,y € K Vte|[0,1]

A
R(tx+ (1= ty) < R(x) + (1= OR(y) = St = t)[x — y|*
If R is differentiable, this is equivalent to

A
Yy € K R(y) > R(x) + (VR(x),y —x) + S [lx = y[I*

For example,
o R(w) = }||wl|} is 1-strongly convex w.r.t. | - [|2
o R(w) = Y%, w;Inw; is 1-strongly convex w.r.t. || - ||; on

d
K:{wele : wEO,Zwizl}

i=1



Regret of FTRL for Bounded K

Theorem (Abernethy et al. ‘08; Rakhlin "09)

Let K C RY be convex bounded.
Let R : K — R be non-negative, 1-strongly convex w.r.t. || - ||.

FTRLwithmyy =12+ =51 = 4/ % satisfies

veK

Regret (1) < J sup R(v Z g% -

Corollary
If ||gt||« < B then Regret,(u) < 2B \/m

Algorithm needs to know T, B, Y/, ||g:||2 in advance.



Adaptive algorithm?

Is there an algorithm such that

veK

T
Regret, (1) < 100 \l supR(v) ) [Ig:]/?
=1

for any T and any sequence g1,$2, . . ., gt without knowing T, B,
or Y, ||lg¢||? in advance?



Scale-Free Property

Multiply loss vectors by ¢ > 0:

81,82, - — C81,C82, -

An algorithm is scale-free if wy, w;, ... remains the same.

For a scale-free algorithm
T T
Regret (1) — cRegret,(u) Z Qt, Wt) Z(gt, W)

t=1 t=1

T T
Yo llgellz = ey Yo llsell?
=1 t=1



Scale-Free FTRL
For FTRL

wy = argmin )+ Z (4;, w)
weK 77f

to be scale-free 1/7; needs to be positive 1-homogeneous
function of 41,45, ...,4;_.

Thatis, (g1,82,---,8-1) — (c§1,¢82, . ..,Cgt—1) causes
/e —c/n

1 t—1
w; = argmin <17R(w) + E(gs,w>>
t s=1

weK
1

c -1
w; = argmin <17tR(w) Z(Cgs, >>

weK



Two Good Scale-Free Choices of #;
SOLO FTRL:

-..
H

— ML

sH
I
I

ADAFTRL:

0 ift=1
1t it R*( M1 Tim1 Siv m_lif-;fgi) ift>2

Dg-(-,-) is the Bregman divergence of Fenchel conjugate of R:

Dg+(u,v) = R*(u) — R*(v) — (u — v, VR*(v))
R*(u) = sup(u,v) — R(v)

veK



Regret of Scale-Free FTRL

Theorem (Orabona & P. "15)
Let R : K — R be non-negative and A-strongly convex w.r.t. || - ||.
Suppose K has diameter D w.r.t. to || - ||.

SOLO FTRL:

T
Z I8¢ l1?

=1

Regrety(u) < <R(u) n 2Z5>

~

T-1
+ 3.5min {D, } max Il gt I

ADAFTRL:

Regret, (1) < 2max {D \}X} (1+R(u Z 1gell2



Optimization of A for Bounded K

e Choose R(w) = A - f(w) where f is non-negative 1-strongly
convex.
e UseD < /8sup, . f(v)

e Optimize A. Optimal A depends only on sup, . f(v).

With optimal choices of A,

T

ADAFTRL: Regret (1) < 5.3 J supf(v) ) |82
veK =1

T
SOLO FTRL:  Regret,(u) < 13.3 \l supf(v) ) |82
t=1

veK



Proof Techniques

Lemma
For non-negative numbers C,ay,ay, . .. ,ar,

T 2 T
. a
Y min{ ——t—, Ca; p <35,|) a7 + 35C max_a;
=1 =12 =1 t=12,...T
s=1%s
Lemma

Let ay, ay, ..., ar be non-negative. The recurrence

2

a
t—1
Zs:l bs

T
0 < by < min {at, } implies that Yy by <2
=1



Lower Bound for Bounded K

Theorem (Orabona & P. "15)
Forany ay,ay, ..., ar > 0 and any algorithm there exists
91,82,---,87 € R and u € K such that

0 sill: =, lg2ll. = a2, .., llgrll- = ar
® Regret,(u) > L\ /T |31

Proof sketch.
o Choose g € RY and x,y € K such that

lx—yl =D gl =1~

argmin(g,w) = x argmax(g,w) =y
wekK wek

e Set g; = +ta;g where signs are i.i.d.
random



Open Problem: Bounded K

e Lower vs. upper bound

T T

D
—= | X llgell2 vs. 5.3, |supf(u) ) llg:ll2
\/g t=1 uek t=1

where f : K — R is 1-strongly convex w.r.t. || - ||.

° Upper bound lS (almOSt) tlght [Srebro, Sridharan, Tewari '11]

° Open problem: [Kwon & Mertikopoulos "14]

Given a convex set K and a norm || - ||, construct
non-negative 1-strongly convex f : K — R that
minimizes

supf () .

uek



Suboptimality of SOLO for Unbounded K

¢ SOLO for A-strongly convex R,

T
Regret (1) < Z 1g¢I2 + 6. 25\(t max HgtH

e SOLO for R(u) = ||u||3, which is 2-strongly convex

T
Regrety (1) < [ul}3 | Y- gl +3.125VT max_gill.
t=1 T

e Take |lul]|2 < D. SOLOwith K = {u : |jul], < D}:

Regret (1) < 13.3D , Z llgt]12



What is the right bound for K = R%?

T
Regret,(u) <O (”2 ) gt|§>
=1

VS.

T
Regret, (1) < O (M% Z gt|§>
=1




Upper Bound for K = R? (Unpublished)

Theorem
If ||gtll2 < 1, the algorithm

-1, -1
o=~ FEE (- B

has regret

Regrety (1) < O ( Jully/Tlog(Tlul) )

Similar resu].ts [McMahan & Streeter "12; Orabona "13, 14; McMahan & Abernethy "13]



Lower Bound for K = R! (Unpublished)

Theorem
For any algorithm there exists a sequence g1,82, - - ., g € R such
that |g1| = |g2| = - -+ = |gr| = 1 and one of the following holds:

© Foru =log T, Regret,(u) > Q) (|u] v Tlog |u|)
@ Regret;(0) > Q (/TloglogT).

This rules out O(|u| v/T) upper bound.



Open Problems: Unbounded K

o Is there an adaptive algorithm for K = R? and 2-norm such
that

lull2 VT max_|g:]2- poly(log T, log u|2)

for any sequence 1,92, ...,817
e What about norms other than 2-norm?
e What about unbounded K # R9?



Questions?

Scale-Free Algorithms for Online Optimization, ALT 2015

http://arxiv.org/abs/1502.05744


http://arxiv.org/abs/1502.05744

