Scale-Free Algorithms for Online Linear Optimization

Francesco Orabona Dávid Pál

Yahoo Labs NYC

October 4, 2015

Online Linear Optimization

For t = 1, 2, ...

- predict $w_t \in K \subseteq \mathbb{R}^d$
- receive loss vector $\ell_t \in \mathbb{R}^d$
- suffer loss $\langle \ell_t, w_t \rangle$

Competitive analysis w.r.t. static strategy $u \in K$:

$$\operatorname{Regret}_{T}(u) = \sum_{t=1}^{T} \langle \ell_{t}, w_{t} \rangle - \sum_{t=1}^{T} \langle \ell_{t}, u \rangle$$
algorithm's loss
comparator's loss

Goal: Design algorithms with sublinear Regret_{*T*}.

Applications

- Offline and stochastic convex optimization
 - Logistic regression $(K = \mathbb{R}^d)$
- Online combinatorial problems
 - learning with expert advice (K = probability simplex)
 - shortest path (K = flow polytope)
 - bipartite matching (K = doubly stochastic matrices)
 - spanning tree (K = spanning tree polytope)
 - k-subset, etc.

Standard Regret Bound

Theorem (Abernethy et al. '08; Rakhlin '09)

For any bounded convex $K \subseteq \mathbb{R}^d$ and any norm $\|\cdot\|$, there exists an algorithm that **receives** T **and** $\sum_{t=1}^T \|\ell_t\|_*^2$ **before the first round** and satisfies

$$\forall u \in K$$
 Regret_T(u) $\leq C_{K,\|\cdot\|} \sqrt{\sum_{t=1}^{T} \|\ell_t\|_*^2}$.

(MIRROR DESCENT, FOLLOW THE REGULARIZED LEADER)

Corollary

If
$$\|\ell_t\|_* \leq B$$
 then $\operatorname{Regret}_T(u) \leq C_{K,\|\cdot\|} B \sqrt{T}$.

Adaptive Regret Bound

Theorem (Orabona & P.)

For any bounded convex $K \subseteq \mathbb{R}^d$ and any norm $\|\cdot\|$, there exists an algorithm that receives T and $\sum_{t=1}^T \|\ell_t\|_*^2$ before the first round and satisfies

$$\forall T \quad \forall u \in K \qquad \operatorname{Regret}_{T}(u) \leq C'_{K,\|\cdot\|} \sqrt{\sum_{t=1}^{T} \|\ell_{t}\|_{*}^{2}}.$$

- The value of $C'_{K,\|\cdot\|}$ later in the talk.
- Similar result for unbounded *K*.

Adaptivity

Adaptivity to unknown *T* is easy:

• Doubling trick. Try T = 1, 2, 4, 8, 16, 32, ...

Adaptivity to unknown $\|\ell_t\|_*$:

- ADAHEDGE for *K* = probability simplex [de Rooij, van Erven, Grünwald, Koolen '14]
- ADAGRAD, FTRL PROXIMAL for $\|\cdot\|_2$ and $\|\ell_t\|_2 \geq 1$ [Duchi, Hazan, Singer '11; McMahan & Streeter '10]
- ADAFTRL for any bounded K, any norm [this paper]
- SOLO FTRL for any K (bounded or unbounded), any norm [this paper]

Strong Convexity

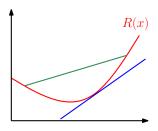
A convex function $R: K \to \mathbb{R}$ is λ -strongly convex w.r.t. $\|\cdot\|$ iff

$$\forall x, y \in K \quad \forall t \in [0, 1]$$

 $R(tx + (1 - t)y) \le tR(x) + (1 - t)R(y) - \frac{\lambda}{2}t(1 - t)||x - y||^2$

If *R* is differentiable, this is equivalent to

$$\forall x, y \in K$$
 $R(y) \ge R(x) + \langle \nabla R(x), y - x \rangle + \frac{\lambda}{2} ||x - y||^2$



Follow The Regularized Leader (FTRL)

- $R: K \to \mathbb{R}$ non-negative 1-strongly convex w.r.t. $\|\cdot\|$.
- FTRL chooses

$$w_t = \underset{w \in K}{\operatorname{argmin}} \left(\frac{1}{\eta_t} R(w) + \sum_{i=1}^{t-1} \langle \ell_i, w \rangle \right)$$

where $\eta_t > 0$ is a learning rate.

