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1. Introduction

Online Linear Optimization (OLO) is a problem where an algorithm repeatedly chooses a point w; from a convex decision
set K, observes an arbitrary, or even adversarially chosen, loss vector ¢; and suffers the loss (¢;, w;). The goal of the
algorithm is to have a small cumulative loss. The performance of an algorithm is evaluated by the so-called regret, which is
the difference of the cumulative losses of the algorithm and of the (hypothetical) strategy that would choose in every round
the same best point in hindsight.

OLO is a fundamental problem in machine learning [2-4]|. Many learning problems can be directly phrased as OLO, e.g.,
learning with expert advice [5-8] and online combinatorial optimization [9-11]. Other problems can be reduced to OLO, e.g.,
online convex optimization [12], [4, Chapter 2], online classification [13,14] and regression [15], [2, Chapters 11 and 12],
multi-armed bandits problems [2, Chapter 6], [16,17], and batch and stochastic optimization of convex functions [18,19].
Hence, a result in OLO immediately implies other results in all these domains.

The adversarial choice of the loss vectors received by the algorithm is what makes the OLO problem challenging. In
particular, if an OLO algorithm commits to an upper bound on the norm of future loss vectors, its regret can be made
arbitrarily large through an adversarial strategy that produces loss vectors with norms that exceed the upper bound.

For this reason, most of the existing OLO algorithms receive as an input—or implicitly assume—an upper bound B on the
norm of the loss vectors. The input B is often disguised as the learning rate, the regularization parameter, or the parameter
of strong convexity of the regularizer. However, these algorithms have two obvious drawbacks.
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Table 1

Selected results for OLO. Best results in each column are in bold.
Algorithm Decisions set(s) Regularizer(s) Scale-free
HEDGE [7] Probability Simplex Negative Entropy No
GIGA [20] Any Bounded Liwi No
RDA [21] Any Any Strongly Convex No
FTRL-PROXIMAL [22,23] Any Bounded %HwH%+ any convex func. ¢ Yes
ADAGRAD MD [24] Any Bounded %HWH%+ any convex func. Yes
ADAGRAD FTRL [24] Any %HWH§+ any convex func. No
ADAHEDGE |[25] Probability Simplex Negative Entropy Yes
NAG [26] {u : max (¢, u) < C} Lliwi3 N/AP
SCALE INVARIANT ALGORITHMS [27] Any %HWH%Jr any convex func. 1 <p <2 N/AP
ScaLE-FREE MD [this paper] supy yek By (U, v) < oo Any Strongly Convex Yes
SOLO FTRL [this paper] Any Any Strongly Convex Yes

2 Even if, in principle the FTRL-Proximal algorithm can be used with any proximal regularizer, to the best of our knowledge a general way to construct
proximal regularizers is not known. The only proximal regularizer we are aware is based on the 2-norm.
b These algorithms attempt to produce an invariant sequence of predictions (w¢, ¢;), rather than a sequence of invariant w.

First, they do not come with any regret guarantee for sequences of loss vectors with norms exceeding B. Second, on
sequences of loss vectors with norms bounded by b « B, these algorithms fail to have an optimal regret guarantee that
depends on b rather than on B.

There is a clear practical need to design algorithms that adapt automatically to the norms of the loss vectors. A natural,
yet overlooked, design method to achieve this type of adaptivity is by insisting to have a scale-free algorithm. That is,
with the same parameters, the sequence of decisions of the algorithm does not change if the sequence of loss vectors is
multiplied by a positive constant. The most important property of scale-free algorithms is that both their loss and their
regret scale linearly with the maximum norm of the loss vector appearing in the sequence.

1.1. Previous results

The majority of the existing algorithms for OLO are based on two generic algorithms: FOLLOW THE REGULARIZER LEADER
(FTRL) and MiIrrOR DESCENT (MD). FTRL dates back to the potential-based forecaster in [2, Chapter 11] and its theory was
developed in [28]. The name FoLLow THE REGULARIZED LEADER comes from [16]. Independently, the same algorithm was
proposed in [29] for convex optimization under the name DUAL AVERAGING and rediscovered in [21] for online convex
optimization. Time-varying regularizers were analyzed in [24] and the analysis tightened in [27]. MD was originally proposed
in [18] and later analyzed in [30] for convex optimization. In the online learning literature it makes its first appearance,
with a different name, in [15].

Both FTRL and MD are parametrized by a function called a regularizer. Based on different regularizers different algorithms
with different properties can be instantiated. A summary of algorithms for OLO is presented in Table 1. All of them are
instances of FTRL or MD.

Scale-free versions of MD include ADAGRAD MD [24]. However, the ADAGRAD MD algorithm has a non-trivial regret bounds
only when the Bregman divergence associated with the regularizer is bounded. In particular, since a bound on the Bregman
divergence implies that the decision set is bounded, the regret bound for ADAGRAD MD is vacuous for unbounded sets. In
fact, as we show in Section 4.1, ADAGRAD MD and similar algorithms based on MD incur Q(T) regret, in the worst case, if
the Bregman divergence is not bounded.

Only one scale-free algorithm based on FTRL was known. It is the ADAHEDGE [25] algorithm for learning with expert
advice, where the decision set is bounded. An algorithm based on FTRL that is “almost” scale-free is ADAGRAD FTRL [24].
This algorithm fails to be scale-free due to “off-by-one” issue; see [23] and the discussion in Section 3. Instead, FTRL-
PROXIMAL [22,23] solves the off-by-one issue, but it requires proximal regularizers. In general, proximal regularizers do not
have a simple form and even the simple 2-norm case requires bounded domains to achieve non-vacuous regret.

For unbounded decision sets no scale-free algorithm with a non-trivial regret bound was known. Unbounded decision
sets are practically important (see, e.g., [31]), since learning of large-scale linear models (e.g., logistic regression) is done by
gradient methods that can be reduced to OLO with decision set RY.

1.2. Overview of the results
We design and analyze two scale-free algorithms: SOLO FTRL and ScALE-FREE MD. A third one, ADAFTRL, is presented

in the Appendix. SOLO FTRL and ADAFTRL are based on FTRL. ADAFTRL is a generalization of ADAHEDGE [25] to arbitrary
strongly convex regularizers. SOLO FTRL can be viewed as the “correct” scale-free version of the diagonal version of ADAGRAD
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FTRL [24] generalized to arbitrary strongly convex regularizers. SCALE-FREE MD is based on MD. It is a generalization of
ADAGRAD MD [24] to arbitrary strongly convex regularizers. The three algorithms are presented in Sections 3 and 4, and
Appendix B, respectively.

