
Online learning – CMPUT 654

Gábor Bartók Dávid Pál Csaba Szepesvári István Szita

October 20, 2011

Contents

1 Shooting Game 4
1.1 Exercises . 6

2 Weighted Majority Algorithm 8
2.1 The Halving Algorithm . 8

2.1.1 Analysis . 9
2.2 The Weighted-Majority Algorithm . 9

2.2.1 Analysis . 9

3 Exponentially Weighted Average Forecaster: Continuous Predictions 11
3.1 The Exponentially Weighted Average forecaster 12
3.2 Analysis . 12
3.3 Exercises . 14

4 Exponentially Weighted Average Forecaster: Discrete Predictions 16
4.1 Randomized EWA . 17
4.2 A Bound on the Expected Regret . 18
4.3 A High Probability Bound . 19
4.4 Exercises . 20

5 A Lower Bound for Discrete Prediction Problems 22
5.1 Some Preliminaries . 22
5.2 Results . 24
5.3 Exercises . 27

6 Tracking 28
6.1 The problem of tracking . 28
6.2 Fixed-share forecaster . 30
6.3 Analysis . 33
6.4 Variable-share forecaster . 34
6.5 Exercises . 35

1

7 Linear classification with Perceptron 36
7.1 The Perceptron Algorithm . 37
7.2 Analysis for Linearly Separable Data . 38
7.3 Analysis in the General Case . 39
7.4 Exercises . 41

8 Follow the Regularized Leader and Bregman divergences 43
8.1 Legendre functions and Bregman divergences 44
8.2 Strong Convexity and Dual Norms . 45
8.3 Analysis of FTRL . 46
8.4 Exercises . 49

9 Proximal Point Algorithm 53
9.1 Analysis . 53
9.2 Time-Varying Learning Rate . 56
9.3 Linearized Proximal Point Algorithm . 57
9.4 Strongly Convex Losses . 58
9.5 Exercises . 59

10 Least Squares 61
10.1 Analysis . 61
10.2 Ridge Regression with Projections . 66

10.2.1 Analysis of Regret . 66
10.3 Directional Strong Convexity . 70
10.4 Exercises . 71

11 Exp-concave Functions 72
11.1 Exercises . 74

12 p-Norm Regularizers and Legendre Duals 75
12.1 Legendre Dual . 75
12.2 p-Norms and Norm-Like Divergences . 78
12.3 Regret for Various Regularizers . 80
12.4 Exercises . 82

13 Exponentiated Gradient Algorithm 84
13.1 Exercises . 87

14 Connections to Statistical Learning Theory 88
14.1 Goals of Statistical Learning Theory . 89
14.2 Online-to-Batch Conversions . 90
14.3 Intermezzo: Martingales . 92
14.4 High-Probability Bounds for Averaging . 93

2

15 Multi-Armed Bandits 96
15.1 Exp3-γ algorithm . 97
15.2 A high probability bound for the Exp3.P algorithm 98

16 Lower Bounds for Bandits 102

17 Exp3-γ as FTRL 105
17.1 Black-box Use of Full-information Algorithms 105
17.2 Analysis of Exp3-γ . 106

17.2.1 Local Norms . 107
17.3 Avoiding local norms . 109

17.3.1 Relaxing nonnegativity of losses . 109
17.3.2 An alternative method . 109

17.4 Exercises . 110

18 Solutions to Selected Exercises 117

3

Chapter 1

Shooting Game

Imagine the following repeated game—shooting game. In each round t = 1, 2, . . . , n

• We choose a point p̂t ∈ Rd

• Then, the environment chooses a point yt ∈ Rd with Euclidean norm ‖yt‖ ≤ 1

• We suffer a loss `(pt, yt) = ‖p̂t − yt‖2

If we knew the sequence y1, y2, . . . , yn ahead of time and wanted to use the best fixed point
to predict, we would choose the point that minimizes the total loss:

p∗n = argmin
p∈Rd

n∑
t=1

`(p, yt) = argmin
p∈Rd

n∑
t=1

‖p− yt‖2

For the loss function `(p, y) = ‖p− y‖2 it is not hard to calculate p∗n explicitly:

p∗n =
1

n

n∑
t=1

yt

(Do the calculation!)
An online algorithm does not have the luxury of knowing the sequence ahead of time,

and thus it needs to choose p̂t based on y1, y2, . . . , yt−1 only. The regret is the extra loss that
it suffers compared to p∗n:

Rn =
n∑
t=1

`(p̂t, yt)−
n∑
t=1

`(p∗n, yn) .

A particularly good algorithm for the shooting game is the Follow-The-Leader (FTL)
algorithm, which chooses the point that minimizes the loss on the points y1, y2, . . . , yt−1 seen
so far:

p̂t = argmin
p∈Rd

n∑
t=1

`(p, yt) = argmin
p∈Rd

t−1∑
s=1

‖p− ys‖2

4

(The point p̂t is the current “leader”.) Again, there exists an explicit formula for p̂t:

p̂t =
1

t− 1

t−1∑
s=1

ys

Note that, using our notation, p̂t = p∗t−1. For concreteness, we define p̂1 = p∗0 = 0.
We analyze the regret of Follow-The-Leader algorithm by using the following lemma:

Lemma 1.1 (Hannan’s “Follow The Leader–Be The Leader” lemma). For any sequence
y1, y2, . . . , yn ∈ Rd we have

n∑
t=1

`(p∗t , yt) ≤
n∑
t=1

`(p∗n, yt) .

Proof. We prove the lemma by induction on n. For n = 1 the inequality is equivalent to:

`(p∗1, y1) ≤ `(p∗1, y1) ,

which is trivially satisfied with equality. Now, take some n ≥ 2 and assume that the desired
inequality holds up to n− 1. Our goal is to prove that it also holds for n, i.e., to show that

n∑
t=1

`(p∗t , yt) ≤
n∑
t=1

`(p∗n, yt) .

If we cancel `(p∗n, yn) on both sides, we get an equivalent statement

n−1∑
t=1

`(p∗t , yt) ≤
n−1∑
t=1

`(p∗n, yt) ,

which we prove by writing it as a chain of two inequalities, each of which is easy to justify:

n−1∑
t=1

`(p∗t , yt) ≤
n−1∑
t=1

`(p∗n−1, yt) ≤
n−1∑
t=1

`(p∗n, yt)

The first inequality holds by the induction hypothesis. The second follows from that p∗n−1 =

argminp∈Rd
∑n−1

t=1 `(p
∗
n−1, yt) is a minimizer of the sum losses, so the sum of losses evaluated

at p∗n must be at least as large as the sum evaluated at p∗n−1. This finishes the proof.

We use the lemma to upper bound the regret of the Follow-The-Leader algorithm:

Rn =
n∑
t=1

`(p̂t, yt)−
n∑
t=1

`(p∗n, yt) =
n∑
t=1

`(p∗t−1, yt)−
n∑
t=1

`(p∗n, yt) ≤
n∑
t=1

`(p∗t−1, yt)−
n∑
t=1

`(p∗t , yt) .

5

Now, the rightmost expression can be written as:1

n∑
t=1

`(p∗t−1, yt)−
n∑
t=1

`(p∗t−1, yt) =
n∑
t=1

‖p∗t−1 − yt‖2 −
n∑
t=1

‖p∗t−1 − yt‖2

=
n∑
t=1

〈p∗t−1 − p∗t , p∗t−1 + p∗t − 2yt〉 ,

where we have used that ‖u‖2 − ‖v‖2 = 〈u − v, u + v〉. The last expression can be further
upper bounded by the Cauchy-Schwarz inequality, that states that |〈u, v〉| ≤ ‖u‖ · ‖v‖, and
the triangle inequality that states that ‖u+ v‖ ≤ ‖u‖+ ‖v‖:

n∑
t=1

〈p∗t−1 − p∗t , p∗t−1 + p∗t − 2yt〉 ≤
n∑
t=1

‖p∗t−1 − p∗t‖ · ‖p∗t−1 + p∗t − 2yt‖

≤
n∑
t=1

‖p∗t−1 − p∗t‖ ·
(
‖p∗t−1‖+ ‖p∗t‖+ 2‖yt‖

)
.

We use that y1, y2, . . . , yn have norm at most 1 and thus so do the averages p∗0, p
∗
1, . . . , p

∗
n:

Rn ≤
n∑
t=1

‖p∗t−1 − p∗t‖ ·
(
‖p∗t−1‖+ ‖p∗t‖+ 2‖yt‖

)
≤ 4

n∑
t=1

‖p∗t−1 − p∗t‖ .

It remains to upper bound ‖p∗t−1 − p∗t‖, which we do by substituting p∗t =
(t−1)p∗t−1+yt

t
, using

the triangle inequality and ‖yt‖ ≤ 1, ‖p∗t−1‖ ≤ 1:

‖p∗t−1 − p∗t‖ =

∥∥∥∥p∗t−1 −
(t− 1)p∗t−1 + yt

t

∥∥∥∥ =
1

t

∥∥p∗t−1 − yt
∥∥ ≤ 1

t

(
‖p∗t−1‖+ ‖yt‖

)
≤ 2

t
.

In summary,

Rn ≤ 4
n∑
t=1

‖p∗t−1 − p∗t‖ ≤ 8
n∑
t=1

1

t
≤ 8(1 + lnn) .

The last inequality,
∑n

t=1
1
t
≤ 1 + lnn, is a well known inequality for Harmonic numbers.

Theorem 1.2 (FTL Regret Bound). If y1, y2, . . . , yn is any sequence of points of the unit
ball of Rd then the Folllow-The-Leader algorithm that in round t predicts p̂t = p∗t−1 =

1
t−1

∑t−1
s=1 ys has regret at most 8(1 + lnn).

1.1 Exercises

Exercise 1.1.

1For vectors u, v ∈ Rd, the inner product of u and v is 〈u, v〉 = u>v. Further, ‖v‖ =
√
〈v, v〉.

6

(a) Consider an arbitrary deterministic online algorithm A for the shooting game. Show
that for any n ≥ 1 there exists a sequence y1, y2, . . . , yn such that A has non-positive
regret. Justify your answer.

(b) Consider an arbitrary deterministic online algorithm A for the shooting game. Show
that for any n ≥ 1 there exists a sequence y1, y2, . . . , yn in the unit ball of Rd such that
A has non-negative regret. Justify your answer.

Hint: Imagine that the algorithm is given to you as a subroutine, which you can call at any
time. More precisely, you will have two functions: init and predict. The first initializes
the algorithm’s internal variables (whatever they are) and returns the algorithm’s first pre-
diction and the second, taking the previous outcome gives you the new prediction. That
the algorithm is deterministic means that if you call it with the same sequence of outcomes,
it will give the same sequence of predictions. Can you write a code that will produce an
outcome sequence that makes the regret behave as desired? Remember, your code is free to
use the above two functions! Do not forget to justify why your solution works.

Exercise 1.2. (Follow-The-Leader) Consider the Follow-The-Leader (FTL) algo-
rithm for the shooting game which chooses p̂1 = 0 in round t = 1.

(a) Prove that for any sequence y1, y2, . . . , yn, n ≥ 1, the regret of the FTL algorithm is
nonnegative.

(b) According to Theorem 1.2, the regret of the FTL algorithm on any sequence y1, y2, . . . , yn
in the unit ball of Rd is at most O(log n). This problem asks you to show that the upper
bound O(log n) for FTL is tight. More precisely, for any n ≥ 1 construct a sequence
y1, y2, . . . , yn in the unit ball such that FTL has regret at least Ω(log n).

Hint for Part (b): Consider the sequence yt = (−1)tv where v is an arbitrary unit vector.
First solve the case when n is even. The inequality 1 + 1/2 + · · · + 1/n ≥ lnn might be
useful.

Exercise 1.3. (Stochastic model) Consider the situation when y1, y2, . . . , yn are gener-
ated i.i.d. (independently and identically distributed) according to some probability distri-
bution. For this case, we have seen in class an alternative definition of regret:

R̃n =
n∑
t=1

`(p̂t, yt)−min
p∈Rd

n∑
t=1

E[`(p, yt)] .

Prove that for any online learning algorithm E[R̃n] ≤ E[Rn].
(Morale: The result that you’re asked to prove shows the strength of the non-stochastic

framework in which no distributional assumptions are placed on y1, y2, . . . , yn. Namely, it
shows that any upper bound Rn ≤ f(n) in the non-stochastic framework implies an upper

bound E[R̃n] ≤ f(n) in the stochastic model.)
Hint: Write what you have to prove. Cancel identical terms.

7

Chapter 2

Weighted Majority Algorithm

Consider the prediction problem, in which we want to predict whether tomorrow it’s going
be rainy or sunny. For our disposal, we have N experts that predict rain/sunshine. We do
this repeatedly over a span of n days. In round (day) t = 1, 2, . . . , n:

• Each expert i = 1, 2, . . . , N predicts fi,t ∈ {0, 1}

• We predict p̂t ∈ {0, 1} based on the experts’ predictions

• Then, nature reveals yt ∈ {0, 1}

• We suffer the loss `(p̂t, yt) = I{p̂t 6= yt} and

each expert i = 1, 2, . . . , N suffers loss `(fi,t, yt) = I{f̂i,t 6= yt}

(The symbol I denotes the indicator function. If `(p̂t, yt) = 1 we make a mistake and if
`(fi,t, yt) = 1, expert i makes a mistake.) We are interested in algorithms which make as few
mistakes as possible.

2.1 The Halving Algorithm

If we know that there is an expert that never makes a mistakes (but we don’t know which
one), we can use the Halving Algorithm. The algorithm maintains the set St of experts
that did not make any mistakes in rounds 1, 2, . . . , t. We call St the set of alive experts at
the end of round t. Initially, S0 = {1, 2, . . . , N}. In round t, the algorithm predicts what the
majority of experts in set St−1 predict. In round t = 1, 2, . . . , n:

• Let St−1 ⊆ {1, 2, . . . , N} be the experts that did not make any mistake so far.

• The algorithm receives the experts’ predictions f1,t, f2,t, . . . , fN,t ∈ {0, 1}.

• The set St−1 is split into S0
t−1 = {i ∈ St−1 : fi,t = 0} and S1

t−1 = {i ∈ St−1 : fi,t = 1}.

• If |S0
t−1| > |S1

t−1|, the algorithm predicts p̂t = 0, otherwise it predicts p̂t = 1.

8

• The algorithm then receives yt (and suffers the loss `(p̂t, yt) = I{p̂t 6= yt}).

• The set of alive experts is updated: St = Sytt−1.

2.1.1 Analysis

If in round t the Halving Algorithm makes a mistake then |St| = |Sytt−1| ≤ |St−1|/2. Since
we assume that there is an expert that never makes a mistake we have at all time steps that
|St| ≥ 1 and therefore, the algorithm can not make more than log2 |S0| = log2N mistakes.

2.2 The Weighted-Majority Algorithm

If we do not know anything about the experts and, in particular, if there might not be
an infallible expert, we need a different algorithm because the Halving Algorithm will
eliminate all experts. One algorithm, which can be seen as a natural generalization of the
Halving Algorithm to this setting is the so-called Weighted-Majority Algorithm
(WMA). For each expert i, WMA maintains a positive weight wi,t and whenever expert i
makes a mistake, this weight is multiplied by a factor β ∈ [0, 1). The weight wi,t represents
how much WMA trusts in expert i. The algorithm then combines the experts’ prediction by
using a weighted-majority vote.

Formally, the algorithm works as follows: Initially, the weights of experts are w1,0 =
w2,0 = · · · = wN,0 = 1. In round t = 1, 2, . . . , n, WMA does the following:

• It receives the experts’ predictions f1,t, f2,t, . . . , fN,t ∈ {0, 1}.

• It predicts according to the weighted-majority vote:

p̂t = I{
∑N

i=1wi,t−1fi,t >
∑N

i=1wi,t−1(1− fi,t)} .

• It receives yt (and suffers the loss `(p̂t, yt) = I{p̂t 6= yt}).

• It updates wi,t = wi,t−1β
I{fi,t 6=yt}, for each i = 1, 2, . . . , N .

2.2.1 Analysis

To analyze the number of mistakes of WMA, we use the notation

Jt,good = {i : fi,t = yt} , Jt,bad = {i : fi,t 6= yt} ,

Wt =
N∑
i=1

wi,t , Wt,J =
∑
i∈J

wi,t .

Claim 2.1. Wt ≤ Wt−1 and if p̂t 6= yt then Wt ≤ 1+β
2
Wt−1.

9

Proof. Since wi,t ≤ wi,t−1 we have Wt ≤ Wt−1. Now, if p̂t 6= yt then the good experts were
in minority:

Wt−1,Jt,good ≤ Wt−1/2 .

Using this inequality we can upper bound Wt:

Wt = Wt−1,Jt,good + βWt−1,Jt,bad

= Wt−1,Jt,good + β
(
Wt−1 −Wt−1,Jt,good

)
= (1− β)Wt−1,Jt,good + βWt−1

≤ (1− β)Wt−1/2 + βWt−1

=
1 + β

2
Wt−1 ,

and we’re done.

The claim we’ve just proved allows to upper bound Wn in terms of L̂n =
∑n

t=1 I{p̂t 6= yt},
the number of mistakes made by the WMA:

Wn ≤
(

1 + β

2

)L̂n
W0 .

On the other hand, if Li,n =
∑n

t=1 I{fi,t 6= yt} denotes the number of mistakes made by
expert i, the weight of expert i at the end of algorithm is wi,n = βLi,n which in particular
means that

βLi,n = wi,n ≤ Wn .

Putting these two inequalities together and using that W0 = N , we get

βLi,n ≤
(

1 + β

2

)L̂n
N .

Taking logarithm and rearranging, we get upper bound on the number of mistakes of WMA:

L̂n ≤
ln
(

1
β

)
Li,n + lnN

ln
(

2
1+β

)
which holds for any expert i. If L∗i,n = min1≤i≤N Li,n denotes the loss of the best expert, we
get

L̂n ≤
ln
(

1
β

)
L∗i,n + lnN

ln
(

2
1+β

) .

Note that WMA with β = 0 coincides with the Halving Algorithm and if L∗i,n = 0 we

recover the bound L̂n ≤ log2N , which was shown to hold for the Halving Algorithm.

10

Chapter 3

Exponentially Weighted Average
Forecaster: Continuous Predictions

We consider the situation when the experts’ predictions are continuous. Each expert i =
1, 2, . . . , N in round t predicts fi,t ∈ D where D is a convex subset of some vector space.1 In
each round t = 1, 2, . . . , n we play a game according to the following protocol:

• Experts predict f1,t, f2,t, . . . , fN,t ∈ D.

• We predict p̂t ∈ D based on the experts’ predictions.

• Then, the environment reveals an outcome yt ∈ Y .

• We suffer the loss `(p̂t, yt) and each expert i = 1, 2, . . . , N suffers a loss `(fi,t, yt).

The set Y of outcomes can be arbitrary, however we will make two assumptions on the loss
function ` : D × Y → R:

(a) `(p, y) ∈ [0, 1] for any p ∈ D, y ∈ Y ;

(b) for any fixed y ∈ Y , the function `(·, y) is convex.

Our goal is to design an algorithm that has small regret:

Rn = L̂n − min
1≤i≤N

Li,n ,

where L̂n =
∑n

t=1 `(p̂t, yt) is the cumulated loss of the algorithm and Li,n =
∑n

t=1 `(fi,t, yt)
is the cumulated loss of expert i.

1Recall that a subset D of a real vector space is convex if for any x, y ∈ D and any real numbers α, β ≥ 0
such that α+β = 1 the point αx1+βx2 belongs to D. Further, a real-valued function f with a convex domain
D is convex if for any x1, x2 ∈ D, α, β ≥ 0, α + β = 1, f(αx1 + βx2) ≤ αf(x1) + βf(x2). An equivalent
characterization of convex functions is the following: Consider the graph Gf = {(p, f(p)) : p ∈ D} of f
(this is a surface). Then, f is convex if and only if for any x ∈ D, any hyperplane Hx tangent to Gf at x is
below Gf in the sense that for any point (x′, y′) ∈ Hx, y′ ≤ f(x′).

11

3.1 The Exponentially Weighted Average forecaster

A very good algorithm for this problem is the Exponentially Weighted Average
forecaster (EWA). For each expert i, EWA maintains a weight wi,t = e−ηLi,t which
depends on the loss Li,t of expert i up to round t and a parameter η > 0 which will be
chosen later. In each round t, EWA predicts by taking the convex combination of the
experts’ predictions f1,t, f2,t, . . . , fN,t with the current weights.

More precisely, EWA is as follows: First, the weights are initialized to w1,0 = w2,0 =
· · · = wN,0 = 1. Further, the sum of the weights is stored in W0 = N . Then, in each round
t = 1, 2, . . . , n EWA does the following steps:

• It receives experts’ predictions f1,t, f2,t, . . . , fN,t ∈ D.

• It predicts

p̂t =

∑N
i=1wi,t−1fi,t
Wt−1

.

• Then, the environment reveals an outcome yt ∈ Y .

• EWA suffers the loss `(p̂t, yt) and each expert i = 1, 2, . . . , N suffers a loss `(fi,t, yt).

• EWA updates the weights by wi,t = wi,t−1e
−η`(fi,t,yt), where i = 1, 2, . . . , N .

• EWA update Wt =
∑N

i=1wi,t.

For numerical stability, in software implementations instead of working with the weights wi,t
and their sum, one would only store and maintain the normalized weights ŵi,t = wi,t/Wt.

3.2 Analysis

To analyze the regret of EWA we will need two results. We prove only the first result.

Lemma 3.1 (Jensen’s inequality). Let V is any real vector space. If X is a V -valued random
variable such that E [X] exists and f : V → R is a convex function then

f(E[X]) ≤ E[f(X)] .

Proof. Consider x̄ = E [X] and the hyperplane Hx̄ which is tangent to the graph Gf of f
at x̄. We can write Hx̄ = {(x′, 〈a, x′〉 + b) : x′ ∈ V } with some a ∈ V , b ∈ R. Since
f is convex, Hx̄ is below Gf . Thus, 〈a,X〉 + b ≤ f(X). Since Hx̄ is tangent to Gf at x̄,
〈a, x̄〉+ b = f(x̄) = f(E [X]). Taking expectations of both sides, and using the equality just
obtained, we get f(E [X]) = 〈a,E [X]〉+ b ≤ E [f(X)], which proves the statement.

Lemma 3.2 (Hoeffding’s lemma). If X is a real-valued random variable lying in [0, 1] then
for any s ∈ R

E[esX] ≤ esE[X]+s2/8 .

12

The analysis will be similar to the analysis of WMA. First we lower bound Wn

Wn ≥ wi,n = e−ηLi,n

and then upper bound it by upper bounding the terms of

Wn = W0 ·
W1

W0

· W2

W1

· · · Wn

Wn−1

.

Let us thus upper bound the fraction Wt

Wt−1
for some fixed t (t ∈ {1, . . . , n}). We can express

this fraction as

Wt

Wt−1

=
N∑
i=1

wi,t
Wt−1

=
N∑
i=1

wi,t−1e
−η`(fi,t,yt)

Wt−1

=
N∑
i=1

wi,t−1

Wt−1

e−η`(fi,t,yt) = E
[
e−η`(fIt,t,yt)

]
,

where It is a random variable that attains values in the set {1, 2, . . . , N} and has distribution
Pr (It = i) =

wi,t−1

Wt−1
. Applying Hoeffding’s lemma to the random variable X = `(fIt,t, yt) gives

E
[
e−η`(fIt,t,yt)

]
≤ e−ηE[`(fIt,t,yt)]+η

2/8

Applying Jensen’s inequality on the expression in the exponent E[`(fIt,t, yt)] (exploiting that
` is convex in its first argument) and then using the definition of p̂t, we have

E[`(fIt,t, yt)] ≥ `(E[fIt,t], yt) = `

(
N∑
i=1

wi,t−1

Wt−1

fi,t, yt

)
= `(p̂t, yt) .

Putting things together we get that

Wt

Wt−1

≤ e−ηE[`(fIt,t,yt)]+η
2/8 ≤ e−η`(p̂t,yt)+η

2/8

which gives and upper on Wn as follows:

Wn = W0 ·
W1

W0

· W2

W1

· · · Wn

Wn−1

≤ W0 · e−η
∑n
t=1 `(p̂t,yt)+nη

2/8 = W0 · e−ηL̂n+nη2/8 .

Combining the upper and lower bounds on Wn and substituting W0 = N we obtain

e−ηLi,n ≤ N · e−ηL̂n+nη2/8 .

Taking logarithm, diving by η > 0 and rearranging gives us an upper bound on the loss

L̂n ≤ Li,n +
lnN

η
+
ηn

8
.