• Constant learning rate $\eta_1 = \eta_2 = \dots = \eta_T = \sqrt{\frac{\sup_{v \in K} R(v)}{\sum_{t=1}^T \|\ell_t\|_*^2}}$ gives [Rakhlin '09; Shalev-Shwartz '11]

$$\operatorname{Regret}_{T}(u) \leq 2 \underbrace{\sqrt{\sup_{v \in K} R(v)}}_{C_{K \parallel \parallel}} \sqrt{\sum_{t=1}^{T} \|\ell_{t}\|_{*}^{2}}$$

• How to choose η_t adaptively?

Scale-Free Property

Multiply loss vectors by c > 0:

$$\ell_1, \ell_2, \ell_3, \cdots \rightarrow c\ell_1, c\ell_2, c\ell_3, \ldots$$

An algorithm is **scale-free** if w_1, w_2, w_3, \ldots remains the same.

For a scale-free algorithm

$$\operatorname{Regret}_{T}(u) \to \operatorname{\mathbf{c}} \operatorname{Regret}_{T}(u) \qquad \sum_{t=1}^{T} \langle \ell_{t}, w_{t} \rangle \to \operatorname{\mathbf{c}} \sum_{t=1}^{T} \langle \ell_{t}, w_{t} \rangle$$

$$\sqrt{\sum_{t=1}^{T} \|\ell_{t}\|_{*}^{2}} \to \operatorname{\mathbf{c}} \sqrt{\sum_{t=1}^{T} \|\ell_{t}\|_{*}^{2}}$$

Scale-Free FTRL

For FTRL

$$w_t = \underset{w \in K}{\operatorname{argmin}} \left(\frac{1}{\eta_t} R(w) + \sum_{i=1}^{t-1} \langle \ell_i, w \rangle \right)$$

to be scale-free $1/\eta_t$ needs to be **positive** 1**-homogeneous** function of $\ell_1, \ell_2, \dots, \ell_{t-1}$.

That is,
$$(\ell_1, \ell_2, \dots, \ell_{t-1}) \to (c\ell_1, c\ell_2, \dots, c\ell_{t-1})$$
 causes
$$1/\eta_t \to c/\eta_t$$

$$w_{t} = \underset{w \in K}{\operatorname{argmin}} \left(\frac{1}{\eta_{t}} R(w) + \sum_{i=1}^{t-1} \langle \ell_{i}, w \rangle \right)$$

$$\downarrow$$

$$w_{t} = \underset{w \in K}{\operatorname{argmin}} \left(\frac{c}{\eta_{t}} R(w) + \sum_{i=1}^{t-1} \langle c\ell_{i}, w \rangle \right)$$

Two Good Scale-Free Choices of η_t

SOLO FTRL:

$$\frac{1}{\eta_t} = \sqrt{\sum_{i=1}^{t-1} \|\ell_i\|_*^2}$$

ADAFTRL:

$$\frac{1}{\eta_t} = \begin{cases} 0 & \text{if } t = 1\\ \frac{1}{\eta_{t-1}} + \frac{1}{\eta_{t-1}} D_{R^*} \left(-\eta_{t-1} \sum_{i=1}^{t-1} \ell_i, -\eta_{t-1} \sum_{i=1}^{t-2} \ell_i \right) & \text{if } t \ge 2 \end{cases}$$

 $D_{R^*}(\cdot,\cdot)$ is the Bregman divergence of Fenchel conjugate of R.

Regret of Scale-Free FTRL

Theorem

Let $R: K \to \mathbb{R}$ be non-negative and λ -strongly convex w.r.t. $\|\cdot\|$. Suppose K has diameter D w.r.t. to $\|\cdot\|$.

SOLO FTRL satisfies

$$\begin{split} \operatorname{Regret}_T(u) & \leq \left(R(u) + \frac{2.75}{\lambda} \right) \sqrt{\sum_{t=1}^T \|\ell_t\|_*^2} \\ & + 3.5 \min \left\{ D, \frac{\sqrt{T-1}}{\lambda} \right\} \max_{1 \leq t \leq T} \|\ell_t\|_* \; . \end{split}$$

ADAFTRL satisfies

$$\operatorname{Regret}_{T}(u) \leq 2 \max \left\{ D, \frac{1}{\sqrt{\lambda}} \right\} (1 + R(u)) \sqrt{\sum_{t=1}^{T} \|\ell_{t}\|_{*}^{2}}.$$

Optimization of λ for Bounded K

- Choose $R(w) = \lambda \cdot f(w)$ where f is non-negative 1-strongly convex.
- Use $D \le \sqrt{8 \sup_{v \in K} f(v)}$
- Optimize λ . Optimal choice depends only on $\sup_{v \in K} f(v)$.

