
Toward a Classification of Finite
Partial-Monitoring Games

Gábor Bartók (*student*), Dávid Pál, and Csaba Szepesvári

Department of Computing Science, University of Alberta, Canada
{bartok,dpal,szepesva}@cs.ualberta.ca

Abstract. In a finite partial-monitoring game against Nature, the
Learner repeatedly chooses one of finitely many actions, the Nature re-
sponds with one of finitely many outcomes, the Learner suffers a loss
and receives feedback signal, both of which are fixed functions of the
action and the outcome. The goal of the Learner is to minimize its total
cumulative loss. We make progress towards classification of these games
based on their minimax expected regret. Namely, we classify almost all
games with two outcomes: We show that their minimax expected regret
is either zero, Θ̃(

√
T), Θ(T 2/3), or Θ(T) and we give a simple and effi-

ciently computable classification of these four classes of games. Our hope
is that the result can serve as a stepping stone toward classifying all finite
partial-monitoring games.

1 Introduction

A full information matrix game is specified by a finite loss matrix, L = (`ij),
where 1 ≤ i ≤ N denotes the actions of the row player and 1 ≤ j ≤ M denotes
the actions of the column player, while `ij ∈ [0, 1] is the loss suffered by the
row player when he chose action i and the opponent chose action j. In games
against Nature, Nature plays the role of the column player. In these games, at
the beginning of the game Nature chooses an arbitrary sequence of actions of
length T , unknown to the row player (henceforth Learner). If the sequence was
known, the Learner could select the action that gives rise to the smallest possible
cumulated loss. The regret of the Learner is defined by his excess cumulated loss
compared to the mentioned best possible cumulated loss. Generally, the regret
grows with the horizon. If the growth is sublinear then in the long run the Learner
can be said to play almost as well as if he knew Nature’s sequence of actions in
advance. In a full information matrix game against Nature, the Learner is told
Nature’s action after every round, so that he has a chance to make adjustments
to what actions to play. The Learner in general needs to randomize to prevent
being second-guessed. In this situation, it is known that the Learner can keep
his expected regret, RT , below

√
T ln(N)/2, independently of M (cf. Chapter 4

and the references in the book by Lugosi and Cesa-Bianchi [1]).
When playing in a partial-information matrix game, the main topic of this

article, Nature’s actions can be masked. More precisely, at the beginning of the
game the Learner is given a pair of N ×M matrices, (L,H), where L is the

loss matrix as before, while H is a matrix that specifies what information the
Learner receives in the rounds. The elements of H belong to some alphabet,
which, without the loss generality (WLOG), can be assumed to be the set of
natural numbers. The way the game is played is modified as follows: in round
t if i and j are the actions chosen by the Learner and Nature, respectively,
then instead of j, the Learner receives Hij only as the feedback. It is then the
structure of H that determines how much information is revealed in each time
step: assuming the learner selects i, Hij may reveal the identity of j (i.e., if
Hij 6= Hik, 1 ≤ j < k ≤M) or it may mask it completely (i.e., if Hi,· ≡ const).
The goal of the Learner is still to keep its regret small, but the game has now
a new element: The learner might need to give up on using actions with small
losses in favour of playing informative actions i.e., the exploration vs. exploitation
tradeoff appears.

Let us now discuss some previous results, followed by a short description
of our contributions. A special case of partial-information games is when the
Learner learns the loss of the action taken (i.e., when H = L), also known as the
bandit case. Then, the INF algorithm due to Audibert and Bubeck [2] is known
to achieve a regret bound O(

√
NT). (The Exp3 algorithm due to Auer et al. [3]

achieves the same bound up to logarithmic factors.) It is also known that this is
the best possible bound [3].

Now, consider another special case: Imagine a 3× 2 game (L,H), where the
first action of the Learner gives full information about Nature’s choice (H11 6=
H12), but it has a high cost, independently of Nature’s choice (say, `11 = `12 = 1),
while the other two actions do not reveal any information about Nature’s choice
(i.e., Hi1 = Hi2, i = 2, 3). Further, assume that the cost of action 2 is low if
Nature chooses action 1 and the cost of action 3 is low if Nature chooses action
2, say, `21 = `32 = 0, `22 = `31 = 1:

L =

1 1
0 1
1 0

 , H =

0 1
0 0
0 0

 .

In this case, it is known that the regret growth-rate is bounded by Ω(T 2/3) from
below (cf. Theorem 3, [4]), showing that a game like this is intrinsically harder
than a bandit problem. Further, it is known that the regret of the “general
forecaster for partial monitoring” is bounded by O(T 2/3) (cf. Theorem 3.1, [4]).

It is also clear that in certain cases the best possible regret grows linearly
with T (i.e., when no information is received about Nature’s actions), while in
some other trivial cases the learner can achieve 0 regret.