We summarize the result in the following theorem:

Theorem 3.3. Assume D is convex subset of some vector space. Let ` : D × Y → [0, 1] be
convex in its first argument. Then, the loss of the EWA forecaster is upper bounded by

L̂n ≤ min
1≤i≤N

Li,n +
lnN

η
+
ηn

8
.

With η =
√

8 lnN
n

, L̂n ≤ min
1≤i≤N

Li,n +

√
n

2
lnN .

13

3.3 Exercises

Exercise 3.1. For A,B > 0, find argminη>0(1/η A+ η B) and also minη>0(1/η A+ η B).

Exercise 3.2. It is known that if X is a random variable taking values in [0, 1], then for
any s ∈ R, E

[
esX
]
≤ exp((es − 1) E [X]). For s > 0 fixed, this bound becomes smaller than

what we would get from Hoeffding’s inequality as E [X]→ 0.

(a) Use this inequality in place of Hoeffding’s inequality in the proof of Theorem 3.3 to prove
the bound

L̂n ≤
ηL∗n + lnN

1− e−η
,

where L∗n = min1≤i≤N Li,n.

(b) Let η = ln(1 +
√

(2 lnN)/L∗n), where L∗n is assumed to be positive. Show that in this
case

L̂n ≤ L∗n +
√

2L∗n lnN + lnN .

Hint for Part (b): Use η ≤ sinh(η) = (eη− e−η)/2, which is known to hold for all η > 0,
together with the bound of Part (a).

(c) Compare the bound of Part (b) to that of Theorem 3.3. When would you use this bound
and when the original one?

Exercise 3.3. (Hierarchical EWA) Consider a continuous prediction problem with
decision space D, outcome space Y , loss function ` and N experts. As usual, let ` be convex
in its first argument. Fix some 0 < η. Let EWA(η) denote the EWA algorithm when it is
used with the fixed N experts and the learning rate η. Now, consider a finite set of possible
values of η, say, E = {η1, . . . , ηK}. Imagine using these K instances of EWA in parallel.
Each of them will predict in its own way. This new algorithms themselves can be considered
as K new, compound experts, giving rise to a “hierarchical EWA algorithm” with two layers.
Which of these compound experts is the best? This might be difficult to decide ahead of time
(and in fact, will depend on the outcome sequence), but we can just use EWA to combine
the predictions of the K compound experts to arrive at an interesting algorithm, with a
hyperparameter η∗ > 0.

(a) Invent a specific prediction problem (D, Y, `) with the required properties and a fixed set
of experts such that for some outcome sequences the smallest regret is obtained when
η is very close to zero, whereas for some other outcome sequences the largest regret is
obtained when η takes on a large value.

(b) Implement the EWA algorithm and test it in the environment that you have described
above, both for large and small learning rates. Do your experimental results support
your answer to the first part? Hopefully they do, in which case you can consider the
next part.

14

(c) Implement the hierarchical EWA algorithm described above and test it in the environ-
ment you have used above. Select η1, . . . , ηK in such a way that you can get interesting
results (include the values of the learning rate used in the previous part). Describe your
findings. As to the value of η∗, use the value specified in Theorem 3.3.

(d) Is it worth to define yet another layer of the hierarchy, to “learn” the best value of η∗?
How about yet another layer on the top of this? Justify your answer!

Exercise 3.4. Let Lit > 0, fit ∈ D, ` : D × Y → [0, 1] convex in its first argument. For

y ∈ Y , η > 0, define ft(η, y) = `(
∑

i
exp(−ηLit)∑
j exp(−ηLjt)fit, y). If this function was convex as a

function of η, could you use it for tuning η? How? Let ` be linear in its first argument. Is
this function convex as a function of η? Justify your answer.

15

Chapter 4

Exponentially Weighted Average
Forecaster: Discrete Predictions

A discrete prediction problem is one when the outcome space Y has at least two elements,
D = Y and the loss is the zero one loss: `(p, y) = I{p 6= y}.

In Chapter 2 we have shown that the Weighted Majority Algorithm (WMA) for
binary prediction problems makes at most

L̂n ≤
log2

(
1
β

)
L∗i,n + log2N

log2

(
2

1+β

)
mistakes. If we subtract L∗i,n from both sides, we get a bound on the regret

Rn = L̂n − L∗i,n ≤

(
log2

(
1
β

)
− log2

(
2

1+β

))
L∗i,n + log2N

log2

(
2

1+β

)
Unfortunately, this bound is of the form Rn ≤ aL∗i,n + b = O(n). That’s much worse than

the bound Rn ≤
√

n
2

lnN = O(
√
n), which we proved for EWA for continuous predictions.

This suggests that discrete problems are harder than continuous problems.
That this is true, at least if we stick to deterministic algorithms, is shown as follows:

Take D = Y = {0, 1}, let the loss `(p, y) = I{p 6= y} be the zero-one loss. Assume that we
have two experts such that the first expert predicts f1,t = f1,2 = · · · = f1,n = 0 and the
second one predicts f2,t = f2,2 = · · · = f2,n = 1. Then, the following hold:

(a) For any sequence y1, y2, . . . , yn ∈ {0, 1}, there exists an expert i ∈ {1, 2} such that
Li,n =

∑n
i=1 `(fi,t, yt) ≥ n/2.

(b) For any deterministic algorithm A there exists an outcome sequence yA1 , y
A
2 , . . . , y

A
n ∈

{0, 1} such that L̂n =
∑n

t=1 `(p̂
A
t , y

A
t) = n, where pAt denotes the prediction of A at time

t on the outcome sequence yA1 , . . . , y
A
n .

16

Part a follows from that L1,n + L2,n = n and therefore at least one of the two terms is at
least n/2. Part b follows by an adversarial argument: Let yA1 = 1− p̂A1 . This is well defined,
since the first prediction of A is just some constant, which can thus be used to construct
yA1 . Now, for t ≥ 2, assuming that yA1 , y

A
2 , . . . , y

A
t−1 have already been constructed. Let p̂At

be the prediction of algorithm A for round t, given the constructed sequence. This is again
well-defined, since the prediction of A for round t depends in a deterministic fashion on the
previous outcomes. Then, set yAt = 1 − p̂At . With this construction, `(p̂At , y

A
t) = 1 holds for

all t.
From a and b we get the following result:

Theorem 4.1. Let Y be a set with at least two elements. Consider the discrete prediction
problem where the outcome space is Y , the decision space is D = Y , and the loss is the
zero-one loss `(p, y) = I{p 6= y}. Then, for any deterministic algorithm A, in the worst case
the regret RA

n of A can be as large as n/2.

4.1 Randomized EWA

In this section D and Y are arbitrary sets.
The pessimistic result of Theorem 4.1 can be circumvented with randomization. In par-

ticular, we will show that a randomized variant of EWA can achieve non-trivial regret even
for discrete prediction problems. (The algorithm is also know under the name Randomized
Weighted Majority Algorithm (RWMA).) For each expert i, the algorithm maintains
a weight wi,t = e−ηLi,t , where Li,t =

∑t
s=1 `(fi,t, yt) is the cumulated loss of expert i up to

time t and η > 0 is a positive parameter. The algorithm also maintains the sum of the
weights Wt =

∑N
i=1wi,t.

Formally, it works as follows: Initially, wi,0 = 1 for each expert i and W0 = N . Then, in
each round t = 1, 2, . . . , n, the algorithm does the following:

• It receives experts’ predictions f1,t, f2,t, . . . , fN,t ∈ D.

• It calculates p̂i,t = wi,t−1/Wt−1, i = 1, . . . , N .

• It draws It ∈ {1, 2, . . . , N} randomly so that Pr[It = i] = p̂i,t holds for i = 1, . . . , N .

• It predicts fIt,t.

• The environment reveals the outcome yt ∈ Y .

• The algorithm suffers the loss `(fIt,t, yt) and each expert i = 1, 2, . . . , N suffers a loss
`(fi,t, yt).

• The algorithm updates the weights: wi,t = wi,t−1e
−η`(fi,t,yt).

• The algorithm updates the sum of the weights: Wt =
∑N

i=1wi,t.

17

We do not assume anything about D, Y and the loss function ` doesn’t need to convex
anymore. The only assumption that we make is that `(p, y) ∈ [0, 1]. Also note that the
numbers p̂1,t, p̂2,t, . . . , p̂N,t are non-negative and sum to 1 and therefore the distribution of It
is valid probability distribution.

Since the algorithm randomizes, its regret becomes a random variable. Hence, our state-
ments will be of probabilistic nature: First we show a bound on the expected regret and
then we will argue that with high probability, the actual (random) regret is also bounded by
some “small” quantity.

4.2 A Bound on the Expected Regret

Let us thus first analyze the algorithm’s expected regret. Our plan is to use Theorem 3.3
from Chapter 3 for this purpose. For this, we will show that for appropriate D′, Y ′, `′,
where D′ is the convex subset of a vector space, `′ : D′ × Y ′ → [0, 1] is convex in its first
argument, any sequence of outcomes and any sequence of expert predictions can be mapped
into appropriate sequences taking values in the respective spaces Y ′ and D′ such that the
expected regret of the randomized EWA algorithm is the same as that of an EWA algorithm
which works with the mapped sequences. From this, the bound on the expected regret of
the randomized EWA algorithm will follow.

The construction is as follows: We define Y ′, D′, `′ : D′ × Y ′ → [0, 1] as follows:

• D′ = {p ∈ [0, 1]N :
∑N

i=1 pi = 1} is the N-dimensional probability simplex;

• Y ′ = Y ×DN ;

• `′(p, (y, f1, f2, . . . , fN)) =
∑N

i=1 pi · `(fi, y).

Note that, as promised, D′ is convex and `′ is convex (in fact linear!) in its first argument.
Now, given the expert predictions fi,t and outcomes yt we define the sequences (f ′i,t), (y′t),
f ′i,t ∈ D′, y′t ∈ Y ′, as follows:

• f ′i,t = ei where ei = (0, . . . , 0, 1, 0, . . . , 0)> is a vector of length N with i-th coordinate
equal to 1 and all other equal to 0;

• y′t = (yt, f1,t, . . . , fN,t).

Suppose we apply EWA from Chapter 3 on Y ′, D′, `′ : D′ × Y ′ → [0, 1] with experts’ predic-
tions f ′i,t and outcomes y′t. It is not hard to verify that the experts’ losses are exactly the
same as in the randomized algorithm on the original experts’ predictions fi,t and outcomes
yt:

`′(f ′i,t, y
′
t) = `′(ei, (yt, f1,t, . . . , fN,t))

= 0 · `(f1,t, yt) + · · ·+ 0 · `(fi−1,t, yt) + 1 · `(fi,t, yt) + 0 · `(fi+1,t, yt) + · · ·+ 0 · `(fN,t, yt)
= `(fi,t, yt) .

18

Therefore, the cumulated losses Li,t =
∑t

s=1 `(fi,s, ys) =
∑t

s=1 `
′(f ′i,s, y

′
s) of experts are the

same in both algorithms. It follows that the weights wi,t, the sum of weights Wt and the
vectors p̂t = (p̂1,t, p̂2,t, . . . , p̂N,t) are also identical between the two algorithms.

Furthermore, the expected loss of the randomized algorithm is the same as the loss of
the continuous EWA running on f ′i,t’s and y′t’s:

E[`(fIt,t, yt)] =
n∑
i=1

p̂i,t · `(fi,t, yt) = `′(p̂t, (yt, f1,t, f2,t, . . . , fN,t)) = `′(p̂t, y
′
t) (4.1)

If L′n =
∑n

t=1 `
′(p̂t, y

′
t) denotes the loss of the continuous EWA running on f ′i,t’s and y′t’s, by

Theorem 3.3

L̂′n ≤ min
1≤i≤N

Li,n +
lnN

η
+
ηn

8

If Ln =
∑n

t=1 `(fIt,t, yt) denotes the loss of the randomized EWA, thanks to (4.1), we see

that E[L̂n] = L̂′n and therefore

E[L̂n] ≤ min
1≤i≤N

Li,n +
lnN

η
+
ηn

8

We summarize this result in the following theorem:

Theorem 4.2. Let D, Y , ` : D × Y → [0, 1] be arbitrary. Then, the expected loss of the
randomized EWA forecaster is upper bounded as follows

E[L̂n] ≤ min
1≤i≤N

Li,n +
lnN

η
+
ηn

8
.

In particular, with η =
√

8 lnN
n

, E[L̂n] ≤ min
1≤i≤N

Li,n +

√
n

2
lnN .

4.3 A High Probability Bound

Theorem 4.2 gives an upper bound on the expected regret of the algorithm. An expected
regret bound is a good start but the bound would not be very useful if the variance of the
regret was too large (e.g., linear in n). More generally, we are interested in proving so-called
exponential tail bounds for the regret, which, as we will see, show that the regret has “sub-
Gaussian tails”. In particular, from these bounds it follows that the variance of regret (and
also its higher moments) are tightly controlled.

The proof will rely on a basic inequality of probability theory. (We omit the proof and
we only mention that the theorem can be proved using Hoeffding’s lemma.)

Theorem 4.3 (Hoeffding’s inequality). If X1, X2, . . . , Xn are independent random variables
lying in [0, 1] then for any ε ≥ 0

Pr

[
n∑
t=1

Xt −
n∑
t=1

E[Xt] ≥ ε

]
≤ e−2ε2/n .

19

Equivalently, for any 0 < δ < 1 with probability at least 1− δ,
n∑
t=1

Xt <
n∑
t=1

E[Xt] +

√
n

2
ln(1/δ) .

Remark 4.4. Note that the (upper) tail probability of a zero-mean random variable Z is
defined as Pr (Z ≥ ε) for ε > 0. The first form of the inequality explains why we say that the
“tail” of Z =

∑n
t=1Xt−

∑n
t=1 E[Xt] shows a sub-Gaussian behavior: The tail of a Gaussian

with variance σ2 = n/4 would also decay as exp(−2ε2/n) as ε → ∞. Therefore, the tail
of Z is not “fatter” than that of a Gaussian, which we just summarize as the tail of Z is
sub-Gaussian.

We apply Hoeffding’s inequality to the losses Xt = `(fIt,t, yt) of randomized EWA. We
get that with probability at least 1− δ,

L̂n < E[L̂n] +

√
n

2
ln(1/δ) .

This, together with Theorem 4.2 for η =
√

8 lnN
n

gives that with probability a least 1− δ,

L̂n < min
1≤i≤N

Li,n +

√
n

2
lnN +

√
n

2
ln(1/δ) .

We summarize the result in a theorem:

Theorem 4.5. Let D, Y , ` : D × Y → [0, 1] be arbitrary. Then, for any 0 < δ < 1, the

loss of randomized EWA forecaster with η =
√

8 lnN
n

is with probability at least 1 − δ upper

bounded as follows

L̂n < min
1≤i≤N

Li,n +

√
n

2

(√
lnN +

√
ln(1/δ)

)
.

Using Rn = L̂n − min1≤i≤N Li,n, this gives a high-probability regret bound, and in fact
shows that the tail of the regret is sub-Gaussian.

4.4 Exercises

Exercise 4.1. Consider the setting of Exercise 3.3, just now for a discrete prediction
problem. That is, the goal is to find the best learning rate for randomized EWA from a finite
pool {η1, . . . , ηK}. One possibility is to run a randomized EWA on the top of K randomized
EWA forecasters, each using some learning rate ηk, k = 1, . . . , K. The randomized EWA
“on the top” would thus randomly select one of the randomized EWA forecasters in the
“base”, which would in turn select an expert at random. Another possibility is that if

20

p0
t = (p

(0)
1,t , . . . , p

(0)
K,t)
> ∈ [0, 1]K is the probability vector of the randomized EWA on the top

for round t, and p
(k)
t = (p

(k)
1,t , . . . , p

(k)
N,t)
> ∈ [0, 1]N is the likewise probability vector of the kth

randomized EWA in the base, then just select expert i with probability
∑K

k=1 p
(0)
k,tp

(k)
i,t , i.e.,

combine the “votes” across the two layers before selecting the expert. Which method would
you prefer? Why? Design an experiment to validate your claim.

21

Chapter 5

A Lower Bound for Discrete
Prediction Problems

Is EWA of the last two chapters is a good algorithm? Can there exist a better algorithm?
Or maybe our bound for EWA is loose and in fact EWA is a better algorithm than we think
it is? In an exercise you proved that for the shooting game FTL achieves Θ(lnn) regret. But
can there be a better algorithm than FTL for this problem?

Minimax lower bounds provide answers to questions like these. We shall investigate
continuous prediction problems with convex losses (in short, continuous convex problems)
since for discrete problems if we use a randomized algorithm, the problem is effectively
transformed into a continuous convex problem, while if no randomization is allowed, we
have already seen a lower-bound in Theorem 4.1.

5.1 Some Preliminaries

We want to show that the bound in Theorem 3.3 is “tight”. In order to explain what we
mean by tightness, let us state an easy corollary of this theorem.

We need some notation. Fix some sets D, Y and a loss function ` : D × Y → [0, 1].
An “algorithm” simply maps past observations to decisions: At time t an algorithm can
use (y1, . . . , yt−1, f1,1, . . . , f1,t, . . . , fN,1, . . . , fN,t) to come up with its decision (and it can
also randomize). We will disregard computability issues and in fact consider all possible
(randomized) mappings from such histories to D. The set of these will be denoted by
A. Similarly, an expert bases its decision on past outcomes: At time t an expert can use
(y1, . . . , yt−1). Again, experts can randomize and we will consider all randomized mappings
which map such histories to decisions. The set of these will be denoted by F .

Given an algorithm A ∈ A and a non-empty set of experts F0 ⊂ F , let RA
n (F0) be the

(worst-case) regret of A for horizon n:

RA
n (F0) = sup

(y1,...,yn)∈Y n

{
n∑
t=1

`(p
(A)
t , yt)− inf

F∈F0

n∑
t=1

`(f
(F)
t , yt)

}
,

22

where p
(A)
t is algorithm A’s decision at time t, f

(F)
t is the decision of expert F at time t. (Of

course, the regret depends on D, Y and `, too, so for full precision we should denote this
dependence on the right-hand side, too, i.e., we should use, say, RA

n (F , `). However, since
we will mostly treat D, Y, ` as given (fixed), we suppress this dependence.)

The corollary of Theorem 3.3 is this: Fix some sets D, Y . Let F be the set of experts
over D, Y and let A be the set of algorithms. Take c = 1/

√
2. Then the following holds true:

(UB) For any loss function ` : D×Y → [0, 1], for any horizon n, for any positive
integer N , there exists an algorithm A ∈ A, such that for any multiset1 of
experts FN ⊂ F of cardinality N , the regret RA

n (FN) of algorithm A satisfies
RA
n (FN) ≤ c

√
n lnN .

For a fixed value of c, the negation of the above statement is the following:

(NUB) There exists a loss function ` : D×Y → [0, 1], a horizon n and a positive
integer N , such that for all algorithms A ∈ A, there exists a multiset of experts
FN ∈ F with cardinality N such that the regret RA

n (FN) of algorithm A satisfies
RA
n (FN) > c

√
n lnN .

Clearly, for any value of c, only one of the statements (UB), (NUB) can be true. We want
to show that for any c < 1/

√
2, (NUB) holds true since then it follows that the bound for

EWA is tight in the sense that there is no better algorithm than EWA in the worst-case and
the bound for EWA cannot be improved with respect to its constant, or how it depends on
the number of experts N or the length of the horizon n.

We will show the result for D = [0, 1], Y = {0, 1} and `(p, y) = |p− y|.
To show that for any c < 1/

√
2, (NUB) holds true, it suffices to prove that there exist

n,N such that for any algorithm A ∈ A,

sup
FN∈F ,|FN |≤N

RA
n (FN) ≥ 1/

√
2
√
n lnN .

In fact, it suffices to prove that there exist n,N such that for any algorithm A ∈ A,

sup
FN∈Sn

RA
n (FN) ≥ 1/

√
2
√
n lnN , (5.1)

where Sn is the set of static experts, i.e., the set of experts which decide about their choices
ahead of time, independently of what the outcome sequence will be. Thus, for F ∈ Sn, for
any 1 ≤ t ≤ n, y1, . . . , yt−1 ∈ Y , F (y1, . . . , yt−1) = ft for some fixed sequence (ft) ∈ Dn and
vice versa: for any fixed sequence (ft) ∈ D, there exists an expert F in Sn such that for any
1 ≤ t ≤ n, y1, . . . , yt−1 ∈ Y , F (y1, . . . , yt−1) = ft. Hence, in what follows we shall identify
the set of experts Sn with the set of sequences of length Dn. That inequality (5.1) holds for
any algorithm A ∈ A is equivalent to requiring that

inf
A∈A

sup
FN∈Sn

RA
n (FN) ≥ 1/

√
2
√
n lnN

1A multiset is similar to a set. The only difference is that multisets can contain elements multiple times.
We could use a list (or vector), but we would like to use ⊂ and ∈..

23

holds. Let
V (N)
n = inf

A∈A
sup
FN∈Sn

RA
n (FN) .

We call this quantity the minimax regret associated to problem (D, Y, `), horizon n and

expert number N . Thus, we will want to prove that V
(N)
n /
√
n lnN ≥ 1/

√
2 holds for some

n,N .

5.2 Results

A sequence (Zt)
n
t=1 of independent, identically distributed {−1,+1}-valued random variables

with Pr (Zt = 1) = Pr (Zt = −1) is called a Rademacher sequence. When you sum up a
Rademacher sequence, you get a random walk on the integers. A matrix with random
elements will be called a Rademacher random matrix when its elements form a Rademacher
sequence. We will need the following lemma, which shows how the expected value of the
maximum of N independent random walks behave. The results stated in the lemma are
purely probabilistic and we do not prove them. The essence of our proof will be a reduction
of our problem to this lemma.

Lemma 5.1. Take n independent Rademacher random variables. Then

lim
n→∞

E [max1≤i≤N
∑n

t=1 Zi,t]√
n

= E

[
max

1≤i≤N
Gi

]
,

where G1, G2, . . . , GN are N independent standard normal r.v.s. Further,

lim
N→∞

E [max1≤i≤N Gi]√
2 lnN

= 1.

The first part of the lemma states that, asymptotically speaking, the expected maximal
excursions of N independent random walks is the same as the expectation of the maximum
of N independent Gaussian random variables. Note that for N = 1, this result would follow
from the central limit theorem, so you can consider this as a generalization of the central
limit theorem. The second part of the lemma states that asymptotically, as N gets big,
the expectation of the maximum of N independent Gaussian random variables is

√
2 lnN .

Together the two statements say that, asymptotically, as both n,N get large, the expected
size of maximal excursions of N independent random walks is

√
2n lnN .

As many lower bound proofs, our proof will also use what we call the randomization
hammer, according to which, for any random variable X with domain dom(X), and any
function f ,

sup
x∈dom(X)

f(x) ≥ E [f(X)]

holds whenever E [f(X)] exists. When using this “trick” to lower bound supx f(x), we will
choose a distribution over the range of values of x (equivalently, the random variable X)

24

and then we will further calculate with the expected value E [f(X)]. The distribution will
be chosen such that the expectation is easy to deal with.

Our main result is the following theorem:

Theorem 5.2. Take Y = {0, 1}, D = [0, 1], `(p̂, y) = |p̂− y|. Then,

sup
n,N

V
(N)
n√

(n/2) lnN
≥ 1 .

That (NUB) holds for any c < 1/
√

2 is a corollary of this theorem should be clear given
the definitions. The strength of this result is that it is an algorithm independent lower
bound. How do we establish the existence of an appropriate sequence of outcomes and an
appropriate sequence of experts? We will use the randomization hammer.

Proof. Fix n,N > 0. Let FN ∈ Sn be some multiset of N static experts. By definition,

RA
n (FN) = sup

y1,...,yn∈Y

(
n∑
t=1

|p̂(A)
t − yt| − min

F∈FN

n∑
t=1

|f (F)
t − yt|

)
.

We use the randomization hammer to lower bound the quantity on the right-hand side. Let
Y1, Y2, . . . , Yn be an i.i.d. sequence of Bernoulli(1/2) random variables such that Yt is also
independent of the random numbers which are used by algorithm A. Then,

RA
n (FN) ≥ E

[
n∑
t=1

|p̂(A)
t − Yt| − min

F∈FN

n∑
t=1

|f (F)
t − Yt|)

]

= E

[
n∑
t=1

|p̂(A)
t − Yt|

]
− E

[
min
F∈FN

n∑
t=1

|f (F)
t − Yt|

]
.

It is not hard to see that E
[
|p̂(A)
t − Yt|

]
= 1/2 holds for any 1 ≤ t ≤ n thanks to our choice

of (Yt) (see Exercise 5.1).
Therefore,

RA
n (FN) ≥ n

2
− E

[
min
F∈FN

n∑
t=1

|f (F)
t − Yt|

]
= E

[
max
F∈FN

n∑
t=1

(
1

2
− |f (F)

t − Yt|
)]

.