With optimal choices of λ ,

ADAFTRL:
$$\operatorname{Regret}_T(u) \leq 5.3 \sqrt{\sup_{v \in K} f(v) \sum_{t=1}^T \|\ell_t\|_*^2}$$
 SOLO FTRL:
$$\operatorname{Regret}_T(u) \leq 13.3 \sqrt{\sup_{v \in K} f(v) \sum_{t=1}^T \|\ell_t\|_*^2}$$

Our Proof Techniques

Lemma

For non-negative numbers C, a_1, a_2, \ldots, a_T ,

$$\sum_{t=1}^{T} \min \left\{ \frac{a_t^2}{\sqrt{\sum_{s=1}^{t-1} a_s^2}}, Ca_t \right\} \le 3.5 \sqrt{\sum_{t=1}^{T} a_t^2} + 3.5C \max_{1 \le t \le T} a_t$$

Lemma

For non-negative numbers a_1, a_2, \ldots, a_T the recurrence

$$0 \le b_t \le \min \left\{ a_t, \frac{a_t^2}{\sum_{s=1}^{t-1} b_s} \right\} \quad implies \ that \quad \sum_{t=1}^T b_t \le 2 \sqrt{\sum_{t=1}^T a_t^2}$$

Lower Bound for Bounded K

Theorem

For any a_1, a_2, \ldots, a_T and any algorithm there exists $\ell_1, \ell_2, \ldots, \ell_T$ and $u \in K$ such that

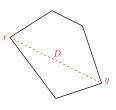
- $\|\ell_1\|_* = a_1$, $\|\ell_2\|_* = a_2$, ..., $\|\ell_T\|_* = a_T$
- Regret_T $(u) \ge \frac{D}{\sqrt{8}} \sqrt{\sum_{t=1}^{T} \|\ell_t\|_*^2}$

Proof.

• Choose $\ell \in \mathbb{R}^d$ and $x, y \in K$ such that

$$\|x-y\| = D$$
 $\|\ell\|_* = 1$ argmin $\langle \ell, w \rangle = x$ argmax $\langle \ell, w \rangle = y$ $w \in K$

• Set $\ell_t = \pm a_t \ell$ where signs are i.i.d. random



Open Problem: Bounded K

Lower vs. upper bound

$$\frac{D}{\sqrt{8}} \sqrt{\sum_{t=1}^{T} \|\ell_t\|_*^2} \quad \text{vs.} \quad 5.3 \sqrt{\sup_{u \in K} f(u) \sum_{t=1}^{T} \|\ell_t\|_*^2}$$

where $f: K \to \mathbb{R}$ is 1-strongly convex w.r.t. $\|\cdot\|$.

- Upper bound is (almost) tight. [Srebro, Sridharan, Tewari '11]
- Open problem: [Kwon & Mertikopoulos '14]

Given a convex set K and a norm $\|\cdot\|$, construct non-negative 1-strongly convex $f:K\to\mathbb{R}$ that minimizes

$$\sup_{u\in K}f(u).$$

Open Problems: Unbounded K

• For λ -strongly convex R, SOLO FTRL:

$$\operatorname{Regret}_{T}(u) \leq R(u) \sqrt{\sum_{t=1}^{T} \|\ell_{t}\|_{*}^{2}} + 6.25 \frac{\sqrt{T}}{\lambda} \max_{1 \leq t \leq T} \|\ell_{t}\|_{*}$$

• For 2-norm, $K = \mathbb{R}^d$, assuming $\|\ell_t\|_2 \le 1$, PiSTOL: [Orabona '13, '14; McMahan & Orabona '13]

Regret
$$(u) \le O\left(\|u\|_2 \sqrt{T\log(T\|u\|_2)}\right)$$
.

• Open problem 1: Algorithm for $K = \mathbb{R}^d$ that adapts to $\|\ell_t\|_2$ and has regret $\|u\|_2 \sqrt{T} \max_{1 < t < T} \|\ell_t\|_2 \cdot \operatorname{poly}(\log T, \log \|u\|_2)$

• Open problem 2: What about other norms and unbounded $K \neq \mathbb{R}^d$?

Questions?