Thus, we see, that the difficulty of a game depends on the structure of L and
H. However, as of yet, it is unclear what determines this difficulty. In fact, dis-
cussing the rate of decay of the regret per time-step, Cesa-Bianchi et al. [4] note
that “It remains a challenging problem to characterize the class of problems that
admit rates of convergence faster than O(T−1/3)”.1 This is exactly the question

1 Here we renamed their n to T to match our notation.

which motivated the research reported on in this paper. In particular, we wish
to answer the following questions:

1. Given L,H, how difficult is the game G = (L,H)? That is, given G what is
the growth-rate of the minimax regret,

RT (G) = inf
A∈A

sup
E∈E

RT (G,A,E), (1)

corresponding to G, where A is the class of randomized strategies for the
learner, E is the class of Nature’s strategies and RT (G,A,E) denotes the
expected regret up to time T when the Learner using strategy A is playing
against Nature in game G and Nature uses strategy E.

2. Do there exist games where the exponent of the minimax regret rate is other
than 0, 1/2, 2/3, and 1?

3. Does there exist a strategy (and what is it), which, when fed with G =
(L,H), achieves the minimax regret?

In this paper, we make some initial steps toward answering these questions.
In particular, for games when Nature has at most two actions, apart from a set
of games of measure zero, we give complete answer to the above questions.

In particular, we show that the answer to the second question above is neg-
ative: Only exponents 0, 1/2, 2/3 and 1 can appear in the growth rate of the
minimax regret. As far as the lower bounds are concerned, an exponent of 1/2
follows since partial-monitoring games are clearly at least as difficult as full-
information games and, for the latter games, as it is well known, a lower bound
on the minimax regret with exponent 1/2 holds [5]. Thus, our first contribu-
tion is to show that if the exponent of the minimax regret rate is above 1/2
then it cannot be below 2/3. Precisely, we show that for the said set of games
if in the chain of nondominated actions of a game there exists two consecu-
tive actions under which Nature’s two actions are indistinguishable (i.e., the
actions are non-revealing) then Nature can force a high regret. Here, an action
i is called nondominated if there exists a distribution over Nature’s actions such
that action i has the smallest average loss over that distribution. Otherwise it is
called dominated. An action i is non-revealing if Hi1 = Hi2, otherwise it is called
revealing.

Our next contribution is that we give a strategy which, apart from these
difficult games, achieves a regret growth rate with exponent 1/2. Here, the insight
is that if at least one of any pair of consecutive nondominated actions is a
revealing action then the Learner can gain enough information cheaply. Since
Corollary 4.2 due to Cesa-Bianchi et al. [4] states that a regret with exponent
2/3 is achievable for all non-trivial partial-monitoring games, we basically get a
complete classification of games with M = 2.

2 Results

Consider a finite partial-monitoring game G = (L,H) of size N ×M . The regret
of the Learner playing sequence 1 ≤ It ≤ N against Nature who is playing

`·,2

`·,1

i3

i2

i1

i4

Revealing action

Non-revealing action
Dominated action

Fig. 1. The figure shows each action i as a point in R2 with coordinates (`i,1, `i,2).
The solid line connects the chain of nondominated actions, which, by convention are
ordered according to their loss for the first outcome.

1 ≤ Jt ≤M is defined as

R̂T =
T∑
t=1

`It,Jt − min
1≤i≤M

T∑
t=1

`i,Jt . (2)

The expected regret is defined by RT = E[R̂T]. (Note that since the Learner can
randomize, R̂T is a random variable.) In what follows Nature’s actions will also
be called outcomes.

From now on we consider only the case when M = 2. Dominated, nondomi-
nated, revealing and non-revealing actions were introduced in the introduction.
These concepts can be visualized by showing each action i as a point in R2 with
coordinates (`i,1, `i,2). Then the points corresponding to the nondominated ac-
tions lie on the boundary of the convex hull of the set of all the actions. See
Figure 1. Enumerating the nondominated actions in the counter-clockwise order
along the boundary of the convex hull gives rise to a sequence (i1, i2, . . . , iK),
which we call the chain of nondominated actions.

To avoid trivialities, WLOG we will assume that there are no duplicate ac-
tions, that is, two actions i, j, i 6= j, such that the i-th and the j-th rows of the
loss matrix are the same. Clearly, if duplicate actions exists then at least one of
them can be removed without changing the min-max expected regret: If both
are either revealing or non-revealing, it does not matter which action is removed.
Otherwise, we remove the non-revealing action.

To state the classification theorem, we introduce the following conditions.

Separation Condition. A game G satisfies the separation condition if its
chain of nondominated actions does not have a pair of consecutive actions
ij , ij+1 such that both of them are non-revealing. The set of games satisfying
this condition will be denoted by S.

Non-degeneracy Condition. A game G satisfies the non-degeneracy condi-
tion if each of its nondominated actions is an extreme2 point of the convex hull
of all the actions.

As we will soon see, the separation condition is the key to distinguish between
“hard” and “easy” games. On the other hand, the non-degeneracy condition is
merely a technical condition that we need in our proofs. The Lebesgue measure
of the class of loss matrices it excludes is zero. We are now ready to state our
main result.