Note that the right-hand side is a quantity, which does not depend on algorithm A. Thus,
we made a major step forward.

Now, let us find a shorter expression for the right-hand side. If Yt = 0, the expression(
1
2
− |f (F)

t − Yt|
)

equals to 1/2 − f
(F)
t . If Yt = 1, the expression equals to f

(F)
t − 1/2.

Therefore, the expression can be written as (f
(F)
t −1/2)(2Yt−1). Let us introduce σt = 2Yt−1.

25

Notice that (σt) is a Rademacher sequence variables. With the help of this sequence, we can
write

RA
n (FN) ≥ E

[
max
F∈FN

n∑
t=1

(f
(F)
t − 1

2
)σt

]
.

Thus, it also holds that

sup
FN∈Sn

RA
n (FN) ≥ sup

FN∈Sn
E

[
max
f∈FN

n∑
t=1

(f
(F)
t − 1

2
)σt

]

= sup
M∈DN×n

E

[
max

1≤i≤N

n∑
t=1

(Mi,t − 1
2
)σt

]
,

(5.2)

where the last equality follows from the definition of Sn.
We lower bound the quantity on the right-hand side by resorting to the randomization

hammer again. For this, we will view the right-hand side as supM g(M) with an appropriate
function g. The random variables used in the hammer will be again Bernoullis. In partic-
ular, we introduce the N × n random matrix B = (Bi,t)i=1,...,N,t=1,...,n, whose elements are
independent, Bernoulli(1/2) random variables, which are also independent of the previously
introduced random variables. For convenience, let us also introduce Zi,t = 2Bi,t − 1 so that
Bi,t − 1

2
= 1

2
Zi,t (note that Zi,t are Rademacher random variables). Then,

sup
M∈DN×n

g(M) ≥ E [g(B)] =
1

2
E

[
max

1≤i≤N

n∑
t=1

Zi,tσt

]
. (5.3)

It is not hard to see then that (Zi,tσt) is an N × n Rademacher random matrix (Exer-
cise 5.2).

Now, since (Zi,tσt) is an N × n Rademacher random matrix, the distribution of

max
1≤i≤N

n∑
t=1

Zi,tσt

is the same as that of max1≤i≤N
∑n

t=1 Zi,t. Therefore,2

E

[
max

1≤i≤N

n∑
t=1

Zi,tσt

]
= E

[
max

1≤i≤N

n∑
t=1

Zi,t

]
.

Chaining (5.2), (5.3) with this equality, we get

sup
FN∈Sn

RA
n (FN) ≥ 1

2
E

[
max

1≤i≤N

n∑
t=1

Zi,t

]
.

2Here, the Rademacher matrix (Zi,t) is recycled just to save the introduction of some new letters. Of
course, we could have also carried Zi,tσt further, but that would again be just too much writing.

26

Since this holds for any algorithm A ∈ A, we must also have

V (N)
n = inf

A∈A
sup
FN∈Sn

RA
n (FN) ≥ 1

2
E

[
max

1≤i≤N

n∑
t=1

Zi,t

]
.

Dividing both sides by
√
n and letting n→∞, the first part of Lemma 5.1 gives

lim
n→∞

V
(N)
n√
n
≥ 1

2
lim
n→∞

E [max1≤i≤N
∑n

t=1 Zi,t]√
n

=
1

2
E

[
max

1≤i≤N
Gi

]
,

where G1, G2, . . . , GN are independent, Gaussian random variables. Now, divide both sides
by
√

2 lnN and let N →∞. The second part of Lemma 5.1 gives

lim
N→∞

lim
n→∞

V
(N)
n√

2n lnN
≥ 1

2
lim
N→∞

E [max1≤i≤N Gi]√
2 lnN

=
1

2
,

therefore, we also have

sup
n,N

V
(N)
n√

2n lnN
≥ 1

2
.

Multiplying both sides by 2 gives the desired result.

5.3 Exercises

Exercise 5.1. Show that in the proof of Theorem 5.2, E
[
|p̂(A)
t − Yt|

]
= 1/2 holds for

any 1 ≤ t ≤ n, where the algorithm A is allowed to randomize (and of course may use past
information to come up with its prediction).

Exercise 5.2. Show that if (Zi,t) is an N×n Rademacher matrix and (σt) is a Rademacher

sequence with n elements and if for any t, Vt
def
= (Zi,t)i and σt are independent of each other

then (Zi,tσt) is an N × n Rademacher matrix.

Exercise 5.3. Show that for any sets X, Y , and any function A : X × Y → R,

inf
y∈Y

sup
x∈X

A(x, y) ≥ sup
x∈X

inf
y∈Y

A(x, y) .

Hint: Obviously, supx∈X A(x, y) ≥ A(x0, y) holds for any x0, y.

Exercise 5.4. Show that the following strengthening of the result in this chapter holds, too:
Take any c < 1/

√
2. Fix D = [0, 1], Y = {0, 1}, `(p, y) = |p−y|. Then, there exists a horizon

n, a positive integer N , and a non-empty set of experts FN ∈ F with cardinality N such that
for all algorithms A ∈ A the regret RA

n (FN) of algorithm A satisfies RA
n (FN) > c

√
n lnN .

Hint: Modify the proof of the above theorem.

27

Chapter 6

Tracking

In this chapter we still consider discrete prediction problems with expert advice with N
experts, where the losses take values in [0, 1]. The horizon n will be fixed.

So far we have considered a framework when the learning algorithm competed with the
single best expert out of a set of N experts. At times, this base set of experts might not
perform very well on their own. In such cases one might try a larger set of compound experts,
potentially created from the base experts. For example, we may want to consider decision
trees of experts when the conditions in the decision tree nodes refer to past outcomes, the
time elapsed, past predictions, etc., while the leafs could be associated with indices of base
experts. A decision tree expert can itself be interpreted as an expert: In a given round,
the past information would determine a leaf and thus the base expert whose advice the
tree expert would take. Then one can just use randomized EWA to compete with the best
compound expert. The benefit of doing so is that the best compound expert might have a
much smaller cumulated loss than the cumulated loss of the best base expert. The drawback
is that it might be hard to find this expert with a small loss, i.e., the regret bound, becomes
larger. So in general, this idea must be applied with care.

6.1 The problem of tracking

We will only deal with the special case of the so-called switching compound experts. Such
a compound expert is given by a sequence σ ∈ {1, . . . , N}n, where σt (the tth element of
σ) is the index of expert whose decision σ suggests to follow will at time t. (For brevity,
we will refer to σ itself as a switching expert.) Our goal will be to develop efficient online
algorithms which can compete with the best of those switching experts which do not switch
more than m times. The loss of σ at time t is `(fσt,t, yt),

1 so its the cumulated loss is

Lσ,n
def
=
∑n

t=1 `(fσt,t, yt). The loss of an algorithm, which chooses the switching expert σ̂t at

time is L̂n =
∑n

t=1 `(fσ̂t,t, yt) and thus its regret when competing with the best switching

1Here, yt is the outcome at time t and fi,t ∈ D is the advice of expert i at time t. As before, D is the set
of decisions, Y is the set of outcomes.

28

expert within the class B ⊆ {1, . . . , N}n is Rn = L̂n −minσ∈B Lσ,n.
Clearly, randomized EWA can be applied to this problem. By Theorem 4.2, when η is

appropriately selected,

E [Rn] ≤
√
n

2
ln |B| . (6.1)

We immediately see that if B = {1, . . . , N}n (all switching experts are considered), the
bound becomes vacuous since |B| = Nn, and hence ln |B| = n lnN and the bound is linear
as a function of n. This should not be surprising since, by not restricting B, we effectively set
off to achieve the goal of predicting in every round the index of the expert which is the best
in that round. In fact, one can show that there is no algorithm whose worst-case expected
regret is sublinear when competing against this class of experts (Exercise 6.1).

How to restrict B? There are many ways. One sensible way is to just compete with the
switching experts which do not switch more than m times. The resulting problem is called
the tracking problem because we want to track the best experts over time with some number
of switches allowed. Let s(σ) be the number of times expert σ switches from one base expert
to another:

s(σ) =
n∑
t=2

I{σt−1 6= σt} .

For an integer 0 ≤ m ≤ n− 1, let

Bn,m = {σ | s(σ) ≤ m} .

How will EWA perform when the class of switching experts is Bn,m? In order to show this
we only need to bound M = |Bn,m|. It is not hard to see that M =

∑m
k=0

(
n−1
k

)
N(N − 1)k.

Some further calculation gives thatM ≤ Nm+1 exp((n−1)H
(
m
n−1

)
), whereH(x) = −x lnx−

(1−x) ln(1−x), x ∈ [0, 1], is the entropy function. Hence, the expected regret of randomized
EWA applied to this problem is bounded as follows:

E [Rn] ≤

√
n

2

(
(m+ 1) lnN + (n− 1)H

(
m

n− 1

))
.

One scenario of interest is when we expect that for any n, by allowing mn ≈ αn switches
during n rounds, the loss of the best expert in Bn,mn will be reasonably small. When using
such a sequence mn, we are thus betting on a constant α “rate of change” of who the
best expert is). Of course, in this case the expected regret per round will not vanish but

it will converge to a constant value when n → ∞. Some calculation gives that E[Rn]
n
≤√

1
2

(
(α + 1

n
) lnN + (1− 1

n
)H(α)

)
and thus

E [Rn]

n
=

√
α lnN +H(α)

2
+O

(
n−1/2

)
.

Thus, the average regret per time step when the best expert is allowed to be changed at a
rate α close to zero is

√
H(α)/2 (since this is the dominating term in the first expression

when α→ 0).

29

Applying EWA directly to the set of switching experts Bn,m is unpractical since EWA
needs to store and update one weight per expert and the cardinality of Bn,m is just too large
for typical values of n,N and m.

6.2 Fixed-share forecaster

Our goal is to derive an algorithm which stores and updates N weights only, i.e., whose
complexity is identical to that of the randomized EWA forecaster and yet it achieves the
same regret bound as randomized EWA when competing with the best expert in Bn,m.

The main idea is twofold: The first observation is that whatever randomized EWA algo-
rithm we use, at the end of the day in every round it will select some base expert. Therefore,
if we can calculate the probability of choosing the base experts from round to round in an
efficient manner, we will be done. The second main idea is that in order to make this happen,
we should use a randomized EWA algorithm non-uniform initial weights where the set of
switching experts is unrestricted. The non-uniform initial weights will still allow the encod-
ing of our preference for no more than m switches, while working with them on the whole
set of switching experts will make the efficient implementation of the algorithm possible.

We start with the following useful observation which concerns EWA with non-uniform
weights. The proof is left as an exercise (see Exercise 6.4).

Lemma 6.1 (EWA with non-uniform priors). Consider a continuous, convex expert pre-
diction problem given by (D, Y, `) and N experts. Let wi0 be N nonnegative weights such
that W0 =

∑
iwi0 ≤ 1 and let wi,t = wi,0e

−ηLi,t, where Li,t =
∑t

s=1 `(fi,s, ys). Further, let

Wt =
∑N

i=1 wi,t. Then, for pt =
∑N

i=1
wi,t−1

Wt−1
fi,t and any η > 0, it holds that

n∑
t=1

`(pt, yt) ≤
1

η
lnW−1

n + η
n

8
.

How does this help? Since Wn ≥ wi,0 exp(−ηLi,n), ln(W−1
n) ≤ ln(w−1

i,0)+ηLi,n. Therefore,∑n
t=1 `(pt, yt)−Li,n ≤

1
η

lnw−1
i,0 +η n

8
and thus if i∗ is the index of the expert with the smallest

loss,
∑n

t=1 `(pt, yt)−min1≤i≤n Li,n =
∑n

t=1 `(pt, yt)− Li∗,n ≤
1
η

lnw−1
i∗,0 + η n

8
. Thus, if i∗ was

assigned a large weight (larger than 1/N) the regret of EWA will be smaller than if all
experts received the same weight: The weights wi,0 act like our a priori bets on how much
we believe in the experts initially. If these bets are correct, the algorithm is rewarded by
achieving a smaller regret (this can also be seen directly since than wi∗,n will be larger).

Let us now go back to our problem of competing with the best switching expert. Consider
now randomized EWA, but on the full set B of switching experts. Let w′t(σ) be the weight
assigned to switching expert σ by the randomized EWA algorithm after observing y1:t. As
initial weights choose

w′0(σ)
def
=

1

N

(α
N

)s(σ) (
1− α +

α

N

)n−1−s(σ)

.

30

Here, 0 < α < 1 reflects our a priori belief in switching per time step in a sense that will be
made clear next. For σ = (σ1, . . . , σn), 1 ≤ s < t ≤ n, let σs:t be (σs, . . . , σt). Introduce the
“marginalized” weights w′0(σ1:t) =

∑
σ′:σ′1:t=σ1:t

w′0(σ′). We have the following lemma, which
shows that the above weights are indeed sum to one and which also helps us in understanding
where these weights are coming from:

Lemma 6.2 (Markov process view). Let (Xt) be a Markov chain with state space {1, . . . , N}
defined as follows: Pr[X1 = i] = 1/N and Pr[Xt+1 = i′ |Xt = i] = α

N
+ (1 − α)I{i′ = i}.

Then, for any σ ∈ B, 1 ≤ t ≤ n, Pr[(X1, . . . , Xt) = σ1:t] = w′0(σ1:t) and in particular,
Pr[(X1, . . . , Xn) = σ] = w′0(σ).

The proof is left as an exercise (Exercise 6.5).
By definition, the probability that Xt and Xt+1 differ is α/N , while the probability that

they stay the same is (1− α) + α/N � α/N when α is small (and we expect to use a small
value). Thus, sequences with many switches will have a small probability and the fewer
switches a sequence has, the larger will be its probability (and, thus, initial weight). Thus,
we also see that it indeed holds that α reflects our a priori belief in switching.

Let w′t(σ) denote the weights assigned to the switching expert σ by randomized EWA after
seeing y1:t. Let us calculate the probability p′i,t+1 that randomized EWA will follow the advice

of base expert i in the round t+1. Let σ̂(t+1) be the switching expert selected (randomly) by
randomized EWA in round t+1. By definition, for an σ, Pr

(
σ̂(t+1) = σ

)
= w′t(σ)/

∑
σ′ w

′
t(σ
′).

Now, notice that whenever σ̂
(t)
t+1 = i, randomized EWA will eventually follow the advice of

base expert i in round t+ 1. Thus,

p′i,t+1 = Pr
(
σ̂

(t)
t+1 = i

)
=
∑
σ

Pr
(
σ̂

(t)
t+1 = i, σ̂(t+1) = σ

)
=
∑
σ

Pr
(
σ

(t)
t+1 = i, σ̂(t+1) = σ

)
=

∑
σ:σt+1=i

Pr
(
σ̂(t+1) = σ

)
.

Defining

w′i,t =
∑

σ:σt+1=i

w′t(σ),

we see that

p′i,t+1 =
w′it
W ′
t

,

where W ′
t =

∑N
i=1 w

′
it. Notice that by definition w′i0 = w′0(i) and so by Lemma 6.2, w′i,0 =

1/N .
Our goal now is to show that the (w′it) weights can be calculated in a recursive fash-

ion. Introduce the shorthand notation `′t(i) = `(fi,t, yt) to denote the loss of expert i. By
definition, w′t(σ) = w′0(σ)e−ηLσ,t , where Lσ,t =

∑t
s=1 `(fσs,s, ys) =

∑t
s=1 `s(σs). Define

γi→i′ =
α

N
+ (1− α)I{i = i′} .

31

Note that for any σ such that σt+1 = i, γσt→i =
w′0(σ1:t+1)

w′0(σ1:t)
, as follows from Lemma 6.2.

Introduce Lσ1:t =
∑t

s=1 `s(σs). Further, for arbitrary 1 ≤ p < q < · · · < t ≤ n and σ ∈ B,
by a slight abuse of notation, we shall also write w′0(σ1:p, σp+1:q, . . . , σt+1:n) in place of w′0(σ).
Then,

w′it =
∑

σ:σt+1=i

w′t(σ) =
∑

σ:σt+1=i

e−ηLσ,tw′0(σ) =
∑

σ:σt+1=i

e−η `t(σt)e−ηLσ,t−1w′0(σ)

=
∑
σt

e−η `t(σt)
∑
σ1:t−1

e−ηLσ1:t−1

∑
σt+2:n

w′0(σ1:t−1, σt, i, σt+2:n)

=
∑
σt

e−η `t(σt)
∑
σ1:t−1

e−ηLσ1:t−1w′0(σ1:t, i)

=
∑
σt

e−η `t(σt)
∑
σ1:t−1

e−ηLσ1:t−1w′0(σ1:t)
w′0(σ1:t, i)

w′0(σ1:t)

=
∑
σt

e−η `t(σt)
∑
σ1:t−1

e−ηLσ1:t−1w′0(σ1:t)γσt→i

=
∑
σt

e−η `t(σt)γσt→i
∑
σ1:t−1

e−ηLσ1:t−1w′0(σ1:t)

=
∑
σt

e−η `t(σt)γσt→i
∑
σ1:t−1

e−ηLσ1:t−1

∑
σt+1:n

w′0(σ1:n)

=
∑
σt

e−η `t(σt)γσt→i
∑
σ1:t−1

∑
σt+1:n

e−ηLσ1:t−1w′0(σ1:n)

=
∑
σt

e−η `t(σt)γσt→i
∑
σ1:t−1

∑
σt+1:n

w′t−1(σ1:n)

=
∑
σt

e−η `t(σt)γσt→iw
′
σt,t−1 .

Thus,

w′it =
∑
j

e−η `t(j)w′j,t−1γj→i (6.2)

=
∑
j

e−η `t(j)w′j,t−1

{ α
N

+ (1− α)I{j = i}
}

(6.3)

= (1− α)e−η `t(i)w′i,t−1 +
α

N

∑
j

e−η `t(j) w′j,t−1 ,

giving rise to the so-called Fixed-Share Forecaster (FSF).
Formally, this forecaster works as follows. It keeps N weights. Initially, wi0 = 1/N . In

round t = 1, 2, . . . , n, the forecaster does the following:

1. Observes the expert forecasts fi,t.

32

2. Draws the index It of a base expert such that Pr (It = i) = pi,t, where pi,t =
wi,t−1∑N
j=1 wj,t−1

.

3. Predicts fIt,t.

4. Observes yt, the losses `(fi,t, yt) (and it suffers the loss `(fIt,t, yt)).

5. Computes vi,t = wi,t−1e
−η`(fi,t,yt).

6. Updates the weights by wi,t = α
N
Wt + (1− α)vi,t, where Wt =

∑N
j=1 vj,t.

6.3 Analysis

Theorem 6.3. Consider a discrete prediction problem over the arbitrary set D, Y and the
zero-one loss `. Let y1, . . . , yn ∈ Y be an arbitrary sequence of outcomes, fi,t ∈ D be the

advice of base expert i in round t, where 1 ≤ i ≤ N , 1 ≤ t ≤ n. Let L̂n be the cumulated
loss of the Fixed-Share Forecaster at the end of round n and, similarly, let Lσ,n be the
cumulated loss of switching expert σ at the end of round n. Then,

E
[
L̂n

]
− Lσ,n ≤

s(σ) + 1

η
lnN +

1

η
ln

(
1

αs(σ)(1− α)n−s(σ)−1

)
+ η

n

8
.

Further, for 0 ≤ m ≤ n, α = m/(n− 1), with a specific choice of η = η(n,m,N), for any σ
with s(σ) ≤ m,

E
[
L̂n

]
− Lσ,n ≤

√
n

2

(
(m+ 1) lnN + (n− 1)H

(
m

n− 1

))
.

We see from the second part the algorithm indeed achieves the same regret bound as
randomized EWA with uniform initial weights competing with experts in Bn,m.

Proof. Since FSF implements randomized EWA exactly we can use the reduction technique
developed in the proof of Theorem 4.2 to study its performance. The only difference is
that now we use non-uniform initial weights.Therefore, the problem reduces to the bound
in Lemma 6.1. Then, following the argument already used after Lemma 6.1, we get that for
any σ ∈ B,

E
[
L̂n

]
− Lσ,n ≤

− lnw′0(σ)

η
+ η

n

8
.

Thus, we need an upper bound on − lnw′0(σ). From the definition,

w′0(σ) =
1

N

(α
N

)s(σ) (
1− α +

α

N

)n−s(σ)−1

.

To finish, just note that − lnw′0(σ) ≤ (1 + s(σ)) ln(N) + ln(1
αs(σ)(1−α)n−s(σ)−1).

33

6.4 Variable-share forecaster

According to the result of Theorem 6.3, for any switching expert σ,

E
[
L̂n

]
− Lσ,n ≤

(s(σ) + 1) lnN

η
+
s(σ) ln

(
1
α

)
+ (n− s(σ)− 1) ln

(
1

1−α

)
η

+ η
n

8
.

Because of the term (n − s(σ) − 1) ln
(

1
1−α

)
even if σ has a small number of switches and

at the same time Lσ,n is small, the loss of the FSF can be large. As we shall see soon, the
so-called Variable-Share Forecaster (VSF) avoids this problem. The idea is to change
the priors to achieve this. In fact, that the prior can be chosen in a flexible manner follows
since the derivation of the simulation equivalence of the randomized EWA working with the
set B and the prior, and an incremental algorithm defined using (6.2) works for any prior,
as long as

γ
(t)
σt→i

def
=
w′0(σ1:t+1

w′0(σ1:t)

is well-defined (i.e., independent of σ1:t−1), and if in (6.2) we replace γj→i by γ
(t)
σt→i. In

fact, we see that the incremental update will only use past information as long as γ
(t)
σt→i is

computable based on y1, . . . , yt. This is what we will exploit when defining a new prior.
The main idea is to change the prior w′0 such that it penalizes switches away from good

base experts. This is achieved by redefining w′0 so that

w′0(σ1:t+1) = w′0(σ1:t)

(
1− (1− α)`t(σt)

N − 1
I{σt 6= σt+1}+ (1− α)`t(σt) I{σt = σt+1}

)
.

Now, when `t(σt) is close to zero, (1 − α)`t(σt) will be close to one. Hence, the first term of
the sum in the bracket will be close to zero, while the second one will be close to one if and
only if σt = σt+1. Thus, in this case, from the Markov process view, we see that staying at
σt is encouraged in the prior. On the other hand, when `t(σt) is close to one, (1−α)`t(σt) will
be close 1− α. Hence, the expression in the bracket will be close to the previous expression
and staying will be encouraged by a probability close to the “default stay probability”, 1−α.
Therefore, these weights are expected to result in a smaller regret when there is an expert
with small cumulated loss and a few number of switches. Further, `t(σt) = `(fσt,t, yt) is
available at the end of round t, therefore

γ
(t)
σt→i =

(
1− (1− α)`t(σt)

N − 1
I{σt 6= σt+1}+ (1− α)`t(σt) I{σt = σt+1}

)
is not only well-defined, but it’s value is also available at the end of round t.

This leads to the Variable-Share Forecaster (VSF). Formally, this algorithm works
as follows: Before round one, initialize the weights using wi,0 = 1/N . In round t = 1, 2, 3, . . . ,
the VSF does the following:

1. Observes the expert forecasts fi,t.

34

2. Draws the index It of a base expert such that Pr (It = i) = pi,t, where pi,t =
wi,t−1∑N
j=1 wj,t−1

.

3. Predicts fIt,t.

4. Observes yt, the losses `(fi,t, yt) (and it suffers the loss `(fIt,t, yt)).

5. Computes vi,t = wi,t−1e
−η`(fi,t,yt).

6. Updates the weights by wi,t = 1
N−1

∑
j 6=i
(
1− (1− α)`t(j)

)
vjt + (1− α)`t(i) vit.

It is then not hard to se that the result of this update is that for binary losses, n−s(σ)−1
η

ln 1
1−α

in the bound is replaced by s(σ) + 1
η
Lσ,n ln 1

1−α . Hence, the VSF may achieve much smaller
loss when some expert σ which does not switch too often achieves a small loss.

6.5 Exercises

Exercise 6.1. Let N > 1. Show that there is no algorithm whose worst-case expected
regret is sublinear when competing against all switching experts. More precisely, show that
there exists a constant c such that for D = [0, 1], Y = {0, 1}, `(p, y) = |p− y|, for any N > 1,
for any algorithm, there exists a set of base experts of size N and a time horizon n such that
the regret with respect to all switching experts is at least cn.

Exercise 6.2. Show that an algorithm that competes against experts in Bn,0 is effectively
back to competing with the best of the base experts.

Exercise 6.3. Show that nH(m/n) = O(ln(n)) as n→∞. Hint: For large n, H(m/n) ≈
m/n ln(n/m), therefore nH(m/n) = O(ln(n)).