We prove that the regret of SOLO FTRL and ADAFTRL on bounded domains after T rounds is bounded by

O(\/supveK fw) ZL] ll¢¢12) where f is a non-negative regularizer that is 1-strongly convex with respect to a norm || - ||

and || - ||+ is its dual norm. For ScALE-FREE MD, we prove O(\/supmmK Byf(u,v) ZrT=1 ll€¢]|12) where By is the Bregman diver-
gence associated with a 1-strongly convex regularizer f. In Section 5, we show that the ,/ZL] |l¢¢|12 term in the bounds

is necessary by proving a %,/ZL] l€¢||2 lower bound on the regret of any algorithm for OLO for any decision set with

diameter D with respect to the primal norm || - ||.
For SOLO FTRL, we prove that the regret against a competitor u € K is at most O(f(u),/Zthl ez +

Mmaxr=172,..T ||Et||*ﬁ ). As before, f is a non-negative 1-strongly convex regularizer. This bound is non-trivial for any
decision set, bounded or unbounded. The result makes SOLO FTRL the first adaptive algorithm for unbounded decision sets
with a non-trivial regret bound.

All three algorithms are any-time, i.e., they do not need to know the number of rounds, T, in advance and the regret
bounds hold for all T simultaneously.

Our proof techniques rely on new homogeneous inequalities (Lemmas 3, 7) which might be of independent interest.

Finally, in Section 4.1, we show negative results for existing popular variants of MD. We show two examples of decision
sets and sequences of loss vectors of unit norm on which these variants of MD have Q(T) regret. These results indicate that
FTRL is superior to MD in a worst-case sense.

Preliminary version of the results were presented at ALT 2015 [1].

2. Notation and preliminaries

Let V be a finite-dimensional? real vector space equipped with a norm || - |. We denote by V* its dual vector space. The
bi-linear map associated with (V*, V) is denoted by {-,-) : V* x V — R. The dual norm of || - || is || - [|4.

In OLO, in each round t =1, 2, ..., the algorithm chooses a point w; in the decision set K C V and then the algorithm
observes a loss vector ¢; € V*. The instantaneous loss of the algorithm in round t is (¢;, w;). The cumulative loss of the
algorithm after T rounds is ZZ:] (£¢, we). The regret of the algorithm with respect to a point u € K is

T

Regrety (u) = Z(Et, W) —
t=1 t

M-

(€, u),
1

and the regret with respect to the best point is Regretr = sup,.x Regretr (u). We assume that K is a non-empty closed
convex subset of V. Sometimes we will assume that K is also bounded. We denote by D its diameter with respect to || - |,
ie, D =sup, yck llu — v|. If K is unbounded, D = +o0.

2.1. Convex analysis

The Bregman divergence of a convex differentiable function f is defined as By (u,v) = f(u) — f(v) — (Vf(v),u —v). Note
that By (u, v) > 0 for any u, v which follows directly from the definition of convexity of f.

The Fenchel conjugate of a function f: K — R is the function f*:V* — RU {400} defined as f*(€) = sup,cx (¢, w) —
f(w)). The Fenchel conjugate of any function is convex (since it is a supremum of affine functions) and satisfies the Fenchel-
Young inequality

Ywek, VeeV* Fw) + F5(0) > (¢, w) .

Monotonicity of Fenchel conjugates follows easily from the definition: If f, g: K — R satisfy f(w) < g(w) for all w € K
then f*(¢) > g*(¢) for every £ € V*.
Given XA > 0, a function f: K — R is called A-strongly convex with respect to a norm | - || if and only if, for all x, y € K,

A
f =z FO+(VF,y =%+ SlIx =yl
where V f(x) is any subgradient of f at the point x.

The following proposition relates the range of values of a strongly convex function to the diameter of its domain. The
proof can be found in Appendix A.

2 Many, but not all, of our results can be extended to more general normed vector spaces.
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Proposition 1 (Diameter vs. range). Let K C V be a non-empty bounded closed convex set. Let D = sup,, ,<k llu — V|| be its diameter
with respect to || - |. Let f : K — R be a non-negative lower semi-continuous function that is 1-strongly convex with respect to || - ||

Then, D < ,/8sup, ¢k f(V).
Fenchel conjugates and strongly convex functions have certain nice properties, which we list in Proposition 2 below.

Proposition 2 (Fenchel conjugates of strongly convex functions). Let K C V be a non-empty closed convex set with diameter D :=

supy yek lu — vil. Let > > 0, and let f : K — R be a lower semi-continuous function that is A-strongly convex with respect to || - |.
The Fenchel conjugate of f satisfies:

. f* s finite everywhere and differentiable everywhere.

. Forany € € V*, V f*(£) = argmin,, ¢ (f(w) — (€, w)).

. Forany £ e V*, f*(0) + f(Vf*(£)) = {£, Vf*(L)).

f*is }T—strongly smooth, i.e., forany x,y € V¥, By« (x, y) < 217 lx — y||£.

f* has %-Lipschitz continuous gradients, i.e., forany x,y e V*, |[Vf*x) — Vf*(y)| < %Hx — V%
. Bf=(x,y) < Dllx — ylls forany x,y e V*.

AVFEE) = VDI <D forany x, y € V*.

. Foranyc >0, (cf(:-))* =cf*(-/c).

Except for properties 6 and 7, the proofs can be found in [28]. Property 6 is proven in Appendix A. Property 7 trivially
follows from property 2.

Algorithm 1 FTRL wiTH VARYING REGULARIZER

Require: Non-empty closed convex set K C V
1: Initialize Lo < 0

2: fort=1,2,3,... do

3:  Choose a regularizer R;: K — R

4: we < argming,cg ((Le—1, W) + Re(w))

5 Predict w¢

6: Observe ¢, € V*
7

8:

Ly < Le—q + 4
end for

2.2. Generic FTRL with varying regularizer

Two of our scale-free algorithms are instances of FTRL with varying regularizers, presented as Algorithm 1. The algorithm
is parametrized by a sequence {R};°; of functions R; : K — R called regularizers. Each regularizer R; can depend on the
past loss vectors £1, {2, ..., %1 in an arbitrary way. The following lemma bounds its regret.

Lemma 1 (Regret of FTRL). If the regularizers R1, Ry, ... chosen by Algorithm 1 are strongly convex and lower semi-continuous, the
algorithm’s regret is upper bounded as

T
Regrety () < Rr1() + R{(0) + Y Bre (—Le, —Li—1) — Rf(=Lo) + Ry (—Lo) .
t=1

The proof of the lemma can be found in [27]. For completeness, we include it in Appendix A.

2.3. Generic mirror descent with varying regularizer

Algorithm 2 MIRROR DESCENT WITH VARYING REGULARIZER

Require: Non-empty closed convex set K C V

1: Choose a regularizer Ro: K — R

2: wq < argminy,cx Ro(w)

3: fort=1,2,3,... do

4 Predict w¢

5 Observe ¢, € V*

6: Choose a regularizer R; : K — R

7 Wiiq < argming, g ((L’[, w) + Bg, (w, Wr))
8: end for
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MIRROR DESCENT (MD) is a generic algorithm similar to FTRL but quite different in the details. The algorithm is stated as
Algorithm 2. The algorithm is parametrized by a sequence {R¢};°, of convex functions R, : K — R called regularizers. Each

regularizer R; can depend on past loss vectors £1, €2, ..., ¢ in an arbitrary way. If R; is not differentiable,®> the Bregman
divergence, Bg, (u, v) = R¢(u) — R¢(v) — (VR¢(v),u — v) needs to be defined. This is done by choosing a subgradient map
VR;: K — V, ie., a function such that VR;(w) is a subgradient of R; at any point w. If R; is a restriction of a differentiable
function Ry, it is convenient to define VR;(w) = VR;(w) for all w € K. The following lemma bounds the regret of MD.