Theorem 1 (Classification of two-outcome partial-monitoring games).
Let G = (L,H) be a finite partial-monitoring game with two outcomes that sat-
isfies the non-degeneracy condition. Let (i1, i2, . . . , iK) be the chain of nondomi-
nated actions in G. Let S be the set of games satisfying the separation condition.
The min-max expected regret RT (G) satisfies3

RT (G) =



0, K = 1; (3a)

Θ̃
(√

T
)
, K ≥ 2, G ∈ S; (3b)

Θ
(
T 2/3

)
, K ≥ 2, G 6∈ S, G has a revealing action; (3c)

Θ(T), otherwise. (3d)

Cases (3a) and (3d) are trivial. The lower bound of case (3b) follows from the
fact that even if we assume full information, the expected regret is Ω(

√
T) [5].

The upper bound of case (3c) can be derived from a result of Cesa-Bianchi
et al. [4]: Recall that the entries of H can be changed without changing the
information revealed to the Learner as long as one does not change the pattern
of which elements in a row are equal and different. Cesa-Bianchi et al. [4] show

that if the entries of H can be chosen such that rank(H) = rank
(
H
L

)
then

O(T 2/3) expected regret is achievable. This condition holds trivially for two-
outcome games with at least one revealing action. It remains to prove the upper
bound for (3b) and the lower bound for (3c). We prove these in the next sections.

3 Upper bound

In this section we present our algorithm, AppleTree, for games satisfying
the separation condition and the non-degeneracy condition, and prove that it
achieves Õ(

√
T) regret with high probability. (The choice of the name of the

algorithm will be explained later.)

2 An extreme point of a convex set is a point which is not a non-trivial convex com-
bination of two different points of the set. In our case, the set is a convex polygon
and its extreme points are precisely its vertices.

3 Here, an = Θ̃(bn) stands for an = Ω(bn) and an = Õ(bn).

v
Child(v, 1) Child(v, 2)

Fig. 2. The binary tree built by the algorithm. The leaf nodes represent neighboring
action pairs.

3.1 Algorithm

In the first step of the algorithm we can purify the game by first removing the
dominated actions and then the duplicates as mentioned beforehand.

The idea of the algorithm is to recursively split the game until we arrive
at games with two actions only. Now, if one has only two actions in a partial-
information game, the game must be either a full-information game (if both
actions are revealing) or an instance of a one-armed bandit (with one action
revealing the outcome, the other revealing no information).

To see why this latter case corresponds to one-armed bandits assume WLOG
that the first action is the revealing action. Now, it is easy to see that the regret
of a sequence of actions in a game does not change if the loss matrix is changed
by subtracting the same number from a column.4 By subtracting `2,1 from the
first and `2,2 from the second column we thus get the equivalent game where the
second row of the loss matrix is zero. In this game, the Learner knows the loss
of the second action independently of the outcome, while, since the first action
is revealing, he learns the loss of the first action in any round when that action
is played, which is exactly what one has in a one-armed bandit game. Since a
one-armed bandit is a special form of a two-armed bandit, one can use Exp3.P
due to Auer et al. [3] to achieve the Õ(

√
T) regret5.

Now, if there are more than two actions in the game, then the game is
split, putting the first half of the actions into the first and the second half into
the second subgame, with a single common shared action. Here the actions are
ordered according to their losses corresponding to the first outcome. This is
continued until the split results into games with two actions only. The recursive
splitting of the game results in a binary tree (see Figure 2). The idea of the
strategy played at an internal node of the tree is as follows: An outcome sequence
of length T determines the frequency ρT of outcome 2. If this frequency is small,
the optimal action is one of the actions of G1, the first subgame (simply because
then the frequency of outcome 1 is high and G1 contains the actions with the

4 As a result, for any algorithm, if RT is its regret at time T when measured in
the game with the modified loss matrix, the algorithm’s “true” regret will also be
RT (i.e., the algorithm’s regret when measured in the original, unmodified game).
Piccolboni and Schindelhauer [6] exploit this idea, too.

5 Apparently, this is a new result for this kind of game, also known as apple tasting.

smallest loss for the first outcome). Conversely, if this frequency is large, the
optimal action is one of the actions of G2. In some intermediate range, the
optimal action is the action shared between the subgames. Let the boundaries
of this range be ρ∗1 < ρ∗2 (ρ∗1 is thus the solution to (1 − ρ)`1,s−1 + ρ`2,s−1 =
(1−ρ)`1,s+ρ`2,s and ρ∗2 is the solution to (1−ρ)`1,s+1+ρ`2,s+1 = (1−ρ)`1,s+ρ`2,s,
where s = dK/2e is the index of the action shared between the two subgames.)