Exercise 6.4. Prove Lemma 6.1

Exercise 6.5. Prove Lemma 6.2.

Exercise 6.6. Assuming a constant rate of change α prove a minimax lower bound on the
average expected regret per time step.

Exercise 6.7. Give a practical algorithm that does not require the knowledge of the
horizon n and which achieves the O(

√
H(α)/2) regret per time step when the rate of change

of the identity of the best expert is bounded by α. You may assume that α is known ahead
of time.

Exercise 6.8. Give an algorithm like in the previous exercise, except that now the
algorithm does not know α, but it may know n.

Exercise 6.9. Give an algorithm like in the previous exercise, except that now neither α,
nor n is known.

35

Chapter 7

Linear classification with Perceptron

Suppose we want to classify emails according to if they are spam (say, encoded +1) or
not-spam (say, encoded by −1). From the text of the emails we extract the features,
x1, x2, . . . , xn ∈ Rd (e.g., xt,i ∈ {0, 1} indicates whether a certain phrase or word is in
the email), and we assign to every email a target label (or output) yt such that, say, yt = +1
if the email is spam. The features will also be called inputs.

A classifier f is just a mapping from Rd to {−1,+1}. An online learning algorithm upon
seeing the samples

(x1, y1), . . . , (xt−1, yt−1)

and xt produces a classifier ft−1 to predict yt (1 ≤ t ≤ n).
The algorithm is said to make a mistake, if its prediction, ŷt does not match yt. The total

number of mistakes of the algorithm is M =
∑n

t=1 I{ŷt 6= yt}. The general goal in online
learning of classifiers is to come up with an online algorithm that makes a small number of
mistakes.

A linear classifier fw : Rd → {−1,+1} is given by a weight w ∈ Rd, w 6= 0 such that

fw(x) =

{
+1, if 〈w, x〉 ≥ 0 ;

−1, otherwise .

For simplicity, at the price of abusing the sign function, we will just write fw(x) = sign〈w, x〉
(but when we write this, we will mean the above). Introduce the (d − 1)-dimensional hy-
perplane Hw = {x : 〈w, x〉 = 0}. Thus, if 〈w, x〉 = 0 then x is on the hyperplane Hw.
We will also say that x is above (below) the hyperplane Hw when 〈w, x〉 is positive (resp.,
negative). Thus, fw(x) = +1 is x is above the hyperplane Hw etc. In this sense, Hw is really
the decision surface underlying fw. (In general, the decision “surface” underlying a classifier
f is {x : f(x) = 0}.)

By the law of cosines, |〈w, x〉| = ‖w‖ ‖x‖ cos(∠(w, x)), therefore |〈w, x〉| is just ‖w‖ times
the distance of x from Hw.1 In particular, when ‖w‖ = 1, |〈w, x〉| is the distance of x to Hw.
In some sense, this should also reflect how confident we are in our prediction of the label, if

1As usual, ‖ · ‖ is the 2-norm.

36

we believe w gives a good classifier. The distance of x to the hyperplane Hw is also called
the (unsigned) margin of x (the signed margin of the pair (x, y) ∈ Rd × {−1,+1} would be
y〈w, x〉).

The general scheme for online learning with linear classifiers is as follows:
Initialize w0.

1. Receive xt ∈ Rd.

2. Predict ŷt = sign(〈wt−1, xt〉).

3. Receive the correct label yt ∈ {−1,+1}.

4. Update wt based on wt−1, xt, yt.

Remark 7.1 (Bias (or intercept) terms). We defined linear classifiers as function of the
form f(x) = sign(〈w, x〉). However, this restricts the decision surfaces to hyperplanes which
cross the origin. A more general class of classifiers allows a bias term (or intercept term).
f(x) = sign(〈w, x〉 + w0), where w, x ∈ Rd, w0 ∈ R. These allow hyperplanes which do not
cross the origin. However, any linear classifier with a bias can be given as a linear classifier
with no bias term when the input space is appropriately enlarged. In particular, for w, x, w0,
let w′ = (w1, . . . , wd, w0) and x′ = (x1, . . . , xd, 1). Then sign(〈w, x〉 + w0) = sign(〈w′, x′〉).
In practice, this just means that before running the algorithms one should just amend the
input vectors by a constant 1.

7.1 The Perceptron Algorithm

The Perceptron algorithm was invented by Rosenblatt, a psychologist, in 1950s, to explain
how the neurons in the brain might work! The algorithm follows the above general scheme.

Here is the algorithm: Initialize w0 = 0.

1. Receive xt ∈ Rd.

2. Predict ŷt = sign(〈wt−1, xt〉).

3. Receive the correct label yt ∈ {−1,+1}.

4. Update wt based on wt−1, xt, yt:

wt =

{
wt−1 + yt xt, if yt 6= ŷt i.e., if the algorithm made a mistake,

wt−1, otherwise.

37

7.2 Analysis for Linearly Separable Data

Let (x1, y1), (x2, y2), . . . , (xn, yn) be the data where xi ∈ Rd, yi ∈ {−1,+1}. We say that
w∗ ∈ Rd separates the data set if w∗ ∈ Rd such that sign(〈w∗, xt〉) = yt for all 1 ≤ t ≤ n. If
there exists w∗ which separates the data set, we call the data set linearly separable. Notice
that if w∗ separates the data sets, then for any c > 0, cw∗ separates it as well. So, we may
even assume that ‖w∗‖ = 1, which we will indeed do from this point on.

Theorem 7.2 (Novikoff’s Theorem (1962)). Let (x1, y1), (x2, y2), . . . , (xn, yn) be data set
that is separated by a w∗ ∈ Rd. Let R, γ ≥ 0 be such that for all 1 ≤ t ≤ n, ‖xt‖ ≤ R
and yt〈w∗, xt〉 ≥ γ. Let M be the number of mistakes Perceptron makes on the data set.
Then,

M ≤ R2

γ2
.

Proof. We want to prove that M ≤ R2/γ2, or Mγ2 ≤ R2. We will prove an upper bound
on ‖wn‖2 and a lower bound on 〈w∗, wn〉, from which the bound will follow. To prove these
bounds, we study the evolution of ‖wt‖2, and 〈w∗, wt〉.

If Perceptron makes no mistake, both quantities stay the same. Hence, the only
interesting case is when Perceptron makes a mistake, i.e., ŷt 6= yt. Let t be such a time
step. We have

‖wt‖2 = ‖wt−1 + ytxt‖2 = ‖wt−1‖2 + ‖xt‖2 + 2yt 〈wt−1, xt〉 .

Since Perceptron made a mistake, yt 〈wt−1, xt〉 ≤ 0. Hence,

‖wt‖2 ≤ ‖wt−1‖2 + ‖xt‖2 ≤ ‖wt−1‖2 +R2.

Thus, ‖wn‖2 ≤MR2 + ‖w0‖2 and since ‖w0‖2 = 0, we have ‖wn‖2 ≤MR2.
Now, let us study 〈w∗, wt〉. Suppose again that there was a mistake at time step t. Then,

〈w∗, wt〉 = 〈w∗, wt−1〉+ yt〈w∗, xt〉 ≥ 〈w∗, wt−1〉+ γ ,

where the inequality follows because by assumption, yt〈w∗, xt〉 ≥ γ. Hence, by unfolding the
recurrence,

〈w∗, wn〉 ≥ γM .

By Cauchy-Schwarz, |〈w∗, wn〉| ≤ ‖w∗‖‖wn‖ = ‖wn‖, where the last equality follows since
by assumption ‖w∗‖ = 1. Chaining the obtained inequalities we get,

γ2M2 ≤ ‖wn‖2 ≤ R2M .

If M = 0, the mistake bound indeed holds. Otherwise, we can divide both sides by Mγ2, to
get the desired statement.

38

Intuitively, if the smallest margin on the examples is big, it should be easier to find a
separating hyperplane. According to the bound, this is indeed what the algorithm achieves!
Why do we have R2 in the bound? To understand this, notice that the algorithm is scale
invariant (it makes the same mistakes if all inputs are multiplied by some c > 0). Thus,
the bound on the number of mistakes should be scale invariant! Since the margin changes
by a factor c2 when scaling the inputs by c > 0, R2 = max1≤t≤n ‖xt‖2 must appear in the
bound. In other words, the number of mistakes that Perceptron makes scales inversely
proportional to the square of the size of the normalized margin.

The bound becomes smaller, when γ is larger. In fact, the best γ is

γ∗ = sup
1≤t≤n

sup
w:‖w‖=1

yt〈w∗, xt〉 ,

which is the “maximum margin”.
An interesting feature of the bound is that it is independent of n, the sample size: If

the data is separable, Perceptron will make a finite number of mistakes on it. In fact, the
argument works even when n =∞: If an infinite sample is separable with a positive margin,
Perceptron still makes only a finite number of mistakes!

Remark 7.3. Novikoff’s proof follows pretty much the same patterns as the proofs which
we have seen beforehand: We prove upper and lower bounds on some function of the weights
and then combine these to get a bound. This should not be very surprising (given that the
essence of the algorithms is that they change their weights).

Remark 7.4. We can use the Perceptron algorithm to solve linear feasibility problems.
A linear feasibility problem (after maybe some transformation of the data inputs) is the
problem of finding a weight w ∈ Rd such that, with some D = ((xt, yt))1≤t≤n, xt ∈ Rd,
yt ∈ {−1,+1},

yt〈w, xt〉 > 0, t = 1, 2, . . . , n

holds. Now, this is nothing but finding a separating hyperplane. If this problem has a
solution, repeatedly running Perceptron on the data D until it does not make any mistakes
will find a solution. (Why?) One can even bound the number of sweeps over D needed until
the algorithm will stop. Thus, we have an algorithm (Perceptron) which can be coded up
in 5 minutes to solve linear feasibility problems (if they have a solution). See Exercise 7.1
for some further ideas.

7.3 Analysis in the General Case

The linearly separable case is similar to the one when, in the prediction with expert advice
setting, there was a perfect expert. In fact, Perceptron parallels the Halving algorithm
at least in the respect that both “learn” from their mistakes. There, we saw that the halving

39

algorithm has a natural extension to the case when no expert is perfect. Can we have some
similar extensions in the linear classification case? In particular, is it possible to prove some
nice regret bounds of the form

M ≤ min
w∈Rd

n∑
t=1

I{yt〈w, xt〉 ≤ 0}+ “something small” ?

In the expert setting, we saw that no regret bound is possible, unless we randomize. The
following theorem parallels this result:

Theorem 7.5. For any deterministic algorithm A and any n ≥ 0 there exists a data sequence
(x1, y1), . . . , (xn, yn) and w∗ ∈ Rd such that the following hold:

(i) sign(〈w∗, xt〉) = yt for all t = 1, 2, . . . , n.

(ii) Algorithm A makes a mistake in every round.

The proof is left as an exercise (Exercise 7.2). In the discrete prediction setting random-
ization saved us. Unfortunately, randomization cannot save us now (Exercise 7.3).

So, what do we do? The Big Cheat! We introduce a surrogate loss, the so-called hinge
loss `. The 0-1 loss (or binary classification loss) is:

`0−1(w, (x, y)) = I{y〈w, x〉 ≤ 0}.

The hinge-loss is:
`hinge(w, (x, y)) = max(0, 1− y〈w, x〉) .

For r real, by defining (r)+ = max(r, 0), we can also write `hinge(w, (x, y)) = (1− y〈w, x〉)+,
which is also a common notation.

Now, how does the hinge loss work? If w classifies x, y incorrectly then `hinge(w, (x, y)) ≥
1. On the other hand, if w classifies x, y correctly with margin greater than one (i.e., if
|〈w, x〉| ≥ 1), then `hinge(w, (x, y)) = 0. When the margin is smaller than one (but w still
classifies (x, y) correctly) then the hinge loss is a number between 0 and 1 (i.e., the classifier
pays a small penalty for not being “confident enough”).

Two important properties of the hinge loss are that it is an upper bound on the 0-1 loss:

`0−1(w, (x, y)) ≤ `hinge(w, (x, y)) ,

and that it is convex in its first argument (Exercise 7.4).
Now, notice that with the notation just introduced, we can view the problem as a pre-

diction with expert advice problem, where the experts are the weights w and the outcomes
are of the form of input-output pairs (x, y). We saw in that framework that convexity plays
a major role. In some sense convexity makes these problems easy.

So the cheat is to replace the 0-1 loss with the hinge-loss, and then we can prove regret
bounds. With this, we can get the following theorem:

40

Theorem 7.6. Let M be the number of mistakes that the Perceptron algorithm makes
on a sequence (x1, y1), (x2, y2), . . . , (xn, yn) ∈ Rd × {+1,−1}. Suppose R ≥ 0 is such that
‖xt‖ ≤ R for all 1 ≤ t ≤ n. For any w ∈ Rd

M ≤
n∑
t=1

`hinge(w, (xt, yt)) + ‖w‖R
√
n .

Proof. Fix w ∈ Rd. We analyze the evolution of ‖wt‖2 and 〈w,wt〉. When a mistake occurs
in time step t then yt〈wt−1, xt〉 ≤ 0 and therefore

‖wt‖2 = ‖wt−1 + ytxt‖2 = ‖wt‖2 + ‖xt‖2 + 2yt〈wt−1, xt〉 ≤ ‖wt‖2 + ‖xt‖2 ≤ ‖wt‖2 +R2 .

Thus, after processing all n points and making all M mistakes, by unrolling the recurrence
we get ‖wn‖2 ≤ ‖w0‖2 + MR2 = MR2. Taking square root and using M ≤ n we have
‖wn‖ ≤ R

√
M ≤ R

√
n.

Similarly, if a mistake occurs in time step t then

〈w,wt〉 = 〈w,wt−1 + ytxt〉 = 〈w,wt−1〉+ yt〈w, xt〉 ≥ 〈w,wt−1〉+ 1− `hinge(w, (xt, yt))

where in the last step we have used the inequality y〈w, x〉 ≥ 1 − `hinge(w, (x, y)) valid for
any w, x ∈ Rd and any y ∈ {+1,−1}. We unroll this recurrence in each round t in which
Perceptron makes a mistakes. If no mistake was made, we use 〈w,wt〉 = 〈w,wt−1〉 instead.
We get

〈w,wn〉 ≥ 〈w,w0〉+M −
∑

1≤t≤n
sign(〈wt,xt〉) 6=yt

`hinge(w, (xt, yt)) .

Using ‖wn‖ ≤ R
√
n, Cauchy-Schwarz inequality, w0 = 0 and the fact that hinge loss is

non-negative, we can write:

R‖w‖
√
n ≥ ‖w‖‖wn‖
≥ 〈w,wn〉

≥ 〈w,w0〉+M −
∑

1≤t≤n
sign(〈wt,xt〉)6=yt

`hinge(w, (xt, yt))

≥M −
n∑
t=1

`hinge(w, (xt, yt)) .

Reading off the beginning and the end of the chain of inequalities gives the statement of the
theorem.

7.4 Exercises

Exercise 7.1. Consider the algorithm proposed in Remark 7.4.

41

(a) Show that if this algorithm stops, it will stop with a solution to the linear feasibility
problem.

(b) Let S be the number of sweeps the algorithm makes on the data D before it stops. Show
a bound S.

(c) What happens when the original problem does not have a solution? Suggest a simple
way of detecting that there is no solution.

Exercise 7.2. Prove Theorem 7.5.

Exercise 7.3. Prove that Theorem 7.5 holds when A can randomize with the modification
that in n rounds the algorithm A makes on expectation n/2 mistakes.

Exercise 7.4. Show that `hinge(w, (x, y)) is convex in its first argument.

42

Chapter 8

Follow the Regularized Leader and
Bregman divergences

In this chapter we describe the generic Follow The Regularized Leader algorithm for
linear loss functions and derive a regret bound for it. To analyze and implement the algo-
rithm, we will need bits of convex analysis such as Legendre functions, Bregman divergences,
Bregman projections and strong convexity.

The restriction to linear loss functions is not as severe as one might think. In later lectures,
we will see that we can cope with non-linear loss functions by working with their linear
approximations. The analysis in the linear case is simpler and leads often to computationally
faster algorithms.

We consider an online learning scenario where an online algorithm in each round t =
1, 2, . . . , n chooses a point wt in a non-empty convex set K ⊆ Rd and suffers a loss `t(wt).
The loss function `t : Rd → R is chosen by the adversary and we assume that it is linear i.e.
`t(w) = 〈ft, w〉 where ft ∈ Rd.

Follow The Regularized Leader (FTRL) algorithm is a particular algorithm for
this scenario which in round t + 1 chooses wt+1 ∈ K based on the sum loss functions up to
time t:

Lt(w) =
t∑

s=1

`s(w)

Namely, the algorithm chooses

wt+1 = argmin
w∈K∩A

[ηLt(w) +R(w)] ,

where R : A→ R is a so-called regularizer or regularization function and we assume that it
is defined on some set A ⊆ Rd. The parameter η > 0 is the learning rate. Different choices
of the regularizer lead to different algorithms; later we will see how the choice influences the
regret of the algorithm.

Intuitively, FTRL algorithm tries to balance two things: Minimize the loss on current
vector and ensure that wt+1 is close to wt. This will formalized in Corollary 8.12.

43

We make additional assumptions on K and the regularizer R. We assume that K is
closed. Furthermore, we assume that R is a Legendre function. In the next section, we
explain what are Legendre functions and we introduce other necessary tools from convex
analysis.

8.1 Legendre functions and Bregman divergences

In what follows, A◦ denotes the interior of a set A ⊂ Rd and ‖ · ‖ denotes some norm on Rd.

Definition 8.1 (Legendre function). A function F : A→ R is a called a Legendre function
if it satisfies the following conditions:

1. A ⊆ Rd, A 6= ∅, A◦ is convex.

2. F is strictly convex.

3. Partial derivatives ∂F
∂xi

exists for all i = 1, 2, . . . , d and are continuous.

4. Any sequence {xt} ⊆ A approaching the boundary of A satisfies limt→∞ ‖∇F (xt)‖ =
∞.

In another words, a Legendre function is a strictly convex functions with continuous
partial derivatives and gradient “blowing up” at the boundary of its domain. Note the
definition does not depend on the norm used for ‖∇F‖; this is a consequence of that for
any pair of norms ‖ · ‖♥, ‖ · ‖♠ on Rd if ‖ · ‖♥ →∞ then ‖ · ‖♠ →∞.

Definition 8.2 (Bregman divergence). Let F be a Legendre function F : A → R. The
Bregman divergence corresponding to F is a function DF : A × A◦ → R defined by the
formula

DF (u, v) = F (u)− F (v)− 〈∇F (v), u− v〉 .

Bregman divergence is the difference between the function value F (u) and its approxi-
mation by the first order Taylor expansion F (v) + 〈∇F (v), u− v〉 around v. The first order
Taylor expansion is a linear function tangent to F at point v. Since F is convex, the linear
function lies below F and therefore DF is non-negative. Furthermore, DF (u, v) = 0 implies
that u = v because of strict convexity of F the only point where the linear approximation
meets F is u = v.

Definition 8.3 (Bregman projection). Let F : A→ R be Legendre function and let K ⊆ Rd

be a closed convex subset such that K ∩ A 6= ∅. The Bregman projection corresponding to
F and K is a function ΠF,K : A◦ → A ∩K defined for any w ∈ A◦ as

ΠF,K(w) = argmin
u∈K∩A

DF (u,w) .

44

It is a non-trivial fact to verify that ΠF,K is well defined. More precisely, it needs to be
shown that minimizer minu∈K∩ADF (u,w) is attained and it is unique. The former follows
from that K is closed. The later from strict convexity of F .

Lemma 8.4 (Pythagorean inequality). Let F : A→ R be Legendre function and let K ⊆ Rd

be a closed convex subset such that K ∩ A 6= ∅. If w ∈ A◦, w′ = ΠF,K(w), u ∈ K then

DF (u,w) ≥ DF (u,w′) +DF (w′, w) .

Lemma 8.5 (Kolmogorov’s inequality). Let F : A→ R be Legendre function and let K ⊆ Rd

be a closed convex subset such that K ∩A 6= ∅. If u, v ∈ A◦ and u′ = ΠF,K(u), v′ = ΠF,K(u)
are their projections then

〈u′ − w′,∇F (u′)−∇F (w′)〉 ≤ 〈u′ − w′,∇F (u)−∇F (w)〉 .

Lemma 8.6 (Projection lemma). Let F : A → R, A ⊂ Rd be a Legendre function and
w̃ = argminu∈A F (u). Let K ⊆ Rd be convex closed and set such that K ∩ A 6= ∅. Then,

ΠF,K(w̃) = argmin
u∈K∩A

F (u) .

Proof. Let w′ = ΠF,K(w̃) and w = argminu∈K∩A F (u). We need to prove w = w′. Since
w is a minimizer, we have F (w) ≤ F (w′). If we are able to prove the reversed inequality
F (w′) ≤ F (w) then by strict convexity of F , the minimizer of F is unique and hence w = w′.

It thus remains to prove that F (w′) ≤ F (w). By definition of Bregman projection
w′ = argminu∈K∩ADF (u, w̃) and therefore

DF (w′, w̃) ≤ DF (w, w̃) .

Expanding DF on both sides of the inequality, we get

F (w′)− F (w̃)− 〈∇F (w̃), w′ − w̃〉 ≤ F (w)− F (w̃)− 〈∇F (w̃), w − w̃〉 .

We cancel F (w̃) on both sides and note that ∇F (w̃) = 0 since w̃ is an unconstrained
minimizer of F . We obtain F (w′) ≤ F (w) as promised.

The projection lemma says that the constrained minimizer w can be calculated by first
computing the unconstrained minimizer w̃ and then projecting it onto K using Bregman
projection. This will be not only useful in the regret analysis of FTRL, but it can be also
used to implement FTRL.

8.2 Strong Convexity and Dual Norms

Definition 8.7 (Strong Convexity). Let F : A → R Legendre. We say that F is strongly
convex with respect to a norm ‖ · ‖ if for any u, v ∈ A

F (u)− F (v) ≥ 〈∇F (v), u− v〉+
1

2
‖u− v‖2 .

45

This definition depends on the norm used. A function F can be strongly convex with
respect to one norm but not another. Note that strong convexity (with respect to any norm)
implies strict convexity. Convexity means that the function F (u) can be lower bounded a
linear function F (v)+ 〈∇F (v), u−v〉. In contrast, strong convexity means that the function
F (u) can lower bounded a quadratic function F (v) + 〈∇F (v), u − v〉 + 1

2
‖u − v‖2. The

coefficient 1
2

in front ‖u− v‖2 is an arbitrary choice; it was chosen because of mathematical
convenience.

Let ‖ · ‖ be any norm on Rd. Its dual norm, denoted by ‖ · ‖∗, is defined by(
1

2
‖u‖2

∗

)
= sup

v∈Rd

(
〈u, v〉 − 1

2
‖v‖2

)
. (8.1)

Lemma 8.8 (Dual norm). Let ‖ · ‖ be a norm over Rd. Then,

1. The dual norm ‖ · ‖∗ is a norm.

2. Hölder’s inequality: 〈u, v〉 ≤ ‖u‖ · ‖v‖∗ for any u, v ∈ Rd.

3. Dual norm of ‖ · ‖∗ is the original norm ‖ · ‖.

Example 8.9 (p-norm). For any 1 ≤ p <∞ the p-norm on Rd is defined as

‖x‖p =

(
d∑
i=1

|xi|p
)1/p

and ‖x‖∞ = lim
p→∞
‖x‖p = max{|x1|, |x2|, . . . , |xd|} .

The dual norm of ‖ · ‖p is ‖ · ‖q where 1 ≤ p, q ≤ ∞ and 1
p

+ 1
q

= 1.

8.3 Analysis of FTRL

In what follows we assume that K ⊂ Rd is convex and closed, A ⊆ Rd, R : A → R is
Legendre, K ∩ A 6= ∅ and the loss functions are linear: `t(w) = 〈ft, w〉. We denote by
wt+1 = argminw∈K∩A[ηLt(w) +R(w)] be point chosen by FTRL algorithm in round t+ 1.

Let L̂n =
∑n

t=1 `t(wt) be the total loss of FTRL algorithm. Let L̂+
n =

∑n
t=1 `t(wt+1) be

the loss of the “cheating” algorithm that peeks one step ahead.

Lemma 8.10 (Regret of cheating algorithm). For any u ∈ K ∩ A,

L̂+
n − Ln(u) ≤ R(u)−R(w1)

η
.

Proof. We prove the inequality by induction on the number of steps n. For n = 0 the
inequality is equivalent to R(w1) ≤ R(u), which follows from that w1 is the minimizer of R.

Assume that the inequality holds for n− 1. That is, assume that for any u ∈ K ∩ A

L̂+
n−1 − Ln−1(u) ≤ R(u)−R(w1)

η
.