Lemma 2 (Regret of MD). Algorithm 2 satisfies, for any u € K,

T

Regretr (u) < Z(Zh We — Wey1) — Bre(Wep1, we) + Bg, (u, we) — B, (U, weyt) .
=1

The proof of the lemma can be found in [3,32]. For completeness, we give a proof in Appendix E.
2.4. Per-coordinate learning

An interesting class of algorithms proposed in [22] and [24] are based on so-called per-coordinate learning rates. As
shown in [33], any algorithm for OLO can be used with per-coordinate learning rates as well.

Abstractly, we assume that the decision set is a Cartesian product K = Ky x K x --- x Kg of a finite number of convex
sets. On each factor K;, j=1,2,...,d, we can run any OLO algorithm separately and we denote by Regret(T’) (uj) its regret
with respect to u; € K;. The overall regret with respect to any u = (uq, uy, ..., uq) € K can be written as

d
Regrety (u) = ZRegret(T])(uj) .
j=1

If the algorithm for each factor is scale-free, the overall algorithm is clearly scale-free as well. Hence, even if not explicitly
mentioned in the text, any algorithm we present can be trivially transformed to a per-coordinate version.

3. SOLO FTRL

In this section, we introduce our first scale-free algorithm; it will be based on FTRL. The closest algorithm to a scale-free
FTRL in the existing literature is the ADAGRAD FTRL algorithm [24]. It uses a regularizer on each coordinate of the form

Re(w) =R(w) [ 8+ | Y [14ill2

i=1

This kind of regularizer would yield a scale-free algorithm only for § = 0. In fact, with this choice of § it is easy to see that
the predictions w¢ in line 4 of Algorithm 1 would be independent of the scaling of the ¢;. Unfortunately, the regret bound
in [24] becomes vacuous for such setting in the unbounded case. In fact, it requires § to be greater than ||¢;|, for all time
steps t, requiring knowledge of the future (see Theorem 5 in [24]). In other words, despite of its name, ADAGRAD FTRL is
not fully adaptive to the norm of the gradient vectors. Similar considerations hold for the FTRL-PROXIMAL in [22,23]: The
scale-free setting of the learning rate is valid only in the bounded case.

One simple approach would be to use a doubling trick on § in order to estimate on the fly the maximum norm of the
losses. Note that a naive strategy would still fail because the initial value of § should be data-dependent in order to have a
scale-free algorithm. Moreover, we would have to upper bound the regret in all the rounds where the norm of the current
loss is bigger than the estimate. Finally, the algorithm would depend on an additional parameter, the “doubling” power.
Hence, even in the case one would prove a regret bound, such strategy would give the feeling that FTRL needs to be “fixed”
in order to obtain a scale-free algorithm.

In the following, we propose a much simpler and better approach. We propose to use Algorithm 1 with the regularizer

Re(w) =R(w) | Y lI6il2, (1)

i=1

3 Note that this can happen even when R; is a restriction of a differentiable function defined on a superset of K. If K is bounded and closed, R; fails
to be differentiable at the boundary of K. If K is a subset of an affine subspace of a dimension smaller than the dimension of V, then R; fails to be
differentiable everywhere.
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where R : K — R is any strongly convex function. Through a refined analysis, we show that this regularizer suffices to
obtain an optimal regret bound for any decision set, bounded or unbounded. We call this variant SCALE-FREE ONLINE LINEAR
OpTIMIZATION FTRL algorithm (SOLO FTRL). Our main result is Theorem 1 below, which is proven in Section 3.1.

The regularizer (1) does not uniquely define the FTRL minimizer w; = argmin,,cx R;(w) when ,/Z?;} 1|12 is zero. This

happens if €1, 4¢3, ..., ¢;—1 are all zero (and in particular for t = 1). In that case, we define w; = argmin,,cx R(w) which is
consistent with wy = lim,_, o+ argmin,, ¢ aR(w).

Theorem 1 (Regret of SOLO FTRL). Suppose K C V' is a non-empty closed convex set. Let D = sup, ¢ llu — V|| be its diameter with
respect to a norm || - ||. Suppose that the regularizer R : K — R is a non-negative lower semi-continuous function that is A-strongly
convex with respect to || - ||. The regret of SOLO FTRL satisfies

Regret; (u) < [ R(u) + 2.75 XT:IIZ 12 + 3.5min D { max|¢
gretr = 5 2 tll . ) thX” tlls -

When K is unbounded, we pay a penalty that scales as max;<r ||€¢|l«+/T, that has the same magnitude of the first
term in the bound. On the other hand, when K is bounded, the second term is a constant and we can choose the optimal
multiple of the regularizer. We choose R(w) = A f(w) where f is a 1-strongly convex function and optimize A. The result
of the optimization is Corollary 1.

Corollary 1 (Regret bound for bounded decision sets). Suppose K C V is a non-empty bounded closed convex set. Suppose that f :

K — R is a non-negative lower semi-continuous function that is 1-strongly convex with respect to || - ||. SOLO FTRL with regularizer
T
w)+/2.75 .
R(w) = fwnv27s satisfies Regrety < 13.3 |sup f(v) Z 16112 .

VSupyek f(v) vek =

Proof. Let S =sup,cx f(v). Theorem 1 applied to the regularizer R(w) = %f(w), together with Proposition 1 and a crude

T .
bound maxe—12,...1 1€ll« <+/ Y ;=1 €I, give
T
2
S a2
t=1

We choose ¢ by minimizing g(c) =c + 2Cj + 3.54/8. Clearly, g(c) has minimum at ¢ = +/2.75 and has minimal value
g2(~/2.75) =24/2.754+3.54/8<133. O

2.7
RegretT§< +—+3 5[)

3.1. Proof of regret bound for SOLO FTRL

The proof of Theorem 1 relies on an inequality (Lemma 3). Related and weaker inequalities, like Lemma 4, were proved

in [34] and [35]. The main property of this inequality is that on the right-hand side C does not multiply the ,/ZtT:] af
term.

Lemma 3 (Useful inequality). Let C,aq,az, ...,ar > 0. Then,

)
me L , Ca; <35C _max at+35 Zat.
i la2 1.2, =1
i=1

Proof. Without loss of generality, we can assume that a; > 0 for all t. Since otherwise we can remove all a; =0 without
affecting either side of the inequality. Let M; = max{aq,as,...,a;} and Mg = 0. We prove that for any o > 1

" Ca(My — M¢_1)
a—1

from which the inequality follows by summing over t =1,2,...,T and choosing « = +/2. The inequality follows by case
analysis. If a? < ? Z a?, we have
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min{ ————,Ca; ¢ < =
t—1 2 \/ t—1 2 _
L al s 1 2\t—-1 2 t—1 _2
Zz:] i 21:1 i \/14—0{2 (O[ E i=1 ai =+ E i— 1Cl

14 a? a?\/1+0l2
1 t
af +Z a; \/21:1‘11‘2

where we have used x*/y/x2 + y2 < 2(y/x2 + y2 — /y2) in the last step. On the other hand, if a? > o® "] a?, we have

<2V14+a?

a2
min{ —X——— Ca; <Cat_C

t—1 2
> izt 4

t — Qg
a—1 —

where we have used that a; = M; and ,/Zf } ,2 >M;—1. O

Lemma 4 ([34, Lemma 3.5]). Let ay, az, ..., ar be non-negative real numbers. If a; > O then,

For completeness, a proof of Lemma 4 is in Appendix D.