If we knew ρT , a good solution would be to play a strategy where the actions
are restricted to that of either game G1 or G2, depending on whether ρT ≤
ρ∗1 or ρT ≥ ρ∗2. (When ρ∗1 ≤ ρT ≤ ρ∗2 then it does not matter which action-
set we restrict the play to, since the optimal action in this case is included in
both sets.) There are two difficulties. First, since the outcome sequence is not
known in advance, the best we can hope for is to know the running frequencies
ρt = 1

t

∑t
s=1 I(Js = 2). However, since the game is a partial-information game,

the outcomes are not revealed in all time steps, hence, even ρt is inaccessible.
Nevertheless, for simplicity, assume that ρt was available. Then one idea would
be to play a strategy restricted to the actions of either game G1 or G2 as long
as ρt stays below ρ∗1 or above ρ∗2. Further, when ρt becomes larger than ρ∗2
while previously the strategy played the action of G1 then we have to switch
to the game G2. In this case, we start a fresh copy of a strategy playing in
G2. The same happens when a switch from G2 to game G1 is necessary. The
resets are necessary because at the leaves we play according to strategies that
use weights that depend on the cumulated losses of the actions exponentially.
To see an example when without resets the algorithm fails to achieve a small
regret consider the case when there are 3 actions, the middle one being revealing.
Assume that during the first T/2 time steps the frequency of outcome 2 oscillates
between the two boundaries so that the algorithm switches constantly back and
forth between the games G1 and G2. Assume further that in the second half
of the game, the outcome is always 2. This way the optimal action will be 3.
Nevertheless, up to time step T/2, the player of G2 will only see outcome 1 and
thus will think that action 2 is the optimal action. In the second half of the
game, he will not have enough time to recover and will play action 2 for too
long. Resetting the algorithms of the subgames avoids this behavior.

If the number of switches was large, the repeated resetting of the strategies
could be equally problematic. Luckily this cannot happen, hence the resetting
does minimal harm. We will in fact show that this generalizes to the case even
when ρt is estimated based on partial feedback (see Lemma 3).

Let us now turn to how ρt is estimated. In any round, the algorithm receives
feedback ht ∈ {1, 2, ∗}: if a revealing action is played in the round, ht = Jt ∈
{1, 2}, otherwise ht = ∗. If the algorithm choosing the actions decides with
probability pt ∈ (0, 1] to play a revealing action (pt can depend on the history
Ht) then I(ht = 2)/pt is a simple unbiased estimate of I(Jt = 2) (in fact,
E [I(ht = 2)/pt|Ht] = I(Jt = 2)). As long as pt does not drop to a too low value,
ρ̂t = 1

t

∑t
s=1

I(ht=2)
pt

will be a relatively reliable estimate of ρt (see Lemma 4).
However reliable this estimate is, it can still differ from ρt. For this reason, we

function Main(G,T, δ)
Input: G = (L,H) is a game, T is

a horizon, 0 < δ < 1 is a confi-
dence parameter

1: G← Purify(G)
2: BuildTree(root, G, δ)
3: for t← 1 to T do
4: Play(root)
5: end for

Fig. 3. The main entry point of the
AppleTree algorithm

function InitEta(G,T)
Input: G is a game, T is a horizon
1: if IsRevealingAction(G, 2)

then
2: η(v)←

√
8 ln 2 /T

3: else
4: η(v)← γ(v)/4
5: end if

Fig. 4. The initialization routine
InitEta.

function BuildTree(v,G, δ)
Input: G = (L,H) is a game, v is a tree node
1: if NumberOfActions(G) = 2 then
2: if not IsRevealingAction(G, 1) then
3: G← SwapActions(G)
4: end if
5: wi(v)← 1/2, i = 1, 2
6: β(v)←

√
ln(2/δ)/(2T)

7: γ(v)← 8β(v)/(3 + β(v))
8: InitEta(G,T)
9: else

10: (G1, G2)← SplitGame(G)
11: BuildTree(Child(v, 1), G1, δ/(4T))
12: BuildTree(Child(v, 2), G2, δ/(4T))
13: g(v)← 1, ρ̂(v)← 0, t(v)← 1
14: (ρ′1(v), ρ′2(v))← Boundaries(G)
15: end if
16: G(v)← G

Fig. 5. The tree building procedure

push the boundaries determining game switches towards each other:

ρ′1 =
2ρ∗1 + ρ∗2

3
, ρ′2 =

ρ∗1 + 2ρ∗2
3

. (4)

We call the resulting algorithm AppleTree, because the elementary partial-
information 2-action games in the bottom essentially correspond to instances of
the apple tasting problem (see Example 2.3 of [4]). The algorithm’s main entry
point is shown on Figure 3. Its inputs are the game G = (L,H), the time horizon
and a confidence parameter 0 < δ < 1. The algorithm first eliminates the dom-
inated and duplicate actions. This is followed by building a tree, which is used
to store variables necessary to play in the subgames (Figure 5): If the number
of actions is 2, the procedure initializes various parameters that are used either
by a bandit algorithm (based on Exp3.P [3]), or by the exponentially weighted
average algorithm (EWA) [5]. In the other case, it calls itself recursively on the
splitted subgames and with an appropriately decreased confidence parameter.