46

Substituting u = wn+1 we get

L̂+
n − Ln(wn+1) = L̂+

n−1 − Ln−1(wn+1) ≤ R(wn+1)−R(w1)

η
.

This is equivalent to
ηL̂+

n ≤ ηLn(wn+1) +R(wn+1)−R(w1) .

The right hand side can be upper bounded by ηLn(u) + R(u) − R(w1) because wn+1 is the
minimizer of ηLn(u) +R(u). Thus we get

ηL̂+
n ≤ ηLn(u) +R(u)−R(w1)

which is equivalent to the statement of the lemma.

Lemma 8.11 (Follow-The-Leader-Be-The-Leader Inequality). `t(wt+1) ≤ `t(wt).

Summing the Follow-The-Leader-Be-The-Leader inequality for all t = 1, 2, . . . , n we get
that L̂+

n ≤ Ln. Putting it together with Lemma 8.10 we have:

Corollary 8.12 (Generic FTRL Regret Bound). For any u ∈ K ∩ A,

L̂n − Ln(u) ≤ L̂n − L̂+
n +

R(u)−R(w1)

η
.

The upper bound consists of two terms: L̂n− L̂+
n =

∑n
t=1[`t(wt)− `t(wt+1)] and (R(u)−

R(w1))/η. The first term captures how fast is wt changing and the second is a penalty
that we pay for using too much regularization. There is a trade-off: If we use too much
regularization (i.e. R is too big and/or η is too small) then the second term is too big. On
other hand, if we use too few regularization (i.e. R is too small and/or η is too large) then
wt+1 will too far from wt and the first term will be big. The goal is find a balance between
these two opposing forces and find the right amount of regularization.

The following lemma states that the FTRL solution wt+1 can be obtained by first finding
the unconstrained minimum of ηLt(u) + R(u) over A and then projecting it to K. (Recall
that Lt(u) is the sum of the loss functions up time t.)

Lemma 8.13 (FTRL projection lemma). Let

w̃t+1 = argmin
u∈A

[ηLt(u) +R(u)]

be solution to the unconstrained problem. Then, wt+1 = ΠR,K(w̃t+1).

Proof. By the ordinary projection lemma (Lemma 8.6),

wt+1 = ΠLηt ,K
(w̃t+1)

where Lηt (u) = ηLt(u) + R(u). It is straightforward to verify that DR(u, v) = DLηt
(u, v) for

any u, v. Therefore ΠLηt ,K
(u) = ΠR,K(u) for any u.

47

Theorem 8.14 (FTRL Regret Bound for Strongly Convex Regularizer). Let R : A→ R be
a Legendre function which is strongly convex with respect a norm ‖ · ‖. Let `t(u) = 〈u, ft〉.
Then, for all u ∈ K ∩ A

L̂n − Ln(u) ≤ η

n∑
t=1

‖ft‖2
∗ +

R(u)−R(w1)

η
.

In particular, if ‖ft‖∗ ≤ 1 for all 1 ≤ t ≤ n and η =
√

R(u)−R(w1)
n

then

L̂n − Ln(u) ≤
√
n(R(u)−R(w1)) .

Proof. Beginning from Corollary 8.12 we see that it is enough to bound L̂n − L̂+
n . We can

upper bound the difference as follows:

L̂n − L̂+
n =

n∑
t=1

`t(wt)− `t(wt+1)

=
n∑
t=1

〈ft, wt − wt+1〉

≤
n∑
t=1

‖ft‖∗ · ‖wt − wt+1‖ (Hölder’s inequality)

It remains to upper bound ‖wt − wt+1‖ by η‖ft‖∗.
Strong convexity of R implies:

R(wt)−R(wt+1) ≥ 〈∇R(wt+1), wt − wt+1〉+
1

2
‖wt − wt+1‖2

R(wt+1)−R(wt) ≥ 〈∇R(wt), wt+1 − wt〉+
1

2
‖wt − wt+1‖2

Summing these two inequalities gives

‖wt − wt+1‖2 ≤ 〈∇R(wt)−∇R(wt+1), wt − wt+1〉 . (8.2)

By projection FTRL lemma (Lemma 8.13), wt = ΠR,K(w̃t) and wt+1 = ΠR,K(w̃t+1). We can
thus apply Kolmogorov’s inequality on the right-hand side of (8.2):

‖wt − wt+1‖2 ≤ 〈∇R(wt)−∇R(wt+1), wt − wt+1〉
≤ 〈∇R(w̃t)−∇R(w̃t+1), wt − wt+1〉 (Kolmogorov’s inequality)

≤ ‖wt − wt+1‖ · ‖∇R(w̃t)−∇R(w̃t+1)‖∗ (Hölder’s inequality)

Dividing by non-negative ‖wt − wt+1‖ on both sides, we obtain

‖wt − wt+1‖ ≤ ‖∇R(w̃t)−∇R(w̃t+1)‖∗ .

48

We finish the proof by showing that ∇R(w̃t) − ∇R(w̃t+1) = ηft. In order see that,
note that w̃t, w̃t are the unconstrained minimizers of Lηt−1, L

η
t respectively and therefore they

satisfy that ∇Lηt−1(w̃t) = 0 and ∇Lηt (w̃t+1) = 0. This is equivalent to

∇u

(
η
t−1∑
s=1

〈fs, u〉+R(u)

)∣∣∣∣
u=w̃t

= 0 and ∇u

(
η

t∑
s=1

〈fs, u〉+R(u)

)∣∣∣∣
u=w̃t+1

= 0 .

Calculating the gradients explicitly, this gives

η
t−1∑
s=1

fs +∇R(w̃t) = 0 and η
t∑

s=1

fs +∇R(w̃t+1) = 0 .

Subtracting the two equations gives ∇R(w̃t)−∇R(w̃t+1) = ηft as advertised.

8.4 Exercises

Exercise 8.1. (EWA as FTRL) The goal of this exercise is to show that Exponen-
tially Weighted Average (EWA) forecaster is, in fact, the Follow The Regular-
ized Leader (FTRL) algorithm with the “un-normalized” negative entropy regularizer.

Assume that `1, `2, . . . , `t−1 are vectors in RN . We denote their components by `s,i where
1 ≤ s ≤ t − 1 and 1 ≤ i ≤ N . (You can think of `s,i as the loss of expert i in round s.)
Recall that in round t, EWA chooses the probability vector pt = (pt,1, pt,2, . . . , pt,N), where
the coordinates are

pt,i =
wt,i∑N
i=1 wt,i

(i = 1, 2, . . . , N) where wt,i = e−η
∑t−1
s=1 `s,i

and η > 0 is the learning rate. On the other hand, FTRL chooses the probability vector p′t
defined as

p′t = argmin
p∈∆N

(
η
t−1∑
s=1

〈`s, p〉+R(p)

)
,

where ∆N = {p ∈ RN :
∑N

i=1 pi = 1, ∀1 ≤ i ≤ N, pi ≥ 0}. Your main goal will be to show
that if the regularizer is the un-normalized negative entropy

R(p) =
N∑
i=1

pi ln(pi)− pi

then pt = p′t (provided, of course, that both EWA and FTRL use the same η). We ask you
to do it in several steps.

(a) Prove that ∆N is a convex set.

49

(b) Prove that the function R(p) defined on the open positive orthant

RN
++ = {p ∈ RN : ∀1 ≤ i ≤ N, pi > 0}

is a Legendre function. (Don’t forget to show that the domain is convex).

(c) Show that R(p) is not strongly convex on the positive orthant with respect to any norm.
(Hint: First, prove the statement for a fixed norm e.g. 1-norm. Then use that on RN

any two norms are equivalent: For any norms ‖ · ‖♥, ‖ · ‖♠ on RN there exists α > 0 such
that for any x ∈ RN , α‖x‖♠ ≤ ‖x‖♥. You don’t need to prove this.)

(d) Prove that R(p) is strongly convex with respect to ‖ · ‖1 on the open probability simplex

∆′N =

{
p ∈ RN : pi > 0,

N∑
i=1

pi = 1

}
.

(Hint: Use Pinsker’s inequality (between Kullback-Leibler divergence and variational
distance) that states that

‖p− q‖1 ≤

√√√√2
N∑
i=1

pi ln
pi
qi

for any p, q ∈ ∆N .)

(e) Show that the Bregman projection ΠR,∆N
: RN

++ → ∆N induced by the negative entropy
can be calculated in O(N) time. That is, find an algorithm that, given an input x ∈ RN

++,
outputs x′ = ΠR,∆N

(x) using at most O(N) arithmetic operations. (Hint: Find an
explicit formula for the projection!)

(f) Find the unconstrained minimum

w̃t = argmin
p∈RN++

(
η
t−1∑
s=1

〈`s, p〉+R(p)

)

and show that w̃t = wt, where wt = (wt,1, . . . , wt,N) is the EWA weight vector. (Hint:
Set the gradient of the objective function to zero and solve the equation.)

(g) Combining e and f, find the constrained minimum p′t and prove that p′t = pt.

(h) Show that R(p) ≤ 0 for any p ∈ ∆′N

(i) Assuming that `1, `2, . . . , `n ∈ [0, 1]N , re-prove the O(
√
n logN) regret bound of EWA,

using the general upper bound for FTRL with strongly convex regularizer:

L̂n − Ln(p) ≤ η
n∑
t=1

‖`t‖2
∗ +

R(p)−R(p1)

η
∀ p ∈ ∆′N .

50

Hints: By checking the proof, it is not hard to see that the general upper bound for FTRL
continues to hold even when strong convexity for R holds only over K ∩ A. Identify K
and A and argue (based on what you proved above) that this is indeed the case here.
Then, use Part (h) to upper bound R(p). To deal with R(p1), figure out what p1 is and
substitute! Optimize η. You can use that the dual norm of ‖ · ‖1 is ‖ · ‖∞.

Exercise 8.2. (Quadratic Regularizer) Assume an online algorithm is choosing points
in the unit ball BN = {x ∈ RN : ‖x‖2 ≤ 1}. If the algorithm chooses loss xt in round t it
suffers loss 〈`t, xt〉 where `t is a loss vector chosen by the adversary. In other words, the loss
functions are linear.

Consider FTRL with the quadratic regularizerR(x) = 1
2
‖x‖2

2 where ‖x‖2 =
√
x2

1 + x2
2 + · · ·+ x2

N

is the 2-norm. That is, in round t the algorithm chooses

xt = argmin
x∈BN

(
η
t−1∑
s=1

〈`s, x〉+R(x)

)
.

(a) Show that the unit ball, BN , is a convex set. (Hint: Use triangle inequality for the
2-norm.)

(b) Show that R(x) = 1
2
‖x‖2

2 defined on all of RN is a Legendre function. (Among other
things, don’t forget to prove that the gradients grow at the “boundary”. That is, don’t
forget to show that ‖∇R(x)‖ → ∞ as ‖x‖ → ∞.)

(c) Show that R(x) is strongly convex with respect to the 2-norm.

(d) Show that the Bregman projection ΠR,BN : RN → BN induced by the quadratic regu-
larizer can be calculated in O(N) time. That is, find an algorithm that, given an input
x ∈ RN

++, outputs x′ = ΠR,∆N
(x) using at most O(N) arithmetic operations. Find an

explicit formula.

(e) Find an explicit formula for the unconstrained minimum

x̃t = argmin
x∈RN

(
η

t−1∑
s=1

〈`s, x〉+R(x)

)
.

(Hint: Calculate the gradient of the objective, set it to zero and solve.)

(f) Find the constrained minimum xt using parts (d) and (e).

(g) Design and describe (both in pseudo-code and in English) the FTRL algorithm for this
setting that has O(N) memory complexity and O(N) time complexity per step.

51

(h) Assuming that `1, `2, . . . , `n ∈ BN , prove an O(
√
n) regret on the resulting algorithm.

Use the general upper bound, proved in class, for FTRL with strongly convex regularizer:

L̂n − L(u) ≤ η

n∑
t=1

‖`t‖2
∗ +

R(u)−R(x1)

η
∀ u ∈ BN .

Upper bound R(u). To deal with R(x1), figure out what x1 is and substitute! Optimize
η. (Hint: The dual norm of ‖ · ‖2 is ‖ · ‖2.) What is the dependence of your regret bound
on N? Compare this O(

√
n logN) from Q1 part (i).

(For those initiated: Does the algorithm from Part (g) remind you of the classical (online)
gradient descent algorithm?)

Exercise 8.3. (Further problems)

(a) Prove the follow-the-leader/be-the-leader inequality. LetD be any decision set, R, `1, . . . , `t
be any real-valued functions defined on D. (Note that here we don’t have extra as-
sumptions, no need for convexity or anything like that.) Let η > 0. Let wt+1 be the
“Be-The-Leader” solution (i.e. the solution of the cheating algorithm):

wt+1 = argmin
w∈D

(
η

t∑
s=1

`s(w) +R(w)

)
.

Let wt be the “Follow-The-(Regularized)-Leader” solution (i.e. the solution of the FTRL
algorithm)

wt = argmin
w∈D

(
η
t−1∑
s=1

`s(w) +R(w)

)
.

Prove the “Follow-The-Leader/Be-The-Leader” inequality (i.e. that the cheating algo-
rithm has lower instantaneous loss in round t):

`t(wt+1) ≤ `t(wt) .

(b) Prove Kolmogorov’s inequality. (Hint: Use the Pythagorean inequality.)

(c) Show that the dual norm of the 2-norm is the 2-norm.

(d) Show that the dual norm of the 1-norm is the ∞-norm, and vice versa. Recall that
the 1-norm is defined as ‖x‖1 =

∑N
i=1 |xi| and the ∞-norm is defined as ‖x‖∞ =

max{|x1|, |x2|, . . . , |xn|}.

52

Chapter 9

Proximal Point Algorithm

In this lecture, we present a different algorithm for the same online learning scenario as in
last lecture. The algorithm we present is called Proximal Point Algorithm and it goes
back to Martinet (1978) and Rockafellar (1977) in the context of classical (offline) numerical
convex optimization. In the context of online learning, a special case of the algorithm with
quadratic regularizer was rediscovered by Zinkevich (2003).

Recall the online learning scenario from the last chapter, where the learner in round t
chooses a point wt from a closed convex set K ⊆ Rd, and it suffers a loss `t(wt) where
`t : Rd → R is linear function chosen by the adversary i.e. `t(wt) = 〈ft, w〉.

In the last chapter, we saw that the regret of FTRL is controlled by how much wt+1

differs from wt and the amount of regularization used. The Proximal Point Algorithm
is designed with the explicit intention to keep wt+1 close to wt. This also explains the name
of the algorithm.

Suppose R : A → R is Legendre function, which we can think of as regularizer. The
algorithm first calculates w̃t+1 ∈ A from wt and then w̃t+1 is projected to K by a Bregman
projection:

w̃t+1 = argmin
w∈A

[η`t(w) +DR(w,wt)]

wt+1 = ΠR,K (w̃t+1)

We see that w̃t+1 is constructed so that it minimizes the current loss penalized so that w̃t+1

stays close to wt. The algorithm starts with w̃1 = argminw∈AR(w) and w1 = ΠR,K(w̃1), the
same as FTRL.

9.1 Analysis

Proposition 9.1.
∇R(w̃t+1)−∇R(wt) = −ηft

53

Proof. We have∇w [η`t(u) +DR(w,wt)] |w=w̃t+1 = 0 since w̃t+1 is an unconstrained minimizer
of η`t(w) +DR(w,wt). We rewrite the condition by calculating the gradient:

0 = ∇w [η`t(u) +DR(w,wt)]
∣∣
w=w̃t+1

= η∇ `t(w̃t+1) +∇wDR(w,wt)
∣∣
w=w̃t+1

= ηft +∇w [R(w)−R(wt)− 〈∇R(wt), w − wt〉]
∣∣
w=w̃t+1

= ηft +∇R(w̃t+1)−∇R(wt)

which is exactly what needed to be proven.

We denote by L̂n =
∑n

t=1 `t(wt) the total loss of the algorithm after n rounds. Similarly,
let Ln(u) =

∑n
t=1 `t(u) be the sum of the loss functions.

Lemma 9.2. For any u ∈ K ∩ A and any η > 0,

L̂n − Ln(u) ≤ 1

η

[
DR(u,w1) +

n∑
t=1

DR(wt, w̃t+1)

]

≤
n∑
t=1

(`t(wt)− `t(w̃t+1)) +
DR(u,w1)

η
.

Proof. The sum L̂n−Ln(u) can be written as a sum
∑n

t=1 (`t(wt)− `t(u)). We upper bound
each term in the sum separately:

`t(wt)− `t(u) = 〈wt − u, ft〉

=
1

η
〈wt − u,∇R(wt)−∇R(w̃t+1)〉 (Proposition 9.1)

=
1

η
[DR(u,wt)−DR(u, w̃t+1) +DR(wt, w̃t+1)] (long, but straightforward calculation)

≤ 1

η
[DR(u,wt)−DR(u,wt+1)−DR(wt+1, w̃t+1) +DR(wt, w̃t+1)]

(Pythagorean inequality)

≤ 1

η
[DR(u,wt)−DR(u,wt+1) +DR(wt, w̃t+1)] (DR ≥ 0)

Adding the inequalities for all t = 1, 2, . . . , n, the terms DR(u,wt)−DR(u, w̃t+1) telescope:

L̂n − Ln(u) ≤ 1

η

[
DR(u,w1)−DR(u,wn+1) +

n∑
t=1

DR(wt, w̃t+1)

]

We can drop (−DR(u,wn+1)) since Bregman divergence is always non-negative, and we get
the first inequality of the lemma. For the second inequality, we upper bound

∑n
t=1DR(wt, w̃t+1)

54

term-by-term:

DR(wt, w̃t+1) ≤ DR(wt, w̃t+1) +DR(w̃t+1, wt)

= 〈∇R(wt)−∇R(w̃t+1), wt − w̃t+1〉
= η〈ft, wt − w̃t+1〉 (Proposition 9.1)

= η (`t(wt)− `t(w̃t+1)) .

Theorem 9.3 (Regret Bound for Proximal Point Algorithm with Strongly Convex Regu-
larizer). Let R : A→ R is a Legendre function which is strongly convex with respect a norm
‖ · ‖. Then, for all u ∈ K ∩ A,

L̂n − Ln(u) ≤ η

n∑
t=1

‖ft‖2
∗ +

R(u)−R(w1)

η
.

In particular, if ‖ft‖∗ ≤ 1 for all 1 ≤ t ≤ n and η =
√

R(u)−R(w1)
n

then for any u ∈ K ∩ A,

L̂n − Ln(u) ≤
√
n(R(u)−R(w1)) .

Proof. By Lemma 9.2 we need to prove only that

n∑
t=1

(`t(wt)− `t(w̃t+1)) +
DR(u,w1)

η
≤ η

n∑
t=1

‖ft‖2
∗ +

R(u)−R(w1)

η
.

First, note that DR(u,w1) ≤ R(u)−R(w1) since for any u ∈ K ∩ A, 〈∇R(w1), u− w1〉 ≥ 0
by optimality of w1. Hence, it remains to show that

n∑
t=1

(`t(wt)− `t(w̃t+1)) ≤ η
n∑
t=1

‖ft‖2
∗ .

We will prove that `t(wt)− `t(w̃t+1) ≤ η‖ft‖2
∗. We have

`t(wt)− `t(w̃t+1) = 〈ft, wt − w̃t+1〉 ≤ ‖ft‖∗ · ‖wt − w̃t+1‖ .

Thus, it remains to show that ‖wt − w̃t+1‖ ≤ η‖ft‖∗.
Strong convexity of R implies:

R(wt)−R(w̃t+1) ≥ 〈∇R(w̃t+1), wt − w̃t+1〉+
1

2
‖wt − w̃t+1‖2

R(w̃t+1)−R(wt) ≥ 〈∇R(wt), w̃t+1 − wt〉+
1

2
‖wt − w̃t+1‖2

Summing these two inequalities gives

‖wt − w̃t+1‖2 ≤ 〈∇R(wt)−∇R(w̃t+1), wt − w̃t+1〉 .

55

By Hölder’s inequality,

‖wt − w̃t+1‖2 ≤ ‖∇R(wt)−∇R(w̃t+1)‖∗ · ‖wt − w̃t+1‖ .

Dividing both sides by non-negative ‖wt − w̃t+1‖ we get

‖wt − w̃t+1‖ ≤ ‖∇R(wt)−∇R(w̃t+1)‖∗ .

Finally, by Proposition 9.1, we have ‖∇R(wt)−∇R(w̃t+1)‖∗ = η‖ft‖∗.

9.2 Time-Varying Learning Rate

We now slightly extend the algorithm by allowing learning rate η to vary in time. In other
words, in each time step we use (possibly different) learning rate ηt > 0. The modified
algorithm is called Proximal Point Algorithm with Time-Varying Learning Rate.
Later we will see how to choose the sequence {ηt}∞t=1 so that we achieve a low learning
rate. The initialization of algorithm is the same as before w̃1 = argminw∈AR(w) and w1 =
argminw∈K∩AR(w) = ΠR,K(w̃1). The update rule becomes

w̃t+1 = argmin
w∈A

[ηt`t(w) +DR(w,wt)]

wt+1 = ΠR,K (w̃t+1)

We still assume that the loss functions are linear i.e. `t(w) = 〈ft, w〉 and therefore ∇ `t(w) =
ft for any w ∈ Rd.

Proposition 9.4. The sequences {w̃t}∞t=1 and {wt}∞t=1 generated by Proximal Point Al-
gorithm with Time-Varying Learning Rate satisfy

∇R(w̃t+1)−∇R(wt) = −ηtft .

Proof. The proof is the same as the proof of Proposition 9.1. We just replace η by ηt.

Lemma 9.5. For all u ∈ K ∩ A and any η1, η2, . . . , ηn > 0,

`t(wt)− `t(u) ≤ DR(u,wt)−DR(u,wt+1) +DR(wt, w̃t+1)

ηt
.

Proof. By linearity,
`t(wt)− `t(u) = 〈wt − u, ft〉 .

By Proposition 9.4,

ηt〈wt − u, ft〉 = 〈wt − u,∇R(wt)−∇R(w̃t+1)〉
= DR(u,wt)−DR(u, w̃t+1) +DR(wt, w̃t+1) (long, but straightforward calculation)

≤ DR(u,wt)−DR(u,wt+1)−DR(wt+1, w̃t+1) +DR(wt, w̃t+1) (Pythagorean inequality)

≤ DR(u,wt)−DR(u,wt+1) +DR(wt, w̃t+1) (DR ≥ 0)

Dividing through by ηt > 0 finishes the proof of the lemma.

56

Summing the lemma over all t = 1, 2, . . . , n we get the following corollary.

Corollary 9.6. For all u ∈ K ∩ A and any η1, η2, . . . , ηn > 0,

L̂n − Ln(u) ≤
n∑
t=1

1

ηt
(DR(u,wt)−DR(u,wt+1)) +

n∑
t=1

DR(wt, w̃t+1)

ηt
.

9.3 Linearized Proximal Point Algorithm

We now consider the situation when the loss functions {`t}∞t=1 are not necessarily linear. We
assume that `t are convex and differentiable defined on K. The initialization of w̃1 and w1

remains the same as before. The update uses linearized losses:

w̃t+1 = argmin
w∈A

[
ηt˜̀t(w) +DR(w,wt)

]
wt+1 = ΠR,K(w̃t+1)

where ˜̀
t(w) = `t(wt) + 〈∇`t(wt), w − wt〉

is the linearized loss. The name comes from that ˜̀t is a linear approximation of `t by its
first order Taylor expansion. We call the resulting algorithm the Linearized Proximal
Point Algorithm.

The crucial property that allows to extend regret bounds for non-linear losses is the
following lemma. The lemma states that the instantaneous regret `t(wt) − `t(u) for any

convex loss is upper bounded by the instantaneous regret ˜̀t(wt)− ˜̀t(u) for their linearization.

Lemma 9.7. If `t : K → R is convex then for any u ∈ K,

`t(wt)− `t(u) ≤ 〈∇`t(wt), wt − u〉 (9.1)

= ˜̀
t(wt)− ˜̀t(u) (9.2)

Proof. The fist inequality from convexity of `t. The second equality follows by the definition
of the linearized loss ˜̀t.

Using this lemma it easy to extend the first part of Lemma 9.2 (with constant learning
rate) and Corollary 9.6 (with varying learning rate) to non-linear convex losses. If gradients
∇ `t are bounded, one can even extend Theorem 9.3.

