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Online Linear Optimization

Fort=1,2,...
e predictw; € K C R
e receive loss vector /; € R?

e suffer loss (¢, w;)

Competitive analysis w.r.t. static strategy u € K:

T T
Regretp(u) = ) ((,w) — ) (lyu)
=1 =1
= =
algorithm’s loss comparator’s loss

Goal: Design algorithms with sublinear Regret;..



Applications

e Offline and stochastic convex optimization
e Logistic regression  =r?

e Online combinatorial problems
¢ learning with expert advice (x = probability simplex)
e shortest path ( = fow polytope)
o blpartlte matchlng (K = doubly stochastic matrices)
e spanning tree (= spanning tree polytope)
e k-subset, etc.



Standard Regret Bound

Theorem (Abernethy et al. ‘08; Rakhlin "09)

For any bounded convex K C R? and any norm || - ||, there exists an
algorithm that receives T and Y.!_, ||¢;||? before the first round
and satisfies

Yu € K RegretT( < CK -1l A 2 H&

(MIRROR DESCENT, FOLLOW THE REGULARIZED LEADER)

Corollary
If || 4¢]|« < B then Regrety(u) < Cy . BVT.



Adaptive Regret Bound

Theorem (Orabona & P.)

For any bounded convex K C R? and any norm || -
algorithm that T 2

and satisfies

VT VueK Regret, (1) < Cy K Z [14¢]]2

e The value of CK Il

e Similar result for unbounded K.

later in the talk.



Adaptivity

Adaptivity to unknown T is easy:
e Doubling trick. Try T =1,2,4,8,16,32, ...

Adaptivity to unknown |||
e ADAHEDGE for K = probability simplex

[de Rooij, van Erven, Griinwald, Koolen “14]

e ADAGRAD, FTRL PROXIMAL for || - ||2 and ||4]|2 > 1

[Duchi, Hazan, Singer "11; McMahan & Streeter "10]
e ADAFTRL for any bounded K, any norm
[this paper]

e SOLO FTRL for any K (ounded or unbounded), ANy norm

[this paper]



Strong Convexity

A convex function R : K — R is A-strongly convex w.r.t. || - || iff
Vx,y € K Vte|[0,1]

A
R(tx+ (1= 1)y) < tR(x) + (1 = HR(y) — FH1 —)[x —y|I?
If R is differentiable, this is equivalent to

A
Yy € K R(y) > R(x) + (VR(x),y —x) + S [lx = y[I*

A




Follow The Regularized Leader (FTRL)

e R: K — R non-negative 1-strongly convex w.r.t. || - ||.
e FTRL chooses

t—1
wy = argmin (77 )+ Z (4;,w) )
t

wekK i=1

where 77; > 0 is a learning rate.

supvE x R(v)

e Constant learning rate 7y =1, = --- =51 = A
t=1 [t

giVes [Rakhlin "09; Shalev-Shwartz "11]

T
Regret; (1) <2 [supR(0) | Y [14:]2
veK t=1
R —

C 1

e How to choose #; adaptively?



Scale-Free Property

Multiply loss vectors by ¢ > 0:
l1,0, 03, — cly,cly,cls, ...

An algorithm is scale-free if wy, w;, w3, ... remains the same.

For a scale-free algorithm
T T
Regret, (1) — cRegret,(u) Z Ly, wy) Z(Et, W)

t=1 t=1

T T
Y )2 — ey | Yol
t=1 t=1



Scale-Free FTRL
For FTRL

wy = argmin <77 )+ Z (4;, w) )
t

wekK

to be scale-free 1/7; needs to be positive 1-homogeneous
function of 41,45, ...,4;_.

Thatis, (¢1,42,...,4—1) — (cly,cly, ..., cli_1) causes
/e —c/n

=1
wy = argmin lR(w) + Y (4, w)
wek N i=1
1

=1
w; = argmin (;R(w) + Y (ct;, w))
t .

weK



Two Good Scale-Free Choices of #;

SOLO FTRL:

ADAFTRL:

1 0 ift =1
n ﬁ + ﬁDR* (_Utfl Y, - YT 51’) ift >2

Dg-(+,-) is the Bregman divergence of Fenchel conjugate of R.



Regret of Scale-Free FTRL

Theorem
Let R : K — R be non-negative and A-strongly convex w.r.t. | - ||.
Suppose K has diameter D w.r.t. to || - ||.

SOLO FTRL satisfies

Regret; (1) < (R()+ 217 ) || Y- 16

ADAFTRL satisfies

Regret; (1) < 2max {D

§._\

} (1+R(w)) Z||£t|2



Optimization of A for Bounded K

e Choose R(w) = A - f(w) where f is non-negative 1-strongly
convex.
e UseD < /8sup, . f(v)

e Optimize A. Optimal choice depends only on sup, . f(v).

With optimal choices of A,

veK

T
ADAFTRL: Regret (1) < 5.3 J supf(v) Y [14:]|?
=1

T
SOLO FTRL:  Regret,(u) < 13.3 J supf(v) Y [|4:]|?

veK t=1



Our Proof Techniques

Lemma
For non-negative numbers C,ay,ay, . .. ,ar,

T 2 T

. a
me f , Ca; p <35 Zatz + 3.5C max a;
— t—1 o — 1<t<T
t=1 —1 as t=1

Lemma
For non-negative numbers ay,ay, . . ., ar the recurrence

2 T
0 < by < min {at, at} implies that Yy by <2
S t=1




Lower Bound for Bounded K

Theorem

For any ay,ay, . .., ar and any algorithm there exists 1, (5, . .

and u € K such that

o |101|ls = ay, ||b2]|s = aa, ..., |1« = ar

e Regretr(u) > % 1 [1e]12

Proof.
e Choose ¢ € R? and x,y € Ksuch that

Jx—yl =D I =1 -

argmin(/,w) = x argmax({,w) =y
wekK wekK

e Set {; = +a;¢ where signs are i.i.d.
random

AT



Open Problem: Bounded K

e Lower vs. upper bound

T

T
Y ez vs. 53, [supf(u) ) [I16:]2
t=1

uek t=1

where f : K — R is 1-strongly convex w.r.t. || - ||.
o Upper bound lS (almOSt) tlght [Srebro, Sridharan, Tewari '11]

° Open problem: [Kwon & Mertikopoulos "14]

Given a convex set K and a norm || - ||, construct
non-negative 1-strongly convex f : K — R that
minimizes

supf () .

uek



Open Problems: Unbounded K
e For A-strongly convex R, SOLO FTRL:

T
T
Regrety (11 ‘ Z 1612 + 6. 25\( max |61

e For 2-norm, K = R?, assuming ||4]|> < 1,
PISTOL' [Orabona 13, '14; McMahan & Orabona "13]

Regret(u) < O (Julz /TIog(Tlul2) )

e Open problem 1:
Algorithm for K = R? that adapts to ||¢;||, and has regret

lllz VT max |14l - poly(log T, 1og [[ull2)

e Open problem 2:
What about other norms and unbounded K # R%?



Questions?