Proof of Theorem 1. Let 1, = 4, hence R;(w) = -LR(w). We assume without loss of generality that |||, > O for
Noxmy: n

all t, since otherwise we can remove all rounds t where ¢; = 0 without affecting the regret and the predictions of the
algorithm on the remaining rounds. By Lemma 1,

1
Regretr(u><n—R<u>+Z(BR*< L, —Le1) = RE(=Lo) + Riy1 (—Lo)) -
t=1

We upper bound the terms of the sum in two different ways. First, by Proposition 2, we have

3 Mell€e 12
Re (—Le, —Le—1) — RY (=Le) + Rfyq(=Le) < Bre (=L, —Le—1) < R
Second, we have
Bgs (=L, —Li— 1) — R{(—=Ly) + R 1 (—Lp)
=By, (—Le, —Le-1) + Rfy (—Le1) = R (—Le—1) + (VRF (—Le—1) = VR (=Le-1), &)
1l€e)?
s%wwz;‘(—u_])— R 1 (—Le—)l - 1€l
111€e112
= ””Tt + IVR*(=neLe—1) = VR* (=01 Le—0)Il - 1€l
necrlleel? 1
< ——F 4+ minq —|L— — D¢ el
< T MLl One = ne), D el

where in the first inequality we have used the fact that R}, | (—Lt—1) < Rf(—L¢—1), Holder’s inequality, and Proposition 2. In
the second inequality we have used properties 5 and 7 of Proposition 2. Using the definition of 7,1 we have

Ml —neen) _ Metls  _ X6l _ VT _YT—1
A - - - - D A
WEXCHa2 /S e
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Denoting by H = min{ ¥ 7{1 , D} we have

1 nellecll?
Regret u<—Ru min , H||¢
grety (u) — ()+E 1 { R 1€cl« + 2

t=1

Nes1 1€ 112 }

T
1 .
< ——R@ )+—§ el + 37 > min fnelec. 22H).
t=1

NT+1
T 2 T 2
1 1 lI1€c1l 1 . €1l
=—R(u — _ + — min{ ———————, 2AH||¢
—_ ( )+2x § + E (1€l

2\ —
1 12 N IAE

We bound each of the three terms separately. By definition of 77,1, the first term is m—lR(u) = R(u),/ZtT:l ll€e]|2. We
upper bound the second term using Lemma 4 as

T

1 3 16c12

2\ t 2 -
t=1 21‘:1 14i ll%

Finally, by Lemma 3 we upper bound the third term as

1 el 175 )
— E min { —————, 2XA||4||«H ; <3.5H max el + — E 1€¢ 115
2A t—1 2 A
= > iz Il t=1
Putting everything together gives the stated bound. O

4. Scale-free mirror descent

In this section, we analyze scale-free version of MIRROR DESCENT. Our algorithm uses the regularizer

t
Re(w) =R(w) | 162, (2)

i=1
where R : K — R an arbitrary strongly convex function. As for SOLO FTRL, it is easy to see that such regularizer gives rise
to predictions w; that are scale-free. We call the resulting algorithm ScALE-FREE MD. Similar to SOLO FTRL, the regularizer

(2) does not uniquely define the MD minimizer w;,1 = argmin,, cg ((Z[, w) + Bg, (w, wt)) when ,/Z?z1 1€:]|12 is zero. This
happens when the loss vectors £1, {3, ..., ¢, are all zero. In this case, we define w1 = argmin,,.x R(w) which agrees with
Weqq = limg_, o+ argminy, ¢ aBr (w, we). Similarly, wy = argmin,, ¢ R(w).

Per-coordinate version of SCALE-FREE MD with regularizer R(w) = %||w||§ is exactly the same algorithm as the diagonal
version of ADAGRAD MD [24].

The theorem below upper bounds the regret of SCALE-FREE MD (see also [24,32,36]). The proof is in Appendix E.

Theorem 2 (Regret of scale-free mirror descent). Suppose K C V is a non-empty closed convex set. Suppose that R : K — R is a
A-strongly convex function with respect to a norm || - ||. SCALE-FREE MD with regularizer R satisfies for any u € K,

T
1
Regrety (u) < (— +sup Br(u, V)> D lel?.
A vek

We choose the regularizer R(w) = Af(w) where f is a 1-strongly convex function and optimize A. The result is the
following Corollary. Its proof is trivial.

Corollary 2 (Regret of scale-free mirror descent). Suppose K C V is a non-empty bounded closed convex set. Suppose that f : K — R
is a 1-strongly convex function with respect to a norm || - ||. SCALE-FREE MD with regularizer

fw satisfies Regretr <2 sup By (u, v)ZumR

[ sup Bf(u,v) B t=1
u,vek

R(w) =
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The regret bound for ScALE-FREE MD in the Corollary 2 depends on sup, ,cx By (u, v). In contrast, the regret bound for
SOLO FIRL in Corollary 1 depend on sup,k f(u). Similarly, the regret bound in Theorem 2 for ScALE-FREE MD depends on
sup,cx Br(u, v) and the regret bounds in Theorem 1 for SOLO FTRL depend on R(u). It is not hard to show that

YuekK R(u) <supBgr(u,v), (3)
veK
provided that at the minimizer v* = argmin,.x R(v) both R(v*) and VR(v*) are zero. Indeed, in that case, R(u) =
Br(u, v*) <sup,cx Br(u, v).
The assumption R(v*) =0 and VR(v*) =0 are easy to achieve by adding an affine function to the regularizer:

R'(u)=R@u) — (VR(v¥),u —v*) — R(v™).

The regularizer R’ has the same parameter of strong convexity as R, the associated Bregman divergences Bg and By are
equal, R" and R have the same minimizer v*, and R’(v*) and VR’(v*) are both zero.