Proposition 9.8. The sequences {w̃t}∞t=1 and {wt}∞t=1 generated by the Linearized Prox-
imal Point Algorithm satisfy

∇R(w̃t+1)−∇R(wt) = −ηt∇`t(wt)

Proof. The follows from Proposition 9.4 applied to linearized loss ˜̀t.
57

Notice that the linearized loss ˜̀t(w) = `t(wt)+〈∇`t(wt), w−wt〉 is technically not a linear

function. It is an affine function. That is, it is of the form ˜̀
t(w) = a+ 〈b, w〉 for some a ∈ R

and b ∈ Rd. It easy to see that the results for linear losses from previous sections extend
without any change to affine losses. Also notice that the intercept a does not play any role in
the algorithms nor the regret. Thus we can define the linearized loss as ˜̀t(w) = 〈∇ `t(wt), w〉.

9.4 Strongly Convex Losses

We now analyze Linearized Proximal Point Algorithm for strongly convex loss func-
tions.

Definition 9.9 (Strong Convexity). Let K ⊆ Rd be convex set and σ ≥ 0. A differentiable
function g : K → R is σ-strongly convex with respect to Legendre function R : K → R if

g(w) ≥ g(y) + 〈∇g(y), w − y〉+
σ

2
DR(w, y) .

Theorem 9.10 (Regret for Strongly Convex Losses). Let {σt}∞t=1 be sequence of positive
numbers. Assume that sequence of loss function {`t}∞t=1 is such that `t : K → R is a
differentiable, σt-strongly convex function w.r.t R for any t ≥ 1. Let the learning rate
sequence be ηt = 2∑t

s=1 σs
. Then, for any u ∈ K ∩ A,

L̂n − Ln(u) ≤
n∑
t=1

DR(wt, w̃t+1)

ηt
.

Proof. By strong convexity,

`t(wt) ≤ `t(u)− 〈∇ `t(wt), u− wt〉 −
σt
2
DR(u,wt) .

By definition of the linearized losses 〈∇ `t(wt), u− wt〉 = ˜̀
t(u)− ˜̀t(wt) and thus

`t(wt)− `t(u) ≤ ˜̀t(wt)− ˜̀t(u)− σt
2
DR(u,wt) .

(Note that this inequality is a strengthening of Lemma 9.7 for strongly convex losses). We

upper bound ˜̀t(wt)− ˜̀t(u) using Lemma 9.5:

`t(wt)− `t(u) ≤ DR(u,wt)−DR(u,wt+1) +DR(wt, w̃t+1)

ηt
− σt

2
DR(u,wt) .

Summing over all t = 1, 2, . . . , n and

L̂n − Ln(u) ≤
n∑
t=1

DR(wt, w̃t+1)

ηt
+

n∑
t=1

[(
1

ηt
− σt

2

)
DR(u,wt)−

1

ηt
DR(u,wt+1)

]

58

It remains to show that the second sum is non-positive. We can rewrite it as

n∑
t=1

[(
1

ηt
− σt

2

)
DR(u,wt)−

1

ηt
DR(u,wt+1)

]

=

(
1

η1

− σ1

2

)
DR(u,w1)− 1

ηn
DR(u,wn+1) +

n−1∑
t=1

(
1

ηt+1

− σt+1

2
− 1

ηt

)
DR(u,wt+1) .

By the choice of learning rates 1/η1 = σ1/2 and hence the first term vanishes. We can
drop the second term, because DR is non-negative. Each term in the sum is zero, since the
learning rates satisfy the recurrence 1

ηt+1
= 1

ηt
+ σt+1

2
.

We illustrate the use of Theorem on a special case. Assume that the regularizer is
R(w) = 1

2
‖w‖2

2, gradients are uniformly bounded ‖∇ `t(w)‖2 ≤ G for all w ∈ K and all t,
and σt = σ. The algorithm becomes a projected gradient descent algorithm

w̃t+1 = wt − ηt∇`t(wt)
wt+1 = ΠR,K(w̃t)

The term DR(wt, wt+1) can be expressed as

DR(wt, w̃t+1) =
1

2
‖wt − w̃t+1‖2

2 =
1

2
η2
t ‖∇`t(wt)‖2

2 .

Applying Theorem 9.10 we get a O(log n) regret bound:

L̂n − Ln(u) ≤
n∑
t=1

DR(wt, w̃t+1)

ηt

=
n∑
t=1

ηt‖∇`t(wt)‖2
2

2

=
n∑
t=1

‖∇`t(wt)‖2
2∑t

s=1 σs

=
n∑
t=1

‖∇`t(wt)‖2
2

tσ

≤ G2

σ

n∑
t=1

1

t

≤ G2

σ
(1 + lnn) .

9.5 Exercises

Exercise 9.1. We defined w̃1 = argminw∈AR(w) and w1 = ΠR,K(w̃1). Show that w1 =
argminw∈K∩AR(w). In other words, show that w1 is the same as in FTRL algorithm.

59

Exercise 9.2. (Zinkevich’s algorithm) Let K ⊆ Rd be convex and closed containing
the origin. Abusing notation, let ΠK(w) = argminu∈K ‖u− w‖ be the Euclidean projection
to K. Zinkevich’s algorithm starts with w1 = 0 and updates

wt+1 = ΠK(wt − η∇ `t(wt)) .

Show that Zinkevich’s algorithm is nothing else than Linearized Proximal Point Al-
gorithm with quadratic regularizer R(w) = 1

2
‖w‖2

2.

Exercise 9.3. (Comparison with FTRL) Consider FTRL algorithm and the Proximal
Point Algorithm with the same convex closed set K ⊆ Rd, Legendre regularizer R : A→
Rd and the same learning rate η > 0, running on the same sequence {`t}∞t=1 of linear loss
functions.

(a) Show that if K = A then, for any R, η, {`t}∞t=1 both algorithms produce the same se-
quence {wt}∞t=1 of solutions.

(b) Give an example of K,R, η and {`t}∞t=1 such that the algorithms produce different se-
quences of solutions.

(Hint: Unit ball and quadratic regularizer R(w) = 1
2
‖w‖2

2.)

(c) Give an example of a bounded K and R such that for any η, {`t}∞t=1 the algorithms
produce the same sequences of solutions w1, w2, . . . , wn+1. (Hint: Express the Expo-
nentially Weighted Average forectaster both as FTRL and as a Proximal Point
Algorithm.)

(d) Redo (a), (b) and (a) with linearized versions of the algorithms and arbitrary convex
differentiable sequence of {`t}∞t=1 loss functions.

60

Chapter 10

Least Squares

Linear least squares method is the single most important regression problem in all of statistics
and machine learning. In this chapter we consider the online version of the problem. We
will assume that, in round t, the learner receives a vector xt ∈ Rd, predicts ŷt = 〈wt, xt〉,
receives feedback yt ∈ R and suffers a loss 1

2
(ŷt − yt)2. More compactly, the learner chooses

wt ∈ Rd and suffers loss `t(wt) where `t : Rd → R is a loss function defined as

`t(w) =
1

2
(〈w, xt〉 − yt)2 .

For dimension d ≥ 2 the loss function `t is not strongly convex; not even strictly convex. To
see that note consider any non-zero w that is perpendicular to xt and note that `t(αw) = 0 for
any α ∈ R. In other words, the loss function is flat (constant) along the line {αw : α ∈ R}.

Our goal is to design an online algorithm for this problem with O(log n) regret under
some natural assumptions on {(xt, yt)}∞t=1; we state those assumptions later. We have seen
O(log n) regret bounds for problems where `t were strongly convex. Despite that in our
case the loss functions are not strongly convex, we show that Follow The Regularized
Leader (FTRL) algorithm with quadratic regularizer R(w) = 1

2
‖w‖2

2 has O(log n) regret.
Recall that in round t+ 1 FTRL algorithm chooses

wt+1 = argmin
w∈Rd

[
η

t∑
s=1

`s(w) +
1

2
‖w‖2

]

where η > 0 is the learning rate. This minimization problem—both in online learning
and classical off-line optimization—is called regularized (linear) least squares problem or
sometimes ridge regression.

10.1 Analysis

We denote by Lt(u) the sum of the first t loss functions, by L̂t the sum of the losses of
the FTRL algorithm in the first t rounds, and by Lηt (u) the objective function that FTRL

61

minimizes in round t+ 1. Formally, for any u ∈ Rd and any 1 ≤ t ≤ n

Lt(u) =
t∑

s=1

`s(u) L̂t =
t∑

s=1

`s(ws) Lηt (u) = η
t∑

s=1

`s(u) +R(u) .

Observe that the minimization in ridge regression is unconstrained. We start with a
general lemma concerning the behavior of unconstrained FTRL.

Lemma 10.1 (Unconstrained FTRL). Let η > 0, A ⊆ Rd and R : A → R be a Legendre
function. Suppose that the loss functions `1, `2, . . . , `n : A→ R are convex and differentiable.
Consider the unconstrained FTRL algorithm that in round t+ 1 chooses

wt+1 = argmin
w∈A

Lηt (w) .

Then, following equality holds

η
(
L̂n − Ln(u)

)
= DR(u,w1)−DLηn(u,wn+1) +

n∑
t=1

DLηt
(wt, wt+1) .

Proof. Since the minimization is unconstrained ∇Lηt (wt+1) = 0. Therefore, for any u ∈ A

DLηt
(u,wt+1) = Lηt (u)− Lηt (wt+1) (10.1)

= Lηt−1(u) + η`t(u)− Lηt (wt+1) .

Rearranging, for any u ∈ A

η`t(u) = DLηt
(u,wt+1) + Lηt (wt+1)− Lηt−1(u) (10.2)

Substituting u = wt we get

η`t(wt) = DLηt
(wt, wt+1) + Lηt (wt+1)− Lηt−1(wt) (10.3)

Subtracting (10.2) from (10.3) we get

η (`t(wt)− `t(u)) = DLηt
(wt, wt+1)−DLηt

(u,wt+1) + Lt−1(u)− Lt−1(wt)

= DLηt
(wt, wt+1) +DLηt−1

(u,wt)−DLηt
(u,wt+1)

where in the last step we have used (10.1) with t shifted by one. If we sum both sides of the
last equation over all t = 1, 2, . . . , n, the differences DLηt−1

(u,wt) − DLηt
(u,wt+1) telescope.

The observation that Lη0 = R finishes the proof.

Unsurprisingly, the lemma can be used to upper bound the regret:

L̂n − Ln(u) ≤ 1

η
DR(u,wn) +

1

η

n∑
t=1

DLηt
(wt, wt+1) . (10.4)

The first divergence is easy to deal with: DR(u,wt) = 1
2
‖u − w1‖2

2 = 1
2
‖u‖2

2. The main
challenge to is to calculate the divergences DLηt

(wt, wt+1). We do it in the following lemma.

62

Lemma 10.2 (Ridge regression). Let {(xt, yt)}∞t=1 be any sequence, xt ∈ Rd and yt ∈ R. Let
`t(w) = 1

2
(〈w, xt〉 − yt)2 be the corresponding sequence of loss functions. Consider the ridge

regression FTRL algorithm wt+1 = argminw∈A Lηt (w). Then,

DLηt
(wt, wt+1) =

η2

2
`t(wt)

〈
xt, A

−1
t xt

〉
where

At = I + η

t∑
s=1

xsx
>
s .

Proof. Define Mt = xtx
>
t and vt = −ytxt. Using this notation, we can write the loss function

`t(u) as a quadratic form:

`t(u) =
1

2
〈u, xtx>t u〉 − 〈u, ytxt〉+

1

2
y2
t

=
1

2
〈u,Mtu〉+ 〈u, vt〉+

1

2
y2
t

In order to understand DLηt
(wt, wt+1) we first need to understand the underlying Legendre

function Lηt (u). We can write rewrite by using the quadratic form for `t(u)

Lηt (u) = η
t∑

s=1

`s(u) +
1

2
‖u‖2

= η
t∑

s=1

y2
s +

〈
η

t∑
s=1

vs, u

〉
+

1

2

〈
u,

(
I + η

t∑
s=1

Ms

)
u

〉
= Ct + 〈Vt, u〉+

1

2
〈u,Atu〉 . (10.5)

where Ct =
∑t

s=1 y
2
s and Vt = η

∑t
s=1 vs. Using (10.5) we express the Bregman divergence

DLηt
(u, v) as

DLηt
(u, v) =

1

2
〈u− v,At(u− v)〉 . (10.6)

From ∇Lηt (wt+1) = 0 = ∇Lηt−1(wt) and (10.5) we derive the following equalities:

Vt + Atwt+1 = Vt−1 + At−1wt

Vt + At(wt+1 − wt) + Atwt = Vt−1 + At−1wt

At(wt+1 − wt) = (Vt−1 − Vt) + (At−1 − At)wt
At(wt+1 − wt) = −ηvt − ηMtwt (10.7)

wt+1 − wt = −ηA−1
t (Mtwt + vt) (10.8)

The last piece that we need is that

Mtwt + vt = xt(〈xt, wt〉 − yt) (10.9)

63

which follows by definition of Mt and vt. Starting from we calculate (10.6) the Bregman
divergence:

DLηt
(wt, wt+1) =

1

2
〈wt+1 − wt, At(wt+1 − wt)〉

=
1

2
〈wt − wt+1, η(Mtwt + vt)〉 by (10.7)

=
η

2
〈wt − wt+1, (Mtwt + vt)〉

=
η

2
〈wt − wt+1, xt(〈xt, wt〉 − yt)〉 by (10.9)

=
η

2
(yt − 〈xt, wt〉)〈wt+1 − wt, xt〉

= −η
2

2
(yt − 〈xt, wt〉)〈Mtwt + vt, A

−1
t xt〉 by (10.8)

=
η2

2
(yt − 〈xt, wt〉)2〈xt, A−1

t xt〉 by (10.9)

=
η2

2
`t(wt)〈xt, A−1

t xt〉

Applying the lemma to (10.4) gives

L̂n − Ln(u) ≤ ‖u‖
2

2η
+
η

2

n∑
t=1

`t(wt)
〈
xt, A

−1
t xt

〉
.

If define Bn = max1≤t≤n `t(wt) we have

L̂n − Ln(u) ≤ ‖u‖
2

2η
+
ηBn

2

n∑
t=1

〈
xt, A

−1
t xt

〉
. (10.10)

It remains to bound the terms
〈
xt, A

−1
t xt

〉
. This is done in the following lemma.

Lemma 10.3 (Matrix Determinant Lemma). Let B be a d× d positive definite matrix, let
x ∈ Rd and define A = B + xx>. Then,

〈x,A−1x〉 = 1− det(B)

det(A)
.

Proof. Note that since B is positive definite and xx> is positive semi-definite, A must be
positive definite and therefore also invertible. We can write

B = A− xx> = A(I − A−1xx>)

and hence
det(B) = det(A) det(I − A−1xx>) .

64

We focus on the later term and use that A has a square root A1/2

det(I − A−1xx>) = det(A1/2) det(I − A−1xx>) det(A−1/2)

= det(A1/2(I − A−1xx>)A−1/2)

= det(I − A−1/2xx>A−1/2)

= det(I − (A−1/2x)(A−1/2x)>)

= det(I − zz>)

where z = A−1/2x is a shorthand notation. We can calculate the determinant of a matrix as
product of its eigenvalues. It thus remains to find the eigenvalues of I−zz>. One eigenvector
is z since

(I − zz>)z = z − z(z>z) = (1− z>z)z .

and the corresponding eigenvector value is 1−z>z. Since I−zz> is symmetric, its eigenvectors
are orthogonal. If u is orthogonal to z then it is an eigenvector with eigenvalue 1, since

(I − zz>)u = u− zz>u = u .

The multiplicity of eigenvalue 1 is d− 1 because the subspace of vectors orthogonal to z has
dimension d− 1. Therefore, Therefore,

det(B) = det(A) det(I − zz>) = det(A)(1− z>z) = det(A)(1− x>A−1x) .

Reordering gives the result.

Theorem 10.4 (Regret Bound for Ridge Regression). Let y1, y2, . . . , yn ∈ R and let x1, x2, . . . , xn ∈
Rd be such that ‖xt‖2 ≤ X for all 1 ≤ t ≤ n. Let `t(w) = (yt − 〈w, x〉)2 and {wt}n+1

t=1 be
sequence generated by the FTRL algorithm with learning rate η > 0. The regret with respect
to any u ∈ Rd is upper bounded as

L̂n − Ln(u) ≤ ‖u‖
2

2η
+
Bnd

2
ln

(
1 +

ηX2n

d

)
where Bn = max1≤t≤n `t(wt).

Proof. We start with the inequality (10.10) and we see that it remains to upper bound

η
∑n

t=1

〈
xt, A

−1
t xt

〉
≤ d ln

(
1 + ηnX2

d

)
. Form the matrix determinant lemma (Lemma 10.3)

with B = At−1, A = At and x = η1/2xt we have

η
n∑
t=1

〈
xt, A

−1
t xt

〉
=

n∑
t=1

〈
xt
√
η, A−1

t xt
√
η
〉

=
n∑
t=1

(
1− det(At−1)

det(At)

)
Now we use that 1− x ≤ − lnx for any real number x > 0 and get that

η
n∑
t=1

〈
xt, A

−1
t xt

〉
≤

n∑
t=1

ln

(
det(At)

det(At−1)

)
= ln (det(An)) .

65

In order to upper bound the determinant of An we use that ‖xt‖2 ≤ X and derive from that
an upper bound on the trace of An:

tr(An) = tr(I) + η

n∑
t=1

tr(xtx
>
t) ≤ d+ ηX2n .

In the derivation, we have used that trace is linear and that tr(xtx
>
t) = tr(〈xt, xt〉) = ‖xt‖2

2.
Since An is positive definite, if tr(An) ≤ C then ln(det(An)) ≤ d ln(C/d) and therefore

ln(det(An)) ≤ d ln

(
1 +

ηX2n

d

)
which finishes the proof of the theorem.

10.2 Ridge Regression with Projections

We now investigate the generalization of the algorithm where wt is constrained to lie in
closed convex set K ⊆ Rd. We also write the loss functions in a slightly more general form:

`t(w) = ct + κt〈w, vt〉+
β

2
〈w, vtv>t w〉

where ct, κt ∈ R, vt ∈ Rd and β > 0. Note that `t is a convex function, since β > 0. The
algorithm is the usual Follow The Regularized Leader algorithm from Chapter 8.
That is, in round t+ 1, the algorithm chooses

wt+1 = argmin
w∈K

(
η

n∑
t=1

`t(w) +R(w)

)
.

where R(w) = 1
2
‖w‖2

2.

10.2.1 Analysis of Regret

To analyze the regret of the algorithm, we start by applying the Follow-The-Leader-Be-The-
Leader-Inequality (Corollary 8.12):

L̂n − Ln(u) ≤ L̂n − L̂+
n +

R(u)−R(w1)

η
.

Here L̂n =
∑n

t=1 `t(wt) is the loss of the algorithm, L̂+
n =

∑n
t=1 `t(wt+1) is the loss of the

“cheating” algorithm, and Ln(u) =
∑n

t=1 `t(u) is the sum of the loss functions.
We see that in order to upper bound the regret, we need to upper bound the differences

`t(wt)− `t+1(wt+1). We do it in the following lemma.

66

Lemma 10.5. The FTRL with convex closed K, regularizer R(w) = 1
2
‖w‖2

2, learning rate

η > 0, and loss functions of the form `t = ct + κt〈w, vt〉 + β
2
〈w, vtv>t w〉 where ct, κt ∈ R,

vt ∈ Rd and β > 0 satisfies, for any t ≥ 1

`t(wt+1)− `t(wt) ≤ η〈∇ `t(wt), A−1
t ∇ `t(wt)〉

where

At = I + ηβ
t∑

s=1

vtv
>
t .

Proof. Let ∆wt = wt+1 − wt. From convexity of `t we have

`t(wt)− `t(wt+1) ≤ −〈∇ `t(wt),∆wt〉 . (10.11)

Let Mt = vtv
>
t . Then `t(w) = ct + κt〈w, vt〉 + β

2
〈w,Mtw〉 and ∇ `t(w) = κtvt + βMtw.

Since ∇R(w) = w, we have

∇Lηt (wt+1)−∇Lηt (wt) = η
t∑

s=1

(∇ `s(wt+1)−∇ `s(wt)) +∇R(wt+1)−∇R(wt)

= η
t∑

s=1

(βMswt+1 − βMswt) + wt+1 − wt

= (I + ηβ
t∑

s=1

Ms)(wt+1 − wt)

= At∆wt

and hence
∆wt = A−1

t (∇Lηt (wt+1)−∇Lηt (wt)) . (10.12)

We now express ∇Lηt (wt+1)−∇Lηt (wt) in a different way:

∇Lηt (wt+1)−∇Lηt (wt) = (∇Lηt (wt+1)−∇Lηt−1(wt)) + (∇Lηt−1(wt)−∇Lηt (wt))
= (∇Lηt (wt+1)−∇Lηt−1(wt))− η∇ `t(wt) .

Therefore, defining a shorthand dt = ∇Lηt (wt+1)−∇Lηt−1(wt) we can write

∇Lηt (wt+1)−∇Lηt (wt) = dt − η∇ `t(wt) .

Substituting into (10.12) we get

∆wt = A−1
t (dt − η∇ `t(wt)) . (10.13)

Combining (10.11) and (10.13) we have

`t(wt)− `t(wt+1) ≤ −〈∇ `t(wt),∆wt〉
= −〈∇ `t(wt), A−1

t (dt − η∇ `t(wt))〉
= −〈∇ `t(wt), A−1

t dt〉+ η〈∇ `t(wt), A−1
t ∇ `t(wt)〉

67

To finish the proof of the first part of the lemma (the inequality) it remains to show that
〈∇ `t(wt), A−1

t dt〉 is non-negative.
By optimality of wt and wt+1, for any w ∈ K

〈∇Lηt (wt+1), w − wt+1〉 ≥ 0 ,

〈∇Lηt−1(wt), w − wt〉 ≥ 0 .

Substituting wt for w in the first inequality, and substituting wt+1 for w in the second
inequality, we get

〈∇Lηt (wt+1), wt − wt+1〉 ≥ 0 ,

〈∇Lηt−1(wt), wt+1 − wt〉 ≥ 0 .

We add the inequalities and start upper bounding:

0 ≤ 〈∇Lηt (wt+1), wt − wt+1〉+ 〈∇Lηt−1(wt), wt+1 − wt〉
= −〈dt,∆wt〉
= −〈dt, A−1

t (dt − η∇ `t(wt))〉 by (10.13)

= −〈dt, A−1
t dt〉+ η〈dt, A−1

t ∇ `t(wt)〉
≤ η〈dt, A−1

t ∇ `t(wt)〉

where in the last step we have used that At is positive definite. We have thus derived that

η〈dt, A−1
t ∇ `t(wt)〉 ≥ 0 .

This finishes the proof the lemma.

Theorem 10.6 (Regret of Projected Ridge Regression). Let β > 0 and G ≥ 0. Let {`t}nt=1

be a sequence of loss functions of the form `t = ct +κt〈w, vt〉+ β
2
〈w, vtv>t w〉 where ct, κt ∈ R,

vt ∈ Rd such that ‖vt‖2 ≤ G for all 1 ≤ t ≤ n. The regret of FTRL on {`t}nt=1 with convex
closed K ⊆ Rd, regularizer R(w) = 1

2
‖w‖2

2 and learning rate η > 0 is upper bounded, for any
u ∈ K, as

L̂n − Ln(u) ≤ ‖u‖
2
2

2η
+
dBn

β
ln

(
1 +

ηβG2n

d

)
where

Bn = max
1≤t≤n

(κt + β〈vt, wt〉)2 .

Proof. First, we express the upper bound η〈∇ `t(wt), A−1
t ∇ `t(wt)〉 from the previous lemma

using that ∇ `t(w) = κtvt + βvtv
>
t w = (κt + β〈vt, w〉)vt as

η〈∇ `t(wt), A−1
t ∇ `t(wt)〉 = η〈(κt + β〈vt, w〉)vt, A−1

t (κt + β〈vt, w〉)vt〉
= η(κt + β〈vt, wt〉)2〈vt, A−1

t vt〉 . (10.14)

68

We can upper bound the regret as

L̂n − Ln(u) ≤ L̂n − L̂+
n +

R(u)−R(w1)

η
(Corollary 8.12)

≤ ‖u‖
2
2

2η
+

n∑
t=1

(`t(wt)− `t(wt+1)) (R(w1) ≥ 0)

≤ ‖u‖
2
2

2η
+ η

n∑
t=1

〈∇ `t(wt), A−1
t ∇ `t(wt)〉 (by Lemma 10.5)

=
‖u‖2

2

2η
+ η

n∑
t=1

〈(κt + β〈vt, wt〉)2〈vt, A−1
t vt〉 by (10.14)

≤ ‖u‖
2
2

2η
+ ηBn

n∑
t=1

〈vt, A−1
t vt〉

Using the matrix determinant lemma, we can deal with the terms 〈vt, A−1
t vt〉:

ηβ〈vt, A−1
t vt〉 = 〈

√
ηβvt, A

−1
t (
√
ηβvt)〉 = 1− det(At−1)

det(At)
.