The main worker routine is called Play. This is again a recursive function
(see Figure 6). The special case when the number of actions is two is handled in
routine PlayAtLeaf, which will be discussed later. When the number of actions
is larger, the algorithm recurses to play in the subgame that was remembered
as the game to be preferred from the last round and then updates its estimate
of the frequency of outcome 2 based on the information received. When this
estimate changes so that a switch of the current preferred game is necessary,

function Play(v)
Input: v is a tree node
1: if ActionNumber(G(v)) = 2 then
2: (p, h)← PlayLeaf(v)
3: else
4: (p, h)← Play(Child(v, g(v)))

5: ρ̂(v)← (1− 1
t(v)

)ρ̂(v) + 1
t(v)

I(h=2)
p

6: if g(v) = 2 and ρ̂(v) < ρ′1(v) then
7: Reset(Child(v, 1)); g(v)← 1
8: else if g(v) = 1 and ρ̂(v) > ρ′2(v)

then
9: Reset(Child(v, 2)); g(v)← 2
10: end if
11: t(v)← t(v) + 1
12: end if
13: return (p, h)

Fig. 6. The recursive function Play

function Reset(v)
Input: v is a tree node
1: if ActionNumber(G(v)) = 2 then
2: wi(v)← 1/2, i← 1, 2
3: else
4: g(v)← 1, ρ̂(v)← 0, t(v)← 1
5: Reset(Child(v, 1))
6: end if

Fig. 7. Function Reset

the algorithm resets the algorithms in the subtree corresponding to the game
switched to, and changes the variable storing the index of the preferred game.
The Reset function used for this purpose, shown on Figure 7, is also recursive.

At the leaves, when there are only two actions, either EWA or Exp3.P is
used. These algorithms are used with their standard optimized parameters (see
Corollary 4.2 for the tuning of EWA, and Theorem 6.10 for the tuning of Exp3.P,
both from the book of Lugosi and Cesa-Bianchi [1]). For completeness, their
pseudocodes are shown in Figures 8–9. Note that with Exp3.P (lines 6–14) we
use the loss matrix transformation described earlier, hence the loss matrix has
zero entries for the second (non-revealing) action, while the entry for action 1
and outcome j is `1,j(v)− `2,j(v). Here `i,j(v) stands for the loss of action i and
outcome j in the game G(v) that is stored at node v.

3.2 Proof of the upper bound

Theorem 2. Assume G = (L,H) satisfies the separation condition and the non-
degeneracy condition and `i,j ≤ 1. Denote by R̂T the regret of Algorithm Apple-
Tree up to time step T . There exist constants c, p such that for any 0 < δ < 1
and T ∈ N, the algorithm with input G,T, δ achieves P

(
R̂T ≤ c

√
T lnp(2T/δ)

)
≥

1− δ .

Throughout the proof we will analyze the algorithm’s behavior at the root
node. We will use time indices as follows. Let us define the filtration {Ft =
σ(I1, . . . , It)}t, where It is the action the algorithm plays at time step t. To any
variable x(v) used by the algorithm, we denote by xt(v) the value of x(v) that is
measurable with respect to Ft, but not measurable with respect to Ft−1. From

function PlayAtLeaf(v)
Input: v is a tree node
1: if RevealingActionNumber(G(v)) = 2

then . Full information case
2: (p, h)← Ewa(v)
3: else . Partial information case
4: p← (1− γ(v)) w1(v)

w1(v)+w2(v)
+ γ(v)/2

5: U ∼ U[0,1) . U is uniform in [0, 1)
6: if U < p then . Play revealing action
7: h← PLAY(1) . h ∈ {1, 2}
8: L1 ← (`1,h(v)− `2,h(v) + β(v))/p
9: L2 ← β(v)/(1− p)

10: w1(v)← w1(v) exp(−η(v)L1)
11: w2(v)← w2(v) exp(−η(v)L2)
12: else
13: h← PLAY(2) . here h = ∗
14: end if
15: end if
16: return (p, h)

Fig. 8. Function PlayAtLeaf

function Ewa(v)
Input: v is a tree node
1: p← w1(v)

w1(v)+w2(v)

2: U ∼ U[0,1) . U is uniform in [0, 1)
3: if U < p then
4: I ← 1
5: else
6: I ← 2
7: end if
8: h← PLAY(I) . h ∈ {1, 2}
9: w1(v)← w1(v) exp(−η(v)`1,h(v))

10: w2(v)← w2(v) exp(−η(v)`2,h(v))
11: return (p, h)

Fig. 9. Function Ewa

now on we abbreviate xt(root) by xt. We start with two lemmas. The first lemma
shows that the number of switches the algorithm makes is small.

Lemma 3. Let S be the number of times AppleTree calls Reset at the root
node. Then there exists a universal constant c∗ such that S ≤ c∗ lnT

∆ , where
∆ = ρ′2 − ρ′1, ρ′1 and ρ′2 given by (4).