Thus, inequality (3) implies that—ignoring constant factors—the regret bound for ScALE-FREE MD is inferior to the regret
bound for SOLO FIRL. In fact, it is not hard to come up with examples where R(u) is finite whereas sup,cx Br(u, v)
is infinite. We mention two such examples. The first example is R(w) = %||w||§ defined on the whole space V, where
for any u € V, R(u) is a finite value but sup,.x Br(u, v) = sup,cy %Hu — v||§ = 4o00. The second example is the shifted
negative entropy regularizer R(w) = In(d) + Z‘j‘:l wjlnw; defined on the d-dimensional probability simplex K = {w €
R? . wj>0, Z?:] wj =1}, where for any u € K, R(u) is finite and in fact lies in the interval [0, Ind] but sup,cx Br(u, v) =

SUpy ek lei':l ujln(u;j/vj) =+oo. We revisit these examples in the following subsection.
4.1. Lower bounds for scale-free mirror descent

The bounds in Theorem 2 and Corollary 2 are vacuous when Bg(u, v) is not bounded. One might wonder if the assump-
tion that Bg(u, v) is bounded is necessary in order for SCALE-FREE MD to have a sublinear regret. We show necessity of
this assumption on two counter-examples. In these counter-examples, we consider strongly convex regularizers R such that
Bgr(u, v) is not bounded and we construct sequences of loss vectors €1, £2, ..., {7 such that ||[£1]lx = [€2]ls == €1« =1
and ScALE-FREg MD has regret Q(T) or worse.

The first counter-example is stated as Theorem 3 below; our proof is in Appendix E. The decision set is the whole space
K =V and the regularizer is R(w) = %||w||%. Note that R(w) is 1-strongly convex with respect to | - |2 and the dual norm
of ||-|l2 is || - |2. The corresponding Bregman divergence is Bg(u, v) = %Hu — v||%. The counter-example constructs a sequence
of unit-norm loss vectors in the one-dimensional subspace spanned by the first vector of the standard orthonormal basis.
On such a sequence, both versions of ADAGRAD MD as well as ScALE-FREE MD are identical to gradient descent with step
size 1/4/t, i.e., they are identical Zinkevich’s GENERALIZED INFINITESIMAL GRADIENT ASCENT (GIGA) algorithm [20]. Hence the
lower bound applies to all these algorithms.

Theorem 3 (First counter-example). Suppose K = V. For any T > 42, there exists a sequence of loss vectors £1, {2, ..., Lt € V* such
that ||€1]2 = ||€2]l2 = --- = ||€1]l2 = 1 and ScALE-FREE MD with regularizer R(w) = %||w||%, GIGA, and both versions of ADAGRAD
MD satisfy
T3/2
Regrety (0) > —— .
grety (0) > 20

The second counter-example is stated as Theorem 4 below; our proof is in Appendix E. The decision set is the
d-dimensional probability simplex K = {w € R? : wj > O,Z‘}zl w;j =1} and the regularizer is the negative entropy
R(w) = Z‘;Z] wjlnw;. Negative entropy is 1-strongly convex with respect to | - |; and the dual norm of |- ||l1 is || - llcc.

The corresponding Bregman divergence is the Kullback-Leibler divergence Bg(u, v) = Z‘]’-:] ujln(uj/vj). Note that despite
that negative entropy is upper- and lower-bounded, Kullback-Leibler divergence can be arbitrarily large.

Theorem 4 (Second counter-example). Let d > 2, let V =R% andlet K = {w e V : w; >0, 2721 w; = 1} be the d-dimensional
probability simplex. For any T > 120, there exists a sequence of loss vectors £1, {2, ..., Lt € V* such that ||[£1]lco = [€2]lco =+ =
€1 lloo = 1 and ScALE-FREE MD with regularizer R(w) = Z?ﬂ wjInw;j satisfies

Regret >T
g T=%"
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5. Lower bound

We show a lower bound on the worst-case regret of any algorithm for OLO. The proof, presented in Appendix F, is a
standard probabilistic argument.

Theorem 5 (Lower bound). Let K C V be any non-empty bounded closed convex subset. Let D = sup,, ,cx |lu — v|| be the diameter
of K. Let A be any (possibly randomized) algorithm for OLO on K. Let T be any non-negative integer and let a;,ay, ...,ar be any

non-negative real numbers. There exists a sequence of vectors £1, {2, ..., L1 in the dual vector space V* such that || ¢1 ]« = ax, €2« =
az, ..., ||€r|ls = ar and the regret of algorithm A satisfies
D T
Regrety > —2 Dl (4)

t=1

The upper bounds on the regret, which we have proved for our algorithms, have the same dependency on the norms of
the loss vectors. However, a gap remains between the lower bound and the upper bounds.

The upper bound on regret of SOLO FTRL is of the form O(\/supveK fw) Zthl l€¢|2) where f is any 1-strongly convex
function with respect to || -||. The same upper bound is also achieved by FTRL with a constant learning rate when 23:1 ||£t||i

is known upfront [4, Chapter 2|. The lower bound is Q(D‘/ZIT:1 l1€e)12).

The gap between D and ,/sup, <k f(v) can be substantial. For example, if K is the probability simplex in R? and f(w) =
In(d) + 2?21 wjlnwj is the shifted negative entropy, the | - ||1-diameter of K is 2, f is non-negative and 1-strongly convex
with respect to || - ||1, but sup,cx f(v) = In(d). On the other hand, if the norm | - || = +/(-,-) arises from an inner product
(-, ), the lower bound matches the upper bounds within a constant factor. The reason is that for any K with || - ||;-diameter
D, the function f(w) = %Hw - w0||%, where wy is an arbitrary point in K, is 1-strongly convex with respect to || - |2 and
satisfies that \/sup, ¢k f(v) < D. This leads to the following open problem (posed also in [37]):

Given a bounded convex set K and a norm || - ||, construct a non-negative function f : K — R that is 1-strongly convex with respect
to || - || and minimizes sup, ¢ f(v).

As shown in [38], the existence of f with small sup,ck f(v) is equivalent to the existence of an algorithm for OLO with
O (/T supyck f(v)) regret assuming |4;|l« < 1. The O notation hides a polylogarithmic factor in T.

6. Conclusions

We have investigated scale-free algorithms for online linear optimization and we have shown that the scale-free property
leads to algorithms which have optimal regret and do not need to know or assume anything about the sequence of loss
vectors. In particular, the algorithms do not assume any upper or lower bounds on the norms of the loss vectors or the
number of rounds.

We have designed a scale-free algorithm based on FoLLow THE REGULARIZER LEADER. Its regret with respect to any com-
petitor u is

T
0 u 2|2 + min{~/T, D} ma l ,
fw ;n (lf +min{v/T, D} _max _¢c]l.

where f is any non-negative 1-strongly convex function defined on the decision set and D is the diameter of the decision
set. The result makes sense even when the decision set is unbounded.

A similar, but weaker result holds for a scale-free algorithm based on MIRROR DESCENT. However, we have also shown
this algorithm to be strictly weaker than algorithms based on FoLLow THE REGULARIZER LEADER. Namely, we gave examples
of regularizers for which the scale-free version of MIRROR DESCENT has (T) regret or worse.

We have proved an %,/ ZLl l€]|2 lower bound on the regret of any algorithm for any decision set with diameter D.