Therefore, using 1− x ≤ lnx for any x > 0 we have

L̂n − Ln(u) ≤ ‖u‖
2
2

2η
+
Bn

β

n∑
t=1

(
1− det(At−1)

det(At)

)
≤ ‖u‖

2
2

2η
+
Bn

β

n∑
t=1

ln

(
det(At)

det(At−1)

)
=
‖u‖2

2

2η
+
Bn

β
ln(det(An))

It remains to upper bound ln(det(An)). Since, from ‖vt‖2 ≤ G we can derive upper bound
on the trace of An

tr(An) = tr(I) +
n∑
t=1

βη tr(vtv
>
t) ≤ d+ βηG2n

the log-determinant of At is bounded as

ln(det(An)) ≤ d ln

(
1 +

βηG2n

d

)
.

Supppose that we assume that the decision set K is bounded and κt ≤ κ for all t. Then,
using the assumption that ‖vt‖2 ≤ G and from that wt ∈ K, we can give an upper bound
on Bn which does not depend on n.

69

10.3 Directional Strong Convexity

We can generalize the analysis to a more general class of loss functions.

Definition 10.7 (Directional Strong Convexity). Let f : K → R be a differentiable function
defined on a convex set K ⊆ Rd. Let β ≥ 0 be a real number. We say that f is β-directionally
strongly convex if for any x, y ∈ K

f(y) ≥ f(x) + 〈∇ f(x), y − x〉+
β

2
〈∇ f(x), y − x〉2 .

We now extend ridge regression to arbitrary directionally strongly convex loss functions.
The idea is similar to that of linearized loss. However, instead of linearizing the loss functions,
we approximate them with quadratic functions of rank one. Consider a sequence {`t}∞t=1 of
β-directionally strongly convex loss functions defined on a convex closed set K ⊆ Rd. We
define the FTRL with quadratic rank-one approximations:

wt+1 = argmin
w∈K

(
η

t∑
s=1

˜̀
s(w) +

1

2
‖w‖2

2

)
where ˜̀

s(w) = `s(ws) + 〈∇ `s(ws), w − ws〉+
β

2
〈∇ `s(ws), w − ws〉2 .

To analyze the regret of we use a similar trick as for linearized losses (Lemma 9.7).

Proposition 10.8. If `t : K → R is β-directionally strongly convex then for any u ∈ K

`t(wt)− `t(u) ≤ ˜̀t(wt)− ˜̀t(u) .

Proof. Since `t(wt) = ˜̀
t(wt) the inequality is equivalent to ˜̀t(u) ≤ ˜̀t(wt) and it follows from

directional strong convexity of `t.

If we define Ln(u) =
∑n

t=1 `t(u) and L̂n =
∑n

t=1 `t(wt) we see that

L̂n − Ln(u) ≤
n∑
t=1

(˜̀t(wt)− ˜̀t(u))

Combining this inequality with Theorem 10.6 applied to the sequence {˜̀t}nt=1 of approxi-
mated losses, we can upper the regret of the algorithm.

Theorem 10.9. Let β > 0 and G ≥ 0. Let {`t}nt=1 be a sequence of β-directionally strongly
convex loss functions defined on a convex closed set K ⊆ Rd such that ‖∇ `t(w)‖ ≤ G
for any w ∈ K and any 1 ≤ t ≤ n. The regret of FTRL with quadratic rank-
one approximations on the sequence {`t}nt=1 with learning rate η > 0 and regularizer
R(w) = 1

2
‖w‖2

2 is upper bounded for any u ∈ K as

L̂n − Ln(u) ≤ ‖u‖
2
2

2η
+
dBn

β
ln

(
1 +

ηβG2n

d

)
where

Bn =??? .

70

10.4 Exercises

Exercise 10.1. Let A be a d × d positive definite matrix. Show that tr(A) ≤ C implies
that ln(det(A)) ≤ C ln(C/d).

Exercise 10.2. Show that the ridge regression algorithm can be implemented in O(d2) time
per time step. (Hint: Use Sherman-Morrison formula for rank-one updates of the inverse of
a matrix.)

71

Chapter 11

Exp-concave Functions

Definition 11.1 (Exp-concavity). Let α > 0. A function g : K → R defined on a convex
set K ⊆ Rd is called α-exp-concave, if the function exp(−αg(x)) is concave.

Proposition 11.2. Let α > β > 0. If g is α-exp-concave then it is also β-exp-concave.

Proof. Let hα(x) = exp(−αg(x)) and let hβ(x) = exp(−αg(x)) is concave. By assumption
hα is concave. We need to prove that hβ is also concave. Noting that hβ(x) = (hα(x))β/α,
we have

hβ(ax+ by) = (hα(ax+ by))β/α

≥ (ahα(x) + bhα(y))β/α

≥ a (hα(x))β/α + b (hα(y))β/α (by concavity zβ/α)

= ahβ(x) + bhβ(y) .

Lemma 11.3. Let g : K → R be a twice-differentiable function defined on convex domain
K ⊆ Rd. Let H,G be positive reals. If for all x ∈ K, ‖∇g(x)‖2 ≤ G and λmin(∇2g(x)) ≥ H
then g is (H/G2)-exp-concave.

Proof. Let α = H/G2 and h(x) = exp(−αg(x)). We calculate the Hessian of h and show
that it is negative semi-definite:

∇2h(x) =
∂

∂x
(∇h(x))

=
∂

∂x
(−α∇g(x) exp(−αg(x)))

= α∇2g(x) exp(−αg(x)) + α2∇g(x)∇g(x)> exp(−αg(x))

= αh(x)
[
α∇g(x)∇g(x)> −∇2g(x)

]

72

Since αh(x) is a positive scalar, it remains to show that the matrix α∇g(x)∇g(x)>−∇2g(x)
is negative semi-definite. We show that all its eigenvalues are non-positive. Using that
λmax(A+B) ≤ λmax(A) + λmax(B) for any symmetric matrices A,B, we have

λmax

(
α∇g(x)∇g(x)> −∇2g(x)

)
≤ λmax

(
α∇g(x)∇g(x)>

)
+ λmax

(
−∇2g(x)

)
= αλmax

(
∇ g(x)∇ g(x)>

)
− λmin

(
∇2g(x)

)
≤ αG2 −H
≤ 0

where we have used that the only non-zero eigenvalue of vv> is ‖v‖2 with associated eigen-
vector v.

Lemma 11.4. Let G,D, α be positive reals. Let g : K → R be an α-exp-concave function
such that

1. ‖∇g(x)‖2 ≤ G

2. ∀x, y ∈ K, ‖x− y‖2 ≤ D.

Then, g is 1
2

min
{
α, 1

GD

}
-directionally strongly convex.

Proof. Let γ = min
{
α, 1

GD

}
. The function h(x) = exp(−γg(x)) is concave. Thus,

h(x) ≤ h(y) + 〈∇h(y), x− y〉
= h(y) + 〈−γ∇g(y)h(y), x− y〉
= h(y) [1− γ〈∇g(y), x− y〉]
= exp(−γg(y)) [1− γ〈∇g(y), x− y〉]

Taking logarithm and dividing by −γ we get

g(x) ≥ g(y)− 1

γ
ln [1− γ〈∇g(y), x− y〉] .

We use that − ln(1− z) ≥ z + z2

4
for any z ∈ [−1, 1). For z = γ〈∇g(y), x− y〉 we obtain

g(x) ≥ g(y) + 〈∇g(y), x− y〉+
γ

4
(〈∇g(y), x− y〉)2 .

It remains to verify that z lies in the interval [−1, 1). The quantity exp(−γg(y))[1− z] is
positive, since it is lower-bounded by a positive quantity h(x). Because exp(−γg(y)) is also
positive, [1− z] is positive. Equivalently, z < 1. Furthermore,

|z| = γ|〈∇g(y), x− y〉|
≤ γ‖∇g(y)‖2 · ‖x− y‖2

≤ γGD

≤ 1 .

This means that z ≥ −1.

73

11.1 Exercises

Exercise 11.1. Show that if a function is α-exp-concave for some α > 0 then it is convex.

Exercise 11.2. Prove that − ln(1− z) ≥ z + z2

4
holds for any z ∈ [−1, 1).

74

Chapter 12

p-Norm Regularizers and Legendre
Duals

In this chapter we investigate the Linearized Proximal-Point Algorithm with differ-
ent regularizers. We focus in particular on squared p-norm regularizers Rp(w) = 1

2
‖w‖2

p.
Let `1, `2, . . . , `n be a sequence convex differentiable loss functions defined on a convex

closed set K. The Linearized Proximal-Point Algorithm with a Legendre regularizer
R : A→ R starts with w1 = argminw∈K∩AR(w) and in round t+ 1 it chooses

wt+1 = argmin
w∈K∩A

[
η˜̀t(w) +DR(w,wt)

]
where ˜̀t(w) = 〈∇ `t, w − wt〉 is the linearized loss. Also recall that, w̃1 = argminw∈AR(w)
and

w̃t+1 = argmin
w∈A

[
η˜̀t(w) +DR(w,wt)

]
are the unprojected (unconstrained) solutions and wt = ΠR,K(w̃t).

Recall that by Lemma 9.2 the regret of the algorithm for any u ∈ K ∩ A and any η > 0
satisfies

L̂n − Ln(u) ≤ 1

η

[
DR(u,w1) +

n∑
t=1

DR(wt, w̃t+1)

]
,

where L̂n =
∑n

t=1 `t(wt) is the loss of algorithm and Ln(u) =
∑n

t=1 `t(u) is the sum of the
loss functions. The rest of the chapter is devoted to the careful investigation of the terms
DR(wt, w̃t+1).

12.1 Legendre Dual

We can analyze DR(wt, w̃t+1) in an elegant way using the machinery of Legendre duals. We
start with the definition.

75

Definition 12.1 (Legendre dual). Let R : A → R be a Legendre function. Let A∗ =
{∇R(v) : v ∈ A}. The (Legendre) dual of R, R∗ : A∗ → R, is defined by

R∗(u) = sup
v∈A

(〈u, v〉 −R(v)) , u ∈ A∗ .

The following statement, which is given without proof, follows from the definition.

Lemma 12.2. Let R : A→ R be a Legendre function. Then,

(i) R∗ is a Legendre function.

(ii) R∗∗ = R.

The inverse of the gradient of a Legendre function can be obtained as the gradient of the
function’s dual. This is the subject of the next proposition.

Proposition 12.3. Let R : A→ R be a Legendre function and let R∗ : A∗ → R be its dual.
Then,

∇R∗ = (∇R)−1

where the inverse is the inverse of the function ∇R : A→ A∗. (In particular, the inverse of
this function always exist.)

The proof of this proposition is based on the following elementary lemma:

Lemma 12.4. Let R : A→ R be Legendre function and R∗ : A∗ → R its Legendre dual. Let
u ∈ A and u′ ∈ A∗. The following two conditions are equivalent:

1. R(u) +R∗(u′) = 〈u, u′〉.

2. u′ = ∇R(u).

Proof. Fix u, u′. Define the function G : A→ R, G(v) = 〈v, u′〉 − R(v). Using the function
G, the first condition can be written as

R∗(u′) = G(u) . (12.1)

Since, by definition, R∗(u′) = supv∈AG(v), and G is strictly concave, (12.1) holds if and only
if

∇G(u) = 0 .

This can be equivalently written as

u′ −∇R(u) = 0 ,

which is the same as the second condition.

Let us now turn to the proof of Proposition 12.3.

76

Proof of Proposition 12.3. Pick u ∈ A and define u′ = ∇R(u). By the previous lemma we
have

R(u) +R∗(u′) = 〈u, u′〉 .

Since R∗∗ = R, we have
R∗∗(u) +R∗(u′) = 〈u, u′〉 .

Applying the previous lemma to R∗ in place of R, we have

u = ∇R∗(u′) .

This shows that u = ∇R∗(∇R(u)). In other words, ∇R∗ is the right inverse of ∇R. Since
∇R is a surjection (a map onto A∗), ∇R∗ must be also its left inverse.

Equipped with this result, we can prove the following important result which connects
the Bregman divergences underlying a Legendre function and its dual.

Proposition 12.5. Let R : A→ R be a Legendre function and let R∗ : A∗ → R be its dual.
Then, for any u, v ∈ A,

DR(u, v) = DR∗(∇R(v),∇R(u)) .

Proof. Let u′ = ∇R(u) and v′ = ∇R(v). By Lemma 12.4, R(u) = 〈u, u′〉 − R∗(u′) and
R(v) = 〈v, v′〉 −R∗(v′). Therefore,

DR(u, v) = R(u)−R(v)− 〈∇R(v), u− v〉
= 〈u, u′〉 −R∗(u′)− (〈v, v′〉 −R∗(v′))− 〈v′, u− v〉
= R∗(v′)−R∗(u′)− 〈u, v′ − u′〉 .

By Proposition 12.3, u = (∇R)−1(u′) = ∇R∗(u) and therefore

DR(u, v) = R∗(v′)−R∗(u′)− 〈∇R∗(u′), v′ − u′〉
= DR∗(v

′, u′) ,

which finishes the proof.

A consequence of the proposition is that we can write the term DR(wt, w̃t+1) as

DR(wt, w̃t+1) = DR∗(∇R(w̃t+1),∇R(wt)) .

Furthermore, it is not hard to show that if 1 ≤ p ≤ ∞ then the dual of Rp(w) = 1
2
‖w‖2

p is
Rq = 1

2
‖w‖2

q where q satisfies 1
p

+ 1
q

= 1. Thus, we are left with studying the properties of
DR∗ .

77

12.2 p-Norms and Norm-Like Divergences

We now show that for p ≥ 2, DRp behaves essentially like the p-norm.

Definition 12.6 (Norm-like Bregman divergence). Let R : A → R be a Legendre function
on a domain A ⊂ Rd, let ‖ · ‖ be a norm on Rd and let c > 0. We say that the Bregman
divergence associated with R is c-norm-like with respect to ‖ · ‖, if for any u, v ∈ A,

DR(u, v) ≤ c‖u− v‖2 .

Our goal is to show that R ≡ Rp where Rp(w) = 1
2
‖w‖2

p is (p−1)/2-norm-like with respect
to the p-norm. Recall that for any p ≥ 1, the p-norm of a vector x = (x1, x2, . . . , xd)

> ∈ Rd

is defined as

‖x‖p =

(
d∑
i=1

|xi|p
)1/p

.

The definition can be extended to p = ∞ by defining ‖x‖∞ = max1≤i≤d |xi|. We will need
Hölder’s inequality, which is a generalization of Cauchy-Schwarz inequality.

Lemma 12.7 (Hölder’s inequality). Fix 1 ≤ p, q ≤ ∞ such that 1
p

+ 1
q

= 1. Then, for any

x, y ∈ Rd it holds that
|〈x, y〉| ≤ ‖x‖p · ‖y‖q .

A pair (p, q) ∈ [1,∞]× [1,∞] satisfying 1
p

+ 1
q

= 1 is called a conjugate pair. For example

(1,∞), (p, q) = (2, 2) and (p, q) = (3, 3
2
) are conjugate pairs.

In order to upper bound DR we start with a simple application of Taylor’s theorem. We
keep the argument more general so that they can be reused in studying cases other than
R = Rp. In order to be apply Taylor’s theorem, we will assume that R is twice-differentiable
in A◦. Since DR(u, v) is the difference between R(u) and its first order Taylor’s expansion at
v, the divergence is nothing else but the remainder of the second order Taylor’s expansion
of R. Thus, there exists ξ on the open line segment between u and v such that

DR(u, v) =
1

2

〈
u− v,∇2R(ξ)u− v

〉
.

Lemma 12.8. Suppose φ : R → R, ψ : R → R are twice-differentiable and ψ is concave.

Consider R : Rd → R defined by R(ξ) = ψ
(∑d

i=1 φ(ξi)
)

for any ξ ∈ Rd. Then, for any

x ∈ Rd 〈
x,∇2R(ξ)x

〉
≤ ψ′

(
d∑
i=1

φ(ξi)

)
d∑
i=1

φ′′(ξi)x
2
i .

Proof. Let ei be i-th vector of the standard orthogonal basis of Rd. The gradient of R is

∇R(ξ) = ψ′

(
d∑
i=1

φ(ξi)

)
d∑
i=1

φ′(ξi)ei .

78

The Hessian of R is

∇2R(ξ) =
∂

∂ξ
(∇R(ξ))

=
∂

∂ξ

(
ψ′

(
d∑
i=1

φ(ξi)

)
d∑
i=1

φ′(ξi)ei

)

=

(
d∑
i=1

φ′(ξi)ei

)[
∂

∂ξ
ψ′

(
d∑
i=1

φ(ξi)

)]
+ ψ′

(
d∑
i=1

φ(ξi)

)
∂

∂ξ

d∑
i=1

φ′(ξi)ei

=

(
d∑
i=1

φ′(ξi)ei

)
ψ′′

(
d∑
i=1

φ(ξi)

)
d∑
i=1

φ′(ξi)e
>
i + ψ′

(
d∑
i=1

φ(ξi)

)
d∑
i=1

φ′′(ξi)eie
>
i

Since ψ is concave ψ′′(ξ) ≤ 0 and thus

〈x,∇2R(ξ)x〉 = ψ′′

(
d∑
i=1

φ(ξi)

)(
d∑
i=1

φ′(ξi)xi

)2

+ ψ′

(
d∑
i=1

φ(ui)

)
d∑
i=1

φ′′(ξi)x
2
i

≤ ψ′

(
d∑
i=1

φ(ui)

)
d∑
i=1

φ′′(ξi)x
2
i .

We are now ready to state the upper bound on the Bregman divergence underlying Rp:

Proposition 12.9. Let p ≥ 2 and R(u) = Rp(u) = 1
2
‖u‖2

p. Then the following bound holds
for the Bregman divergence DR:

DR(u, v) ≤ p− 1

2
‖u− v‖2

p .

Proof. Fix u, v ∈ Rd. Clearly, R is twice differentiable on Rd. As explained above, DR(u, v) =
1
2

〈
u− v,∇2R(ξ)u− v

〉
for some ξ lying on the open line segment between u and v. We apply

the previous lemma to ψ(z) = 1
2
z2/p and φ(z) = |z|p. (Note that for p ≥ 2, the function ψ is

concave.) Then,

ψ′(z) =
1

p
z

2−p
p , φ′(z) = sign(z)p|z|p−1 , φ′′(z) = p(p− 1)|z|p−2 .

79

The previous lemma for x = u− v gives,

DR(u, v) =
1

2
〈u− v,∇2R(ξ)(u− v)〉

≤ 1

2p

(
d∑
i=1

|ξi|p
) 2−p

p

p(p− 1)
d∑
i=1

|ui|p−2(ui − vi)2

=
p− 1

2
‖ξ‖2−p

p

d∑
i=1

|ξi|p−2(ui − vi)2

≤ p− 1

2
‖ξ‖2−p

p

(
d∑
i=1

|ξi|p
) p−2

p

‖u− v‖2
p (Hölder’s inequality)

=
p− 1

2
‖ξ‖2−p

p · ‖ξ‖p−2
p · ‖u− v‖2

p

=
p− 1

2
‖u− v‖2

p .

12.3 Regret for Various Regularizers

We now analyze regret of Linearized Proximal Point Algorithm with regularizers,
divergences of which are norm-like. Furthermore, we will assume that that the loss functions
are non-negative and satisfy ‖∇ `t(w)‖2 ≤ α`t(w) for some α ≥ 0 and some norm. For
example if the loss functions are of the form `t(w) = 1

2
(〈w, xt〉 − yt)2, xt, w ∈ Rd, yt ∈ R, as

in ridge regression, then the norm of their gradient can bounded as

‖∇ `t(w)‖2 = ‖(〈w, xt〉 − yt)xt‖2 = 2‖xt‖2
2 · ‖`t(w)‖2

and thus we may take α = 2 max1≤t≤n ‖xt‖2
2.

Theorem 12.10 (Norm-Like Divergences). Let A ⊂ Rd, let R : A → R be a Legendre
function, let R∗ : A∗ → R be its Legendre dual, ‖ · ‖ a norm on Rd and let c ≥ 0 and
α ≥ 0. Assume that DR∗ is c-norm-like with respect to ‖ · ‖. Let {`t}nt=1 be a sequence of
non-negative convex differentiable loss functions defined on a convex closed set K satisfying
‖∇ `t(w)‖2 ≤ α`t(w). Consider the Linearized Proximal Point Algorithm with

regularizer R applied to {`t}nt=1. If η =
√

DR(u,w1)

cαL̂n
then for any u ∈ K ∩ A,

L̂n − Ln(u) ≤ 4cαDR(u,w1) + 2
√
cαDR(u,w1)Ln(u) .

80

Proof. We know that

DR(w, w̃t+1) = DR∗ (∇R(w̃t+1),∇R(wt))

≤ c‖∇R(w̃t+1)−∇R(wt)‖2

= cη2‖∇`t(wt)‖2 (Proposition 9.8 with ηt = η)

≤ cαη2`t(wt)

Lemma 9.2 gives

L̂n − Ln(u) ≤ DR(u,w1)

η
+ ηcα

n∑
t=1

`t(wt)

=
DR(u,w1)

η
+ ηcαL̂n

Substituting for η we get

L̂n − Ln(u) ≤ 2

√
cαDR(u, w̃1)L̂n .

To extract a regret bound from this inequality, we treat it as a quadratic inequality in
variable x = L̂n − Ln(u). Let A = cαDR(u, w̃1). Then the inequality can be written as
x ≤ 2

√
A(x+ Ln). Squaring it gives

x2 ≤ 4A(x+ Ln) .

This inequality holds can be satisfied only if for x which do not exceed larger of the two
roots x1,2 = 2A± 2

√
A2 + ALn of the quadratic polynomial x2 − 4Ax− 4ALn. Hence,

x ≤ 2A+ 2
√
A2 + ALn .

Using the inequality
√
a+ b ≤

√
a+
√
b, valid for any non-negative a, b, we get that

x ≤ 4A+ 2
√
ALn .

Substituting for x and A we obtain statement of the theorem.

An interesting special case is p-norm squared regularizer, Rp(u) = 1
2
‖u‖2

p.

Corollary 12.11 (p-Norm Squared Regularizer). Assume `t(w) = 1
2
(〈w, xt〉 − yt)

2 and
R(u) = Rp(u) and 1 < p ≤ 2. Then for any u ∈ K ∩ A

L̂n − Ln(u) ≤ 2(q − 1)‖u‖2
pX

2
q +Xq‖u‖p

√
2(q − 1)Ln(u)

where 1
p

+ 1
q

= 1 and Xq = max1≤t≤n ‖xt‖q.

81

Proof. First note that R∗ = Rq and therefore DR∗ by Proposition 12.9 is q−1
2

-norm-like with
respect q-norm. Second, since w̃1 = 0

DR(u,w1) ≤ DR(u, w̃1) =
1

2
‖u‖2

p .

Third, for α = 2X2
q we get

‖∇ `t(w)‖2
q = 2`t(w)‖xt‖2

q ≤ α`t(w) .

The theorem gives regret bound,

L̂n − Ln(u) ≤ 4
q − 1

2
2X2

q

‖u‖2
p

2
+ 2

√
q − 1

2
2X2

q

‖u‖2
p

2
Ln(u)

Consider the situation when a u with a small loss Ln(u) is sparse and xt’s are dense. For
example, assume that u is a standard unit vector and xt ∈ {+1,−1}d. Then it’s a good
idea to choose q = log d and consequently p ≈ 1. Then ‖xt‖q ≈ ‖xt‖∞ = 1, ‖u‖p = 1 and
therefore Xq‖u‖p

√
q − 1 ≈

√
log d. If we were to choose p = q = 2 we would get ‖u‖q = 1

but ‖xt‖q =
√
d and Xq‖u‖p

√
q − 1 ≈

√
d. Thus, q = log d is exponentially better choice

than q = 2.
On the other hand, consider the situation when a u with a small loss Ln(u) is dense and

xt’s are sparse. For example assume that xt’s are standard unit vectors and u ∈ {+1,−1}d.
Then, if we use p = q = 2, then ‖u‖pXq

√
q − 1 =

√
d. If were to chooses q = log d and p ≈ 1

then ‖u‖p ≈ ‖u‖1 = d, ‖xt‖q = 1 and therefore Xq‖u‖p
√
q − 1 ≈ d

√
log d. Thus p = q = 2

is more than
√
d better choice than q = log d.

12.4 Exercises

Exercise 12.1. Consider any vector x = (x1, x2, . . . , xd) ∈ Rd. Show that

lim
p→∞
‖x‖p = max

1≤i≤d
|xi| .