Note that here we use the non-degeneracy condition to ensure that ∆ > 0.
Proof Let s be the number of times the algorithm switches from G2 to G1. Let
t1 < . . . < ts be the time steps when ρ̂t becomes smaller than ρ′1. Similarly, let
t′1 < . . . < t′s+ξ, (ξ ∈ {0, 1}) be the time steps when ρ̂t becomes greater than ρ′2.
Note that for all 1 ≤ j < s, t′j < tj < t′j+1. The number of times the algorithm
resets is at most 2s+ 1. For any 1 ≤ j ≤ s, ρ̂t′j > ρ′2 and ρ̂tj < ρ′1. According to
the update rule we have for any t that

ρ̂t =
(

1− 1
t

)
ρ̂t−1 +

1
t
· I(Jt = 2)

pt
≥ t− 1

t
ρ̂t−1 = ρ̂t−1 −

1
t
ρ̂t−1

and hence ρ̂t−1 − ρ̂t ≤ 1
t . Summing this inequality for all t′j + 1 ≤ t ≤ tj we

get ∆ ≤ ρ̂t′j − ρ̂tj ≤
∑tj−1

t=t′j

1
t = O

(
ln tj

t′j

)
, using that ∆ = ρ′2 − ρ′1. Thus, there

exists c∗ > 0 such that for all 1 < j ≤ s

1
c∗
∆ ≤ ln

tj
t′j
≤ ln

tj
tj−1

. (5)

Adding (5) for 1 < j ≤ s we get (s − 1) 1
c∗∆ ≤ ln ts

t1
≤ lnT, which yields the

desired statement. ut
The next lemma shows that the estimate of the relative frequency of outcome 2
is not far away from its true value.

Lemma 4. Let c = 8
3∆2 . Then for any 0 < δ < 1, with probability at least 1− δ,

for all t ≥ c
√
T ln(2T/δ), |ρ̂t − ρt| ≤ ∆.

Proof Using Bernstein’s inequality for martingales (see Lemma A.8 in Lugosi and
Cesa-Bianchi [1]) and the fact that, due to the construction of the algorithm, the
probability pt of playing a revealing action at time step t is always greater than
1/
√
T , we get that for any t Pr (|ρ̂t − ρt| > ∆) ≤ 2 exp

(
− 3∆2t

8
√
T

)
. Reordering the

inequality and applying the union bound for all 1 ≤ t ≤ T we get the result. ut
Proof of Theorem 2 To prove that the algorithm achieves the desired regret
bound we use induction on the depth of the tree, d. If d = 1, AppleTree
plays either EWA or Exp3.P. EWA is known to satisfy Theorem 2, and, as we
discussed earlier, Exp3.P achieves O(

√
T lnT/δ) regret as well. As the induction

hypothesis we assume that Theorem 2 is true for any T and any game such that
the tree built by the algorithm has depth d′ < d.

Let Q1 = {1, . . . , dK/2e}, Q2 = {dK/2e, . . . ,K} be the set of actions asso-
ciated with the subgames in the root6. Furthermore, let us define the following
values: Let T 0

0 = 1, let T 0
i be the first time step after T 0

i−1 such that gt 6= gt−1. In
other words, T 0

i are the time steps when the algorithm switches between the sub-
games. Finally, let Ti = min(T 0

i , T). From Lemma 3 we know that TSmax+1 = T ,
where Smax = c∗ lnT

∆ . It is easy to see that Ti are stopping times for any i ≥ 1.

WLOG, from now on we will assume that the optimal action is action 1.
Let S = arg max{i ≥ 1|T 0

i ≤ T} the number of switches and B be the event
that for all t ≥ c

√
T ln(4T/δ), |ρ̂t − ρt| ≤ ∆. We know from Lemma 4 that

P(B) ≥ 1− δ/2. On B we have that |ρ̂T − ρT | ≤ ∆, and thus, using that action
1 is optimal, ρT ≤ ρ∗1. This implies that in the last phase the algorithm plays
on G1. It is also easy to see that before the last switch, at time step TS − 1, ρ̂
is between ρ∗1 and ρ∗2, if TS is large enough. Thus, up to time step TS − 1, the
optimal action is dK/2e, the one that is shared by the two subgames. This implies
that

∑TS−1
t=1 `1,Jt − `dK/2e,Jt ≥ 0. On the other hand, if TS ≤ c

√
T ln(4T/δ) then

TS−1∑
t=1

`1,Jt − `dK/2e,Jt ≥ −c
√
T ln(4T/δ) .

6 Recall that the actions are ordered with respect to `·,1.

Thus, we have

R̂T =
T∑
t=1

`It,Jt − `1,Jt

=
TS−1∑
t=1

`It,Jt − `1,Jt +
T∑

t=TS

`It,Jt − `1,Jt

≤ I(B)

(
TS−1∑
t=1

`It,Jt − `dK/2e,Jt +
T∑

t=TS

`It,Jt − `1,Jt

)
+ c
√
T ln(4T/δ) + (I(Bc))T︸ ︷︷ ︸

D

≤ D + I(B)
Smax∑
r=1

max
i∈Qπ(r)

Tr−1∑
t=Tr−1

(`It,Jt − `i,Jt)

= D + I(B)
Smax∑
r=1

max
i∈Qπ(r)

T∑
m=1

I(Tr − Tr−1 = m)
Tr−1+m−1∑
t=Tr−1

(`It,Jt − `i,Jt) ,

where π(r) is 1 if r is odd and 2 if r is even. Note that for the last line of the
above inequality chain to be well defined, we need outcome sequences of length
at most 2T . It makes us no harm to assume that for all T < t ≤ 2T , say, Jt = 1.