Notice that with the regularizer f(u) = %llu ||% the regret of SOLO FTRL depends quadratically on the norm of the competi-
tor ||u||2. There exist non-scale-free algorithms [39-44] that have only a O (||u|2+/log ||u|l2) or O(|lullzlog|u|l2) dependency.
These algorithms assume an a priori bound on the norm of the loss vectors. Recently, an algorithm that adapts to norms of
loss vectors and has a O (J|ul| log ||u|2) dependency was proposed [45]. However, the trade-off between the dependency on
|lull, and the adaptivity to the norms of the loss vectors still remains to be explored.
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Appendix A. Proofs for preliminaries

Proof of Proposition 1. Let S =sup,cx f(u) and v* = argmin, ¢ f(v). The minimizer v* is guaranteed to exist by lower
semi-continuity of f and compactness of K. The optimality condition for v* and 1-strong convexity of f imply that for any
uek,

S>fw)—fvH=fw—fO)—(VFWH,u-v")=> *llu V2.
In other words, ||u — v*|| <+/2S. By the triangle inequality,

D= sup lu—-v| =< sup. (lu = v+ Iv* —vl)) <2v25=+8S. O

u, vek u, veK
Proof of Property 6 of Proposition 2. To bound B+ (x, y) we add a non-negative divergence term B«(y, x).

Bpe(x,y) < Bp« (%, y) + B+ (y,x) = (x — y, Vf*(x) — Vf*(y))
<X =yl - IV = VW <Dlx—yll«,

where we have used Hélder’s inequality and property 7 of the Proposition. O

Proof of Lemma 1. By the Fenchel-Young inequality,

—

> (Rfq(=Lo) = Rf (=Le—1)) = R} 11 (—L1) — R} (0)
t=1
—(Lt,u) = Rr41(u) — R7(0)
T

= —Rr1(u) — Rj(0) = ) (e, u) .

t=1

We add Zthl (€, wt) to both sides and we obtain Regrety(u) on the right side. After rearrangement of the terms, we get
an upper bound on the regret:

T

Regrety (u) = Z(Et, W) —
t=1 t

(€e, u)

M-

1
T

= RT+1(U)+R1(0)+Z RE,1(=Le) = R (—Le—1) + (€, we)) -
t=1

By Proposition 2, property 2, we have w; = VR{(—L;_1) and therefore we can rewrite the sum in last expression as

Z R 1(—=Le) — R (—Le—1) + (€e, wy)
T
=Z R}, 1(—L) = RF (—Le—1) + (€, VRF (—Le—1))

T
Z £ (=Le) = RE(=Le—1) + (€, VR{(=Le—1)) — R{ (L) + R4 (—Lo)

I
M"’ T

Bgs (=L, —Le—1) — Rf (=Le) + RE 4 (=Le) .

..,
Il
_

This finishes the proof. O
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Appendix B. ADAFTRL

In this section, we show that it is possible to derive a scale-free algorithm different from SOLO FTRL. We generalize the
ADAHEDGE algorithm [25] to the OLO setting, showing that it retains its scale-free property. We call the resulting algorithm
ADAFTRL. The analysis is very general and based on general properties of strongly convex functions, rather than specific
properties of the entropic regularizer as in the original analysis of ADAHEDGE.

Assume that K is bounded and that R : K — R is a strongly convex lower semi-continuous function bounded from above.
We instantiate Algorithm 1 with the sequence of regularizers

¢
Li Li_4

Ri(W) = At—1R(w) where A;= Aj_1Bg+ <——, - . (B.1)
; l Aicr A

The sequence {A¢}{2, is non-negative and non-decreasing. Also, A; as a function of ¢4, £, ..., ¢ is positive homogeneous

of degree one, making the algorithm scale-free.

If Aji_1 =0, we define A,-_1BR*(A7£"1 , ;Li":]]) as lim,_, g+ aBg+ %Lf, %) which always exists and is finite; see Lemma 9
in Appendix C. Similarly, when A;_; =0, we define w; = argmin,,cx(Lt—1, w) where ties among minimizers are broken
by taking the one with the smallest value of R(w), which is unique due to strong convexity. As we show in Lemma 8

in Appendix C, this is the same as w; = limg_, o+ argmin,, ¢ ((Lt—1, W) + aR(w)).

Our main result is an O(,/ZL] l¢¢112) upper bound on the regret of the algorithm after T rounds, without the need to
know beforehand an upper bound on ||¢;||«. We prove the theorem in B.1.

Theorem 6 (Regret bound). Suppose K C V is a non-empty bounded closed convex set. Let D = supy ,cx [|x — y|| be its diameter with
respect to a norm || - ||. Suppose that the regularizer R : K — R is a non-negative lower semi-continuous function that is A-strongly
convex with respect to | - || and is bounded from above. The regret of ADAFTRL satisfies

T
D le2 (14 Rw))

Regrety (u) < V3 max {D,
t=1

7l

The regret bound can be optimized by choosing the optimal multiple of the regularizer. Namely, we choose regularizer
of the form A f(w) where f(w) is 1-strongly convex and optimize over A. The result of the optimization is the following
corollary.

Corollary 3 (Regret bound). Suppose K € V is a non-empty bounded closed convex set. Suppose f : K — R is a non-negative lower

semi-continuous function that is 1-strongly convex with respect to || - || and is bounded from above. The regret of ADAFTRL with
regularizer
f(w) d
RwW)y=——"—— satisfies Regrety <5.3 |sup f(v) 14112 .
16 - sup, ek f(v) vek ; *

Proof. Let S =sup,ck f(v). Theorem 6 applied to the regularizer R(w) = ¢ f(w) and Proposition 1 gives

T
1
Regret 5\/§(1+c)max{\/§,—} S el .
’ NGT ; e

It remains to find the minimum of g(c) = +/3(1 + ¢) max{~/8, 1/+/2c}. The function g is strictly convex on (0, c0) and has
minimum at ¢ = 1/16 and g(75) = +/3(1 + 15)v/8<5.3. O

B.1. Proof of regret bound for ADAFTRL

Lemma 5 (Initial regret bound). ADAFTRL satisfies, for any u € K and any T > 0,

Regretr (u) < (14 R(u)) At .

Proof. Recall from (B.1) that R¢(w) = A¢—1R(w). Since R is non-negative, {R¢}{2; is non-decreasing. Hence, Ry (¢) > R, ; (£)
for every ¢ € V* and thus Rf (L) — R, ;(—=L¢) > 0. So, by Lemma 1,
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T
Regrety (u) < Rri1(u) + Rj(0) + Y Bps (—L, —Li—1) . (B.2)
t=1
Technically, (B.2) is not justified since R; might not be strongly convex. This happens when A;_; = 0. In order to justify
(B.2), we consider a different algorithm that initializes Ag = € where € > 0; that ensures that A;_; > 0 and R; is strongly
convex. Applying Lemma 1 and then taking limit € — 0, yields (B.2).
Since, Bgs(u,v) = At,lBR*(ﬁ, ﬁ) by definition of Bregman divergence and property 8 of Proposition 2, we have

Yy Bre(=Le.~Li—)=Ar. O

Lemma 6 (Recurrence). Let D = sup, ,¢x |lu — V|| be the diameter of K. The sequence {A¢}¢2, generated by ADAFTRL satisfies for any
t>1,

A¢ < Ar—1 +min { D€l el .
- 2AAq

Proof. By definition, A; satisfies the recurrence

Ar = Ar—1+ Ar—1Bgr ( L Lt_l)
t = A¢— t—1Drx | — » .
Ar—1 A

Using parts 4 and 6 of Proposition 2, we can upper bound Bg+« (— Afil , —i‘:) with two different quantities. Taking the
minimum of the two quantities finishes the proof. O
The recurrence of Lemma 6 can be simplified. Defining
1
ar = |[£e|ls max{D, —¢ ,
V2A
we get a recurrence
a2
: t
A¢r < Ar—1 + min { a;, .
A1
The next lemma solves this recurrence, by giving an explicit upper bound on Ar in terms of ay,az,...,ar.