Recall that the strategies that play in the subgames are reset after the

switches. Hence, the sum R̂
(r)

m =
∑Tr−1+m−1
t=Tr−1

(`It,Jt − `i,Jt) is the regret of the
algorithm if it is used in the subgame Gπ(r) for m ≤ T steps. Then, exploit-
ing that Tr are stopping times, we can use the induction hypothesis to bound

R̂
(r)

m . In particular, let C be the event that for all m ≤ T the sum is less than
c
√
T lnp(2T 2/δ). Since the root node calls its children with confidence parameter

δ/(2T), we have that P(Cc) ≤ δ/2. In summary,

R̂T ≤ D + I(Cc)T + I(B)I(C)Smaxc
√
T lnp 2T 2/δ

≤ I(Bc ∪ Cc)T + c
√
T ln(4T/δ) + I(B)I(C)c

∗ lnT
∆

c
√
T lnp 2T 2/δ.

Thus, on B∩C, R̂T ≤ 2pcc∗

∆

√
T lnp+1 (2T/δ) , which, together with P(Bc∪Cc) ≤ δ

concludes the proof. ut
Remark The above theorem proves a high probability bound on the regret.
We can get a bound on the expected regret if we set δ to 1/T . Also note that
the bound given by the induction grows in the number of nondominated actions
as O(K log2K).

4 Lower Bound

In this section we present a lower bound for the expected regret in the case when
the separation condition does not hold.

Theorem 5. If the chain of nondominated actions of G satisfies the non-degeneracy
condition and the separation condition does not hold then for any algorithm A
and time horizon T there exists a sequence of outcomes such that the expected
regret RT (A) of the algorithm satisfies RT (A) = Ω(T 2/3).

Proof We follow the steps of the lower bound proof for the label efficient pre-
diction from Cesa-Bianchi et al. [4] with a few changes. The most important
change, as we will see, is the choice of the models we randomize over.

We can assume WLOG that actions 1 and 2 are the two consecutive non-
dominated non-revealing actions, while all the other actions are revealing and
(`1,1, `1,2) = (0, α), (`2,1, `2,2) = (1 − α, 0) with some α ∈ [0, 1]. That this can
be assumed follows by scaling and a reduction similar to the one we used in
Section 3.1. Using the non-degeneracy condition and that actions 1 and 2 are
consecutive, we get that for all i ≥ 3, there exists some λi ∈ R such that

`i,1 > λi`1,1 + (1− λi)`2,1 = (1− λi)(1− α) ,
`i,2 > λi`1,2 + (1− λi)`2,2 = λiα .

(6)

We denote λmin = mini≥3 λi, λmax = maxi≥3 λi and λ∗ = λmax − λmin.
We construct random outcome sequences as follows. We define two models

for generating outcome sequences. We use pi(·) and Ei[·] to denote probability
mass function and expectation given model i ∈ {1, 2}, respectively. In model 1
the outcomes are i.i.d. random variables with p1(1) = α+ ε whereas in model 2,
p2(1) = α− ε with ε < 1 to be chosen later. Note that, if ε is small enough then
only actions 1 and 2 can be optimal. Namely, action i is optimal in model i.

Let ht ∈ {∗, 1, 2} denote the observation of the algorithm at time step t,
and let ht denote the observation sequence (h1, . . . , ht). Let At(ht−1) denote the
choice of the algorithm7 at time step t, given the history of observations ht−1.
Let N j

i = Ej [
∑T
t=1 I(It = i)], that is, the expected number of times action i is

played up to time step T , given model j. Finally, let N j
≥3 =

∑
i≥3N

j
i .

Let D(p||q) be the KL divergence of Bernoulli distributions with parameters
p and q. We need the following technical lemma.

Lemma 6. Let 0 < ε < α be such that α + ε < 1. Then D(α − ε||α + ε) =
2ε2

α(1−α) +O
(
ε3
)
.

Proof The result follows from the definition of KL divergence and the second
order Taylor expansion of ln(1 + x). ut

The next lemma states that the expected number of times actions 1 and 2
are played by A does not change too much if we change the model:

Lemma 7. There exists a constant c (depending on α only) such that

N1
2 ≥ N2

2 − cT ε
√
N2
≥3 and N2

1 ≥ N1
1 − cT ε

√
N1
≥3 .

7 Conditioning on the internal randomization of A if necessary, we can assume WLOG
that algorithm A is deterministic.

Proof We only prove the first inequality, the other one is symmetric. We have

N2
2 −N1

2 =
∑
hT−1

(
p2

(
hT−1

)
− p1

(
hT−1

)) T∑
t=1

I
(
At
(
ht−1

)
= 2
)

≤ T
∑
hT−1

(
p2

(
hT−1

)
− p1

(
hT−1

))
≤ T

∑
hT−1:

p2(hT−1)≥p1(hT−1)

(
p2

(
hT−1

)
− p1

(
hT−1

))

=
T

2
‖p2 − p1‖1 ≤ c1T

√
D (p2||p1),

where the last step follows from Pinsker’s inequality [7]. Using the chain rule for
KL divergence we can write

D (p2||p1) =
T∑
t=1

D
(
p2(ht|ht−1)||p1(ht|ht−1)

)
=

T∑
t=1

∑
ht−1

p2(ht−1)
∑
ht

p2(ht|ht−1) ln
p2(ht|ht−1)
p1(ht|ht−1)

=
T∑
t=1

∑
ht−1

I(At(ht−1) ≥ 3)p2(ht−1)
∑

ht∈{1,2}
p2(ht|ht−1) ln

p2(ht|ht−1)
p1(ht|ht−1)

(7)

=
T∑
t=1

∑
ht−1

I(At(ht−1) ≥ 3)p2(ht−1)
(

2ε2

α(1− α)
+O

(
ε3
))

(8)

=
(

2ε2

α(1− α)
+O

(
ε3
))

N2
≥3,

In (7) we used that if we play action 1 or 2 then our observation ht will be ∗
in both models 1 and 2, whereas if we play action i ≥ 3 then ht ∈ {1, 2}, while
in (8) we used Lemma 6. ut

The expected regret of the algorithm can be bounded in terms of N j
i :

E1[R̂T] ≥ (`11(α+ ε) + `12(1− α− ε)− α(1− α− ε))N1
≥3 + εN1

2 = f1N
1
≥3 + εN1

2

E2[R̂T] ≥ (`21(α− ε) + `22(1− α+ ε)− (1− α)(α− ε))N2
≥3 + εN2

1 = f2N
2
≥3 + εN2

1

where, for an outcome i, `ji is the loss of the best revealing action given model j.
Now, by (6), there exists τ > 0 such that for all i ≥ 3, `i,1 ≥ (1− λi)(1−α) + τ
and `i,2 ≥ αλi + τ. Simple algebra gives that f1 ≥ (1 − λmax)ε + τ and
f2 ≥ λminε + τ . Hence, if ε is small enough then both f1 and f2 are posi-
tive. Therefore, choosing j = arg minl∈{1,2}(N l

≥3) and using Lemma 7 we get

Ei[R̂T] ≥ fiN j
≥3 + ε

(
N j

3−i − cT ε
√
N j
≥3

)
, i = 1, 2. Finally, randomizing over the

two models such that each of them is chosen with equal probability and denot-
ing the corresponding expectation by E[·], setting ε to c2T−1/3 we have E[R̂T] ≥
(τ− λ∗c2T

−1/3

2)N j
≥3+c2T 2/3−c22cT 1/3

√
N j
≥3 > T 2/3

(
(τ − λ∗c2

2)x2 + c2 − c22cx
)
,

where x =

√
Nj≥3

T 2/3 . Now it is easy to see that c2 can be set such that, indepen-

dently of x, the right hand side is always positive and thus it is Ω(T 2/3).

5 Discussion

In this paper we classified partial-monitoring games with two outcomes based on
their minimax regret. The most important open question is whether our results
generalize to games with more outcomes.

A simple observation is that, given a finite partial-monitoring game, if we
restrict Nature’s set of actions to any two outcomes, the resulting game’s hard-
ness serves as a lower bound on the minimax regret of the original game. This
gives us a sufficient condition that a game has Ω(T 2/3) minimax regret. We be-
lieve that the Ω(T 2/3) lower bound can also be generalized to situations where
two “ε-close” outcome distributions are not distinguishable by playing only their
respective optimal actions. Generalizing the upper bound result seems more chal-
lenging. The algorithm AppleTree heavily exploits the two-dimensional struc-
ture of the losses and, as of yet, in general we do not know how to construct an
algorithm that achieves Õ(

√
T) regret on partial-monitoring games with more

than two outcomes.

Bibliography

[1] G. Lugosi and N. Cesa-Bianchi. Prediction, Learning, and Games. Cambridge
University Press, 2006.

[2] J.-Y. Audibert and S. Bubeck. Minimax policies for adversarial and stochas-
tic bandits. In Proceedings of the 22nd Annual Conference on Learning The-
ory, 2009.

[3] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The
nonstochastic multiarmed bandit problem. SIAM Journal on Computing, 32
(1):48–77, 2003.

[4] Nicoló Cesa-Bianchi, Gábor Lugosi, and Gilles Stoltz. Regret minimization
under partial monitoring. Mathematics of Operations Research, 31(3):562–
580, 2006.

[5] N. Cesa-Bianchi, Y. Freund, D. Haussler, D.P. Helmbold, R.E. Schapire, and
M.K. Warmuth. How to use expert advice. Journal of the ACM, 44(3):
427–485, 1997.

[6] Antonio Piccolboni and Christian Schindelhauer. Discrete prediction games
with arbitrary feedback and loss. In Proceedings of the 14th Annual Confer-
ence on Computational Learning Theory (COLT), pages 208–223. Springer-
Verlag, 2001.

[7] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory.
Wiley, New York, second edition, 2006.