Lemma 7 (Solution of the recurrence). Let {a;};°, be any sequence of non-negative real numbers. Suppose that {A;}{2 is a sequence
of non-negative real numbers satisfying

2

a
Ag=0 and AthtﬁLmin:at, A—t} foranyt>1.
t—1

Then, for any T > 0,

Proof. Observe that
T

T
AF =D AP AL =) (A= A1) +2(A — A1) At
t=1 t=1

We bound each term in the sum separately. The left term of the minimum inequality in the definition of A; gives
(A=A <,

while the right term gives
2(Ar — A1) A1 <207

So, we conclude

T
A7 <3) at. O
(=1
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Theorem 6 follows from Lemmas 5, 6 and 7.
Appendix C. Limits

In this section, we show that prediction of ADAFTRL is correctly defined when the regularizer is multiplied by zero.

Lemma 8 (Prediction for zero regularizer). Let K be non-empty bounded closed convex subset of a finite dimensional normed real

vector space (V, || - ||). Let R : K — R be strictly convex and lower semi-continuous, and let L € V*. The limit
. . 1
lim argmin|( (L, w) + —R(w) (C1)
N—>+00 ek n

exists and it is equal to the unique minimizer of R(w) over the set (of minimizers)

{weK (L, w) = inf(L,v)} .

veK

Before we give the proof, we illustrate the lemma on a simple example. Let K =[—1, 1] be a closed square in R? and
let R(w) = ||w||§. Let L = (1, 0). The minimizers are

argmin(L, w) ={(=1,y) : y e [-1,1]}.
wek
The minimizer with the smallest value of R(w) is (—1, 0). Hence the lemma implies that

1
lim argmin ((L, w) + EHWH%) =(-1,0).

N—>+00  wek

Proof of Lemma 8. Without loss of generality, we can assume that R(w) is non-negative for any w € K. For otherwise, we
can replace R(w) with R’(w) = R(w) — inf,cx R(v).

Since K is a non-empty bounded closed convex subset of a finite dimensional normed vector space, it is compact and
r* =minycg (L, w) exists and is attained at some w € K. Consider the hyperplane

H={weV : (L w)=r"}.
The intersection H N K is a non-empty compact convex set. Let
v* =argminR(v) .
veKNH

The existence of v* follows from compactness of H N K and lower semi-continuity of R(v). Uniqueness of v* follows from
strict convexity of R(v). We show that the limit (C.1) equals v*.
By the definition of H,

v* € argmin (L, w) . (C2)
wekK

Let S={weK : R(w)<R(v¥)}. Since R(w) is lower semi-continuous S is closed. Since R(w) is strictly convex, SN H =
{v*}
For any n > 0, let

w(n) = argmin ((L, w) + %R(w))) .

wek

We prove that w(n) € S. Indeed, by optimality of v* and w(n),
1 1 1
ER(W(H)) +({L,wi) = ER(V*) +{L,v*) < ER(V*) + (L, w(m)

and hence R(w(n)) < R(v*).
By non-negativity of R and optimality of w(n) we have

1 1
(L, w(m) < (L, w(m) + ER(W(U)) <{Lv*)+ ER(V*) .
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Taking the limit n — +oo, we see that

1
lim (L, w(n)) < lim ((L, vF) + —R(V*)> =(L,v*).
n——+o0 n——+00 n
From (C.2) we have (L, v*) < (L, w) for any w, and therefore

lim (L, w(n)) = (L, v*). (C3)

n—-+oo

Consider any sequence {n;}°, of positive numbers approaching +oc. Since K is compact, w(7;) has a convergent sub-
sequence. Thus {w(n;)}{2; has at least one accumulation point; let w* be any of them. We will show that w* = v*

Consider a subsequence {Et}t 1 of {n¢}f2; such that llmt_wow(ét) = w*. Since w(&) € S and S is closed, w* € S From
(C.3) we have (L, w*) = (L, v*) and hence w* € H. Thus w* € S N H. Since v* is the only point in SN H we must have
w*=v* 0O

Lemma 9 (Limit of Bregman divergence). Let K be a non-empty bounded closed convex subset of a finite dimensional normed real
vector space (V, || - ||). Let R : K — R be a strongly convex lower semi-continuous function bounded from above. Then, for any x, y €
748

lim aBg«(x/a,y/a) = (x,u —v)
a—0+
where

u= lim argmin (aR(w) — (x,w)) and v = lim argmin(@R(w) — (y, w)) .
a—0t  wek a—0"  wek

Proof. Using property 3 of Proposition 2 we can write the divergence

aBg+(x/a, y/a) =aR*(x/a) —aR*(y/a) — (x — y, VR*(y/))
=a[(x/a, VR*(x/a)) — R(VR*(x/a))]
—a[(y/a, VR*(y/a)) — R(VR*(y/a))] — (x—y, VR*(y/a))
= (x, VR*(x/a) — VR*(y/a)) —aR(VR*(x/a)) + aR(VR*(y/a)) .
Property 2 of Proposition 2 implies that
u =a£r(r)1+ VR*(x/a) = alirgl arv%gle (@R(w) — (x, w)) ,

V= 1in01+VR*(y/a) 11m argmin (aR(w) — (y, w)) .
a—

a— wek

The limits on the right exist according to Lemma 8. They are simply the minimizers u = argmin,,cx —(x, w) and v =
argmin,,.x —(y, w) where ties in argmin are broken according to smaller value of R(w).

By assumption R(w) is upper bounded. It is also lower bounded, since it is defined on a compact set and it is lower
semi-continuous. Thus,

lirgl+ aBg+(x/a, y/a)
= 1ino1+ (x, VR*(x/a) — VR*(y/a)) — aR(VR*(x/a)) + aR(VR*(y/a))

= 1ir{)1+(x, VR*(x/a) — VR*(y/a)) = {(x,u—v). O

Appendix D. Proofs for SOLO FTRL

Proof of Lemma 4. We use the 1nequa11ty X/J/x+y <2(/x+y— /y) which holds for non-negative x, y that are not both
zero. Substituting x =a; and y = Zl 1 @i, we get that for any t > 1,

a; — 2 aj .
\/Zl 1(1, ; Z

Summing the above inequality over all t =1, 2,..., T, the right side telescopes to 2,/ZtT:l a. O
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Appendix E. Proofs for scale-free mirror descent

Proof of Lemma 2. Let
Wi (W) = (&, w) + Bg, (W, we)
= (€¢, W) + Re(W) — Re(We) — (VRe (W), w — wy) .

Then, w¢y1 = argminy, ¢ Wry1(w). Note that VWi (W) =€ + VR (W) — VR (w¢). The optimality condition for w1 states
that (VW1 (Wer1), u — weyp1) > 0 for all u € K. Written explicitly,

(€t + VR (Wry1) — VRe(Wp), U — Weiq) > 0.
Adding (¢r, wer1 — wy) to both sides and rearranging, we have

(€e, we — u) < (VRt(Weg1) — VRe(We), U — Wey1) + (€, We — Wey)

= (lr, Wt — Wei1) — Br,(Wey1, W) + Bg, (U, we) — B, (U, Wei1)
The last equality follows by from definition of Bregman divergence. Summation over all t =1,2,..., T gives the final regret
bound. O
Proof of Theorem 2. Let 1, = \/ﬁ We define 19 = +00 and 1/79 = 0. Hence Ry(w) = - - R(w). Since Ry is %—strongly
i=1 1€l

convex, we have

A
(e, Wwe — Wep1) — BRe(We1, We) < 1€ells - llwe — wepql] — ﬁ”wt — Wi ll?
t
A
<max| [[€llxz— —2z
zeR 2n;
Nt 2
= _)L”Et”*'

Combining the last inequality with Lemma 2, we have

Regrety (1) <Z ||ef||2+Z Br, (u, wo) = By, (t, wes1)] -
t=1 t=1

Since Ri(w) = %R(w), we have

T T
1 1
Regrety (u) < Z nelleel2 + Z o [Br(u. we) = B, wei)]

1 T
= g il ZBR(u we) (7 _ _)

Nt—1

2
IIZt” +supBR(u V)Z (_ B L)

_1 1 ”2 vek e M-

T
|£t||2+supBR(u V) | Y Iel2 (byLemma4)
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()\ + sup B (u, V)) ZHZr”ﬁ- o
t=1
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Proof of Theorem 3. We assume d = 1. For d > 2, we simply embed the one-dimensional loss vectors into the first coordi-
nate of R%. Consider the sequence

(61, €2,....¢r)=(-1,—-1,..., -1, +1,+1,..., +1).
[T/2] LT/2]
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The first half consists of —1's, the second of +1's. For t < [T /2]

Wi =Wr+ — .

NG

Unrolling the recurrence and using w1 =0 we get

1
=y — f T/21+1).
wy ;\/{ (fort <[T/2]1+1)

On the other hand, for t > [T /2] + 1, we have

1
Wi =Wr — — .
t+ t 7t
Unrolling the recurrence up to wyr,2141 wWe get
t—1 1 [T/2] 1 t—1 1
Wi =W[T/2141 — Z 7= 27 - Z 7 (fort>[T/21+1).
=21 YU i YU 24 VE
We are ready to lower bound the regret.
T
Regret; (0) = Z&Wt
t=1
[T/2] T
=Y 3w
t=1 t=[T/2]+1
[T/2]t-1 T [T/2] 1 -1
t=1 i=1 t:(T/21+1 i=1 Vi i=[T/2 *f
[T/2] [T/2] T .
fT/Z] T—i
== 2 + 1T/2) Z - Z —
i=1 \/— i=1 =[T/2 \/;
[T/2] T
T/2 T/2 1
-y TR sy s L
i=1 ! i=1 i=rT/2141 V!
[T/2] T 1
SR T IEEED o
i=1 i=1T/21+1 V1
[T/211 T T )
>—-1- —dx+/ xdx—T/—dx
| o+ [ 7
i=1 0 [T/2]

=—1—2(\/rr/21—1)+3r3/2 zr(f \/[T/2'|)
>1-2 (T/21+<§—2+\/§>T3/2.

The last expression is (T3/?) with dominant term (2 — 2 ++/2)T32~ 0.08 - T2, For any T > 42, the expression is lower
bounded by 55T%2. O

Proof of Theorem 4. Let ey, ey, ..., eq be the standard orthonormal basis of R?. Consider the sequence of loss vectors

1,42, ..., 81)=(—€1,—€1,...,—€1, —€2, —€2, ..., —€2).
[T/31 [2T/3)
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First, for any t > [T /37 +1,

Wt 1

Wt 2

_exp(—= Xz tia /YD
exp(= L €ia/V)
I O AR VD)
exp(Yi_rr/3141 1/VD)
exp(Li21 1/
B eXP(ZiT:[T/3]+1 1/4/1)
RIEL T ¥
=exp ; \/{ iz[g]ﬂ 1/
[T/31+1 T

RN

1 [T/3]

exp (2 T/3]+1-2—QVT -2y rT/31))

NESES

>4,

%
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where the last inequality follows from the fact that exp ((% — 2) VT — 2) is an increasing function of T and the inequality
can be easily verified for T = 120. Since w¢ 1+ w1 <1 and w1 >0 and w; > 0, the inequality w¢ 1/w; 2 >4 implies

that

(foranyt > [T/371+1).

< —
w

t,2 = 5
NOW, we lOWer bOUl‘ld the l‘egret. Since T > ‘120Y

Regret; > Regrety(ez)

T T
= (. we) = Y (l.e2)
t=1 t=1
[T/3] T
=— > w1 — Y. wea+[27/3)
t=1 t=[T/31+1

=—[T/31— %LZTBJ + 12T /3]
>-T/3—1-2T/15+2T/3 -1
=T/5-2

>T/6. O

Appendix F. Lower bound proof

Proof of Theorem 5. Pick x, y € K such that ||x — y|| = D. This is possible since K is compact. Since ||x — y|| = sup{{¢,x —

y) : £eV* |€|l« =1} and the set {¢ € V* : |£|l. =1} is compact, there exists £ € V* such that

€l«=1 and  {,x—y)=[x—yl[=D.

Let Z1, Z3, ..., Zt be ii.d. Rademacher variables, that is, Pr[Z; = +1] =Pr[Z; = —1] = 1/2. Let £; = Z;a.L. Clearly, ||¢¢|+ = a;.
The lemma will be proved if we show that (4) holds with positive probability. We show a stronger statement that the

inequality holds in expectation, i.e., E[Regret;] > %,/ 2121 atz. Indeed,
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T T
E[Regret;] > E Lt —E i L,
[Regretr] = E| D (¢, we) min 3 (e u)
Lt=1 t=1
T T
=E Ziag{l, w E| max —Ziar{l,u
; tae (€, we) | + ue{x!y}; tae (€, u)
B T
=E| max —Zwar{l,u
_ue{x,y}tzz] tag (€, u)
- T
=E| max Zear(l,u
_ue{x’y}g tar{€, u)
1 T 1 T
=SE ;ztatw,xw) +5E ;zfafw,x—y)

where we used that E[Z;] = 0, the fact that distributions of Z; and —Z; are the same, the formula max{a, b} = (a +b)/2 +
|a — b|/2, and Khinchin’s inequality in the last step (Lemma A.9 in [2]). O
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