Exercise 12.2. Let Rp(u) = 1
2
‖u‖2

p for some 1 ≤ p ≤ ∞. Show that the Legendre dual of
Rp(u) is Rq(v) = 1

2
‖v‖2

p where q satisfies 1
p

+ 1
q

= 1.

Exercise 12.3. Let R(u) =
∑d

i=1 e
u
i . Show that the Legendre dual of R(u) is R∗(v) =∑d

i=1 vi(ln(vi)− 1).

Exercise 12.4.

82

• Show that ‖x‖∞ ≤ ‖x‖2 ≤
√
d‖x‖∞ for any x ∈ Rd.

• Show that there exists c > 0 such that for any integer d ≥ 3 if x ∈ Rd and q = ln d
then ‖x‖∞ ≤ ‖x‖q ≤ c‖x‖∞. Find the smallest possible value of c.

• Show that there does not exist c > 0 such that for any integer d ≥ 1 if x ∈ Rd then
‖x‖∞ ≤ ‖x‖2 ≤ c‖x‖∞.

Morale: This shows that the infinity-norm is well approximated by (ln d)-norm but only very
poorly approximated by the 2-norm.

Exercise 12.5. Show that ‖x‖p ≤ ‖x‖q for any x ∈ Rd and any 1 ≤ q ≤ p ≤ ∞.

83

Chapter 13

Exponentiated Gradient Algorithm

In this chapter, we consider the Proximal Point Algorithm with Linearized Losses
with the unnormalized negative entropy regularizer

R(w) =
d∑
i=1

wi ln(wi)− wi

defined on A = (0,∞)d and sequence of convex loss functions `1, `2, . . . , `n defined the prob-
ability simplex d-dimensional probability simplex

K = ∆d =

{
w ∈ Rd :

d∑
i=1

wi = 1 and ∀1 ≤ i ≤ d, wi ≥ 0

}
.

If the loss functions were linear, we would recover Exponentially Weighted Averages
Forecaster (EWA). (See Exercises 8.1 and 9.3.) Our goal is however to consider non-linear
loss functions such as `t(w) = 1

2
(〈w, xt〉 − yt)2. More generally, we consider loss functions

`1, `2, . . . , `n for which there exists α > 0 such that ‖∇ `t(w)‖2
∞ ≤ α`t(w) for all 1 ≤ t ≤ n

and all w.
For linear prediction problems where the task is to predict yt from xt by using a linear

predictor ŷt = 〈wt, xt〉 it is somewhat unnatural to restrict wt to the probability simplex ∆d.
By introducing extra dimensions we can extended the analysis to K ′ = {w : ‖w‖1 ≤ c}.
See Exercise 13.1.

Recall that Proximal Point Algorithm with Linearized Losses in round t + 1
chooses

wt+1 = argmin
w∈K∩A

[
η˜̀t(w) +DR(w,wt)

]
where ˜̀t(w) = 〈∇ `t(wt), w〉 is the linearized loss function. Let

w̃t+1 = argmin
w∈A

[
η˜̀t(w) +DR(w,wt)

]

84

be the unprojected solution. Since R(w) =
∑d

i=1wi ln(wi)−wi and K = ∆d the update can
written as

w̃t+1,i = wt,i · exp(−η∇i `t(wt)) for 1 ≤ i ≤ d,

wt+1 =
w̃t+1

‖w̃t+1‖1

.

where ∇i denotes the i-th component of the gradient. The resulting algorithm is, for an
obvious reason, called Exponentiated Gradient Algorithm (EG). The update for EG
can be easily derived from the first two parts of the following proposition. We leave its proof
as an exercise for the reader.

Proposition 13.1 (Properties of Negative Entropy Regularizer). Let K = ∆ and for any
w ∈ (0,∞)d let R(w) =

∑d
i=1wi ln(wi)− wi. Then,

1. ΠR,K(w) = w
‖w‖1 for any w ∈ (0,∞)d.

2. ∇iR(w) = lnwi for any w ∈ (0,∞)d.

3. DR(u, v) = 〈u,∇R(u)−∇R(v)〉 for any u, v ∈ (0,∞)d.

Theorem 13.2 (Regret of EG). Let α ≥ 0 and assume the loss functions `1, `2, . . . , `n
defined on ∆d are convex and differentiable, and satisfy ‖∇`t(w)‖2

∞ ≤ α`t(w) for all w ∈ ∆d

and all 1 ≤ t ≤ n. Then, Exponentiated Gradient Algorithm satisfies for u ∈ ∆d

with learning rate η =
√

2 ln d

αL̂n
satisfies

L̂n − Ln(u) ≤ 2α ln(d) +
√

2α ln(d)Ln(u) .

Proof. By the same calculation as in Lemma 9.2 we know that for any u ∈ ∆d

η(`t(wt)− `t(u))

≤ DR(u,wt)−DR(u, w̃t+1) +DR(wt, w̃t+1)

= (DR(u,wt)−DR(u,wt+1)) + (DR(u,wt+1)−DR(u, w̃t+1)) +DR(wt, w̃t+1) (13.1)

We deal with each of the three terms separately. We leave the first term as it is. We express
the third term using

DR(wt, w̃t+1) = 〈wt,∇R(wt)−∇R(w̃t+1)〉
= η〈wt,∇ `t(wt)〉 . (13.2)

where the last equality follows by Proposition 9.8. We start expressing the second term as

DR(u,wt+1)−DR(u, w̃t+1) = 〈u,∇R(u)−∇R(wt+1)−∇R(u) +∇R(w̃t+1)〉 (by Proposition 13.1)

= 〈u,∇R(w̃t+1)−∇R(wt+1)〉

=
n∑
i=1

ui (∇iR(w̃t+1)−∇iR(wt+1)〉)

85

and since

∇iR(w̃t+1)−∇iR(wt+1) = ln

(
w̃t+1,i

wt+1,i

)
= ln

(
w̃t+1,i

w̃t+1,i/‖w̃t+1‖1

)
= ln ‖w̃t+1‖1

we see that the second term equals

DR(u,wt+1)−DR(u, w̃t+1) =
n∑
i=1

ui (∇iR(w̃t+1)−∇iR(wt+1)〉)

= ln ‖w̃t+1‖1

n∑
i=1

ui

= ln ‖w̃t+1‖1 (since
d∑
i=1

ui = 1)

= ln

(
d∑
i=1

w̃t+1,i

)

= ln

(
d∑
i=1

wt,i · exp(−η∇i `t(wt))

)

≤ −η〈wt,∇`t(wt)〉+
η2

2
‖∇`t(wt)‖2

∞ (13.3)

where the last inequality follows from Hoeffding’s lemma applied to the random variable X
with distribution Pr[X = ∇i `t(wt)] = wt,i.

Returning back to (13.1) and substituting (13.2) and (13.3) we get

η(`t(wt)− `t(u)) ≤ DR(u,wt)−DR(u,wt+1) +
η2

2
‖∇ `t(wt)‖2

∞

≤ DR(u,wt)−DR(u,wt+1) +
η2

2
α`t(wt) .

Summing over all t = 1, 2, . . . , n the first two terms telescope. If we drop −DR(u,wn+1) and
divide by by η we get

L̂n − Ln(u) ≤ 1

η
DR(u,w1) +

ηα

2
L̂n

Since w1,i = 1
d

for all i = 1, 2, . . . , d the first term can be upper bounded using DR(u,w1) ≤
ln(d) and thus

L̂n − Ln(u) ≤ ln d

η
+
ηα

2
L̂n .

Choosing η =
√

2 ln d

αL̂n
which minimizes the right hand side, we get

L̂n − Ln(u) ≤
√

2α ln(d)L̂n

Using the quadratic inequality trick, as in the proof of Theorem 12.10, we get the result.

86

For loss functions of the form `t = 1
2
(〈w, xt〉 − yt)2 we have ‖∇`t(w)‖2

∞ = 2`t(w)‖xt‖2
∞

and thus we can take α = 2 max1≤t≤n ‖xt‖2
∞.

13.1 Exercises

Exercise 13.1. Consider the linear prediction problem where we want to predict yt ∈ R
from xt ∈ Rd by using a linear predictions ŷt = 〈wt, xt〉 where wt ∈ K and

K = {w ∈ Rd : ‖w‖1 ≤ 1} .

and loss that we suffer in each round is `t(wt) where `t(w) = 1
2
(yt − 〈w, xt〉)2.

Show that EG algorithm on the (2d+ 1)-dimensional probability simplex can be used to
solve this problem. What regret bound do you get? Generalize the result to the case when

K = {w ∈ Rd : ‖w‖1 ≤ c} .

for some c > 0. How does regret bound changes? How does it depend on c?
(Hint: Define x′t = (xt,1, xt,2, . . . , xt,d, 0,−xt,1, xt,1) and `′t(w

′) = 1
2
(yt − 〈w, x′t〉)2 for w′ ∈

∆2d+1.)

87

Chapter 14

Connections to Statistical Learning
Theory

In this chapter we connect online learning with the more traditional part of machine learning—
the statistical learning theory. The fundamental problem of statistical learning theory is the
off-line (batch) learning, where we are given a random sample and the goal is to produce a
single predictor that performs well on future, unseen data. The sample and the future data
are connected by the assumption that they both are drawn from the same distribution.

More formally, we consider the scenario where we are given a hypothesis space H and a
independent identically distributed (i.i.d.) sequence of loss functions {`t}∞t=1 where `t : H →
R for each t ≥ 1. The elements of H are called either hypotheses, predictors, classifiers or
models depending on the context. We will denote a typical element of H by w or W with
various subscripts and superscripts.

Example 14.1 (Linear Prediction).

H = Rd `t(w) =
1

2
(〈w,Xt〉 − Yt)2

(Xt, Yt) ∈ Rd × R {(Xt, Yt)}∞t=1 is i.i.d.

Example 14.2 (Non-Linear Prediction).

H =
{
f : Rd → R : f is continuous

}
`t(f) =

1

2
(f(Xt)− Yt)2

(Xt, Yt) ∈ Rd × R {(Xt, Yt)}∞t=1 is i.i.d.

Example 14.3 (Binary Classification with Linear Functions).

H = Rd `t(w) = I{sign(〈w,Xt〉) 6= Yt}
(Xt, Yt) ∈ Rd × {−1,+1} {(Xt, Yt)}∞t=1 is i.i.d.

The goal in statistical learning is to find w that has small risk. The risk is defined as the
expected loss. The risk captures the performance of w on future data. Formally, the risk of

88

a hypothesis w ∈ H is defined to be

`(w) = E[`1(w)] = E[`2(w)] = · · · = E[`t(w)] .

Note that the definition is independent of t since by assumption `1, `2, . . . have identical
distribution. The best possible risk that we can hope to achieve is

`∗ = inf
w∈H

`(w) .

A learning algorithm gets as input (the description of) the loss functions `1, `2, . . . , `n
and possibly some randomness if it is a randomized algorithm, and outputs a hypothesis
W̃n ∈ H. Note that even for a deterministic algorithm its output W̃n is random, since the
input was random to start with.1 The goal of the algorithm is to minimize excess risk

`(W̃n)− `∗ .

14.1 Goals of Statistical Learning Theory

The first basic question studied in statistical learning theory is whether and how fast the
excess risk converges to zero as n → ∞. Since `(W̃n) and hence also the excess risk are
random variables, a mode of converge needs to be specified (almost surely, in probability, in
expectation, etc.) The goal is to design algorithms (i) for which excess risk converges to zero
and (ii) for which the convergence is as fast as possible. The best possible speed of converge
is called the minimax rate.

Formally, let A be a learning algorithm, let P be a probability distribution over loss
functions chosen from some family of probability distributions P , and assume that `t ∼ P
for all t. The expected excess risk of A on P is

rn(A,P) = E[`(W̃A,P
n)]− `∗

where W̃A,P
n+1 is the output of A upon seeing an i.i.d. sample from P . The worst-case expected

excess risk of A on the class of distributions P is

rn(A,P) = sup
P∈P

rn(A,P) .

Finally, the minimax rate of the class P is

r∗n(P) = inf
A∈A

rn(A,P)

where A is the class of all online randomized algorithms. An algorithm is consider asymp-
totically optimal if rn(A,P) = O(r∗n(P)).

1To distinguish random and non-random elements of H, we denote the non-random elements by w and
random elements W (decorated with various subscripts and super-scripts).

89

Typical results proved in statistical learning theory are a priori generalization bounds for
specific algorithms. These are typically high-probability bounds on the excess risk. Often,
these bounds do not depend on P and are thus called distribution-free bounds.

Second question question studied in statistical learning theory is to give a computable
upper bound on `(Wn) based on empirical data. Such bounds are called data-dependent
bounds a posteriori bounds. These bounds are good for evaluation purposes and they help
us to choose from hypotheses produced by various algorithms (or the same algorithms with
different settings of parameters).

14.2 Online-to-Batch Conversions

In previous chapters, we have dealt with online algorithms that achieve low regret. We now
show that a low regret online algorithm can be converted to a batch algorithm with low
excess error. Roughly speaking, an algorithm with regret Rn can be converted to a batch
algorithm with excess error at most Rn/n. Methods that achieve this are called online-
to-batch conversions. These conversions take the sequence W1,W2, . . . ,Wn of hypothesis
produced by the online algorithm and output a single hypothesis.

The first online-to-batch conversion we consider works as follows. Pick a hypothesis
uniformly at random from W1,W2, . . . ,Wn. Formally, we draw Un uniformly at random
from {1, 2, . . . , n} and we output WUn . This conversion has three desirable properties: (i)
The average loss of the algorithm 1

n

∑n
t=1 `t(wt) is an unbiased estimator of expected risk of

WUn . (ii) In expectation, the excess loss of WUn is upper bounded by the average per-step
regret of the algorithm. (iii) The conversion is applicable regardless of whether the loss
functions are convex or not. The next theorem formalizes the first two properties.

Theorem 14.4 (Randomized Online-to-Batch Conversion). Let `1, `2, . . . , `n be an i.i.d.
sequence of loss functions, `t : H → R. Suppose that an online algorithm produces on {`t}nt=1

a sequence W1,W2, . . . ,Wn ∈ H of hypotheses. Let Un be an independent random variable
uniformly distributed on {1, 2, . . . , n}. Then,

E[`(WUn)] = E

[
1

n

n∑
t=1

`t(Wt)

]

Furthermore, if Rn =
∑n

t=1 `t(Wt)− infw∈H
∑n

t=1 `t(w) denotes the regret, then

E[`(WUn)] − min
w∈H

`(w) ≤ 1

n
E [Rn] .

Proof. Since Wt and `t are independent, E[`(Wt)] = E[`t(Wt)]. The first part of the theorem

90

then follows by straightforward calculation:

E[`(WUn)] = E

[
n∑
t=1

I{Un = t}`(Wt)

]

=
n∑
t=1

E
[
I{Un = t}`(Wt)

]
=

n∑
t=1

E [I{Un = t}] · E[`(Wt)] (by independence of Un and Wt)

=
1

n

n∑
t=1

E[`(Wt)]

=
1

n

n∑
t=1

E[`t(Wt)] (by independence of `t and Wt)

= E

[
1

n

n∑
t=1

`t(Wt)

]
From the first part of the theorem we see that the second part of the theorem, is equivalent

to
1

n
E

[
inf
w∈H

n∑
t=1

`t(w)

]
≤ min

w∈H
`(w) .

Since `(w) = 1
n

E[
∑n

t=1 `t(w)], that is equivalent to

1

n
E

[
inf
w∈H

n∑
t=1

`t(w)

]
≤ 1

n
inf
w∈H

E

[
n∑
t=1

`t(w)

]
which is obviously true, since E inf[·] ≤ inf E[·].

In the case of convex loss functions defined on a convex set there is a better online-to-
batch conversion. It outputs the average W n = 1

2

∑n
t=1Wt of the hypotheses W1,W2, . . . ,Wn

generated by the online algorithm. The conversion enjoys similar properties as the random
hypothesis WUn . (i) The expected risk of W n is does not exceed the expected the risk of WUn .
(ii) In expectation, the excess loss of W n is upper bounded by the average per-step regret of
the algorithm. Additionally and in contrast with WUn , it is possible to show high-probability
bounds on risk and excess risk of W n provided that the loss functions are bounded.

Theorem 14.5 (Averaging Online-to-Batch Conversion). Let `1, `2, . . . , `n be an i.i.d. se-
quence of convex loss functions, `t : H → R, defined on a convex set H. Suppose that an
online algorithm produces on {`t}nt=1 a sequence W1,W2, . . . ,Wn ∈ H of hypotheses. Let
W n = 1

n

∑n
t=1Wt the average of the hypotheses. Then,

E[`(W n)] ≤ E

[
1

n

n∑
t=1

`t(Wt)

]
.

91

Furthermore, if Rn =
∑n

t=1 `t(Wt)− infw∈H
∑n

t=1 `t(w) denotes the regret, then

E[`(W n)] − min
w∈H

`(w) ≤ 1

n
E [Rn] .

Proof. Let `n+1 be an independent copy of `1 (independent of `1, `2, . . . , `n). Then, since
`n+1 is convex, by Jensen’s inequality

`n+1(W n) = `n+1

(
1

n

n∑
t=1

Wt

)
≤ 1

n

n∑
t=1

`n+1(Wt) .

Taking expectation we get

E[`n+1(W n)] ≤ 1

n

n∑
t=1

E [`n+1(Wt)] .

The first part of the theorem follows from that E[`n+1(W n)] = E[`(W n)] which in turn
follows by independence of W n and `n+1, and from that for any t = 1, 2, . . . , n, E[`n+1(Wt)] =
E[`t(Wt)] which in turn follows by independence of Wt, `t, `n+1.

The first part of theorem implies that in order to prove the second part of theorem, it
suffices to prove that

1

n
E

[
inf
w∈H

n∑
t=1

`t(w)

]
≤ min

w∈H
`(w) .

Since `(w) = 1
n

E[
∑n

t=1 `t(w)], that is equivalent to

1

n
E

[
inf
w∈H

n∑
t=1

`t(w)

]
≤ 1

n
inf
w∈H

E

[
n∑
t=1

`t(w)

]

which is obviously true, since E inf[·] ≤ inf E[·].

14.3 Intermezzo: Martingales

Martingales are useful mathematical tool used in probability theory. They were originally
invented for analyzing (sequential) betting strategies in casinos. A sequence X0, X1, X2, . . .
of random variables is said to be a martingale with respect to another sequence Y0, Y1, Y2, . . .
of random variables, if for all t ≥ 0

E[Xt+1 | Y0, Y1, Y2, . . . , Yt] = Xt . (14.1)

A typical example of a martingale is the amount of money a gambler has after playing t
games, assuming that all games in the casino are fair and the gambler can go negative. In
other words, Xt is the amount of money the gambler has after playing t games and Yt is the

92

outcome of the t-th game. The gambler can play according to any strategy he wishes (that
can depend on past outcomes of his plays), changing between roulette, black jack or slot
machines etc. as he pleases. The condition (14.1) expresses the assumption that all games
in the casino are fair: After playing t games and having Xt dollars, the expected amount of
money after (t+ 1)-th game is Xt. Note that, the condition (14.1) implies that

E[X0] = E[X1] = E[X2] = · · · = E[Xt]

In other words, the expected gambler’s wealth does not change.
In the next section, we will use Azuma’s inequality which is basic result about martingales

with bounded increments. (Increments of a martingale are the differences Xt −Xt−1.) The
inequality is a useful generalization of Hoeffding’s inequality (Theorem 4.3).

Theorem 14.6 (Azuma’s inequality). Let X0, X1, X2, . . . , Xn be a martingale with respect
to some sequence Y0, Y1, . . . , Yn such that with probability one, for all 1 ≤ t ≤ n

Xt −Xt−1 ∈ [At, At + c]

where At is a function of Y0, Y1, . . . , Yt−1 and c > 0 is constant. Then, for any ε ≥ 0

Pr [Xn −X0 ≥ ε] ≤ exp

(
−2ε2

nc2

)
.

Equivalently, for all δ > 0, with probability at least 1− δ,

Xn < X0 + c

√
n

2
ln(1/δ) .

Typically, we will assume that X0 is some constant (usually zero) and then X0 in Azuma’s
inequality can be replaced by E[Xn].

14.4 High-Probability Bounds for Averaging

We now prove a high-probability bounds on the risk and the excess risk of the averaging
online-to-batch conversion. We will need to assume that losses are bound. For simplicity,
we will assume that losses lie in [0, 1].

Theorem 14.7 (High Probability Bound for Averaging Online-to-Batch Conversion). Let
`1, `2, . . . , `n be an i.i.d. sequence of convex loss functions, `t : H → R, defined on a convex
set H. Assume that with probability one, `t ∈ [0, 1]. Suppose that an online algorithm
produces on {`t}nt=1 a sequence W1,W2, . . . ,Wn ∈ H of hypotheses. Let W n = 1

n

∑n
t=1 Wt the

average of the hypotheses. Then, for any δ > 0, with probability at least 1− δ,

`(W n) <
1

n

n∑
t=1

`t(Wt) +

√
ln(1/δ)

2n
.

93

Furthermore, if Rn =
∑n

t=1 `t(Wt)− infw∈H
∑n

t=1 `t(w) denotes the regret, then for any δ > 0
with probability at least 1− δ

`(W n) − inf
w∈H

`(w) <
1

n
Rn +

√
2 ln(1/δ)

n
.

Proof. First notice that ` : H → R is a convex function. This is easy to see since ` is an
expectation of a (random) convex function `1. Formally, for any w,w′ ∈ H and α, β ≥ 0
such that α + β = 1,

`(αw + βw′) = E[`1(αw + βw′)] ≤ E[α`1(w) + β`1(w′)] = α`(w) + β`(w′) .

Therefore, by Jensen’s inequality,

`(W n) ≤ 1

n

n∑
t=1

`(Wt) . (14.2)

Thus, in order to prove the first part of the theorem, we see it suffices to prove that
1
n

∑n
t=1 `(Wt) ≤ 1

n

∑n
t=1 `t(Wt)+

√
ln(1/δ)/(2n). In order to prove that, we will use Azuma’s

inequality. The sequence {
∑t

s=1(`(Ws)−`s(Ws))}nt=0 is a martingale with respect to {(`t,Wt+1)}nt=0.
Indeed, for any t ≥ 1

E

[
t∑

s=1

(`(Ws)− `s(Ws))

∣∣∣∣ W1:t, `0:t−1

]

=
t−1∑
s=1

(`(Ws)− `s(Ws)) + E

[
`(Wt)− `t(Wt)

∣∣∣∣ W1:t, `1:t−1

]

=
t−1∑
s=1

(`(Ws)− `s(Ws))

where we have used that `(Wt) = E[`t(Wt) |W1:t, `0:t−1] which holds because `t is independent
of W1:T , `0:t−1. Since the losses lie in [0, 1], the increments of the martingale lie in intervals
of length one:

t∑
s=1

(`(Ws)− `s(Ws))−
t−1∑
s=1

(`(Ws)− `s(Ws)) = `(Wt)− `t(Wt) ∈ [`(Wt)− 1, `(Wt)] .

Therefore, since the zeroth element of the martingale is zero, by Azuma’s inequality with
At = `(Wt)− 1 and c = 1, for any δ > 0

n∑
t=1

(`(Wt)− `t(Wt)) <

√
n

2
ln(1/δ) .

Dividing by n and combining with (14.2) gives the first part of the theorem.

94

To prove the second part of theorem let w∗ = argminw∈H `(w).2 Consider the martingale{
t∑

s=1

`(Wt)− `t(Wt)− `(w∗) + `t(w
∗)

}n

t=0

with respect to {(`t,Wt+1)}nt=1. This is indeed a martingale, since

E

[
t∑

s=1

(`(Ws)− `s(Ws)− `(w∗) + `s(w
∗))

∣∣∣∣ W1:t, `0:t−1

]

=
t−1∑
s=1

(`(Ws)− `s(Ws)− `(w∗) + `s(w
∗)) + E

[
`(Wt)− `t(Wt)− `(w∗) + `t(w

∗) | W1:t, `0:t−1

]
=

t−1∑
s=1

(`(Ws)− `s(Ws)− `(w∗) + `s(w
∗))

where we have used that `(Wt) = E[`t(Wt) | W1:t, `0:t−1] and `(w∗) = E[`t(w
∗) | W1:t, `0:t−1]

both of which hold since `t is independent ofW1:t and `0:t−1. The increments of the martingale
lie in an interval of length of 2:

`(Wt)− `t(Wt)− `(w∗) + `t(w
∗) ∈ [`(Wt)− `(w∗)− 1, `(Wt)− `(w∗) + 1] .

Thus, by Azuma’s inequality with At = `(Wt) − `(w∗) − 1 and c = 2, we have that for any
δ > 0, with probability at least 1− δ,

n∑
t=1

(`(Wt)− `t(Wt)− `(w∗) + `t(w
∗)) <

√
2n ln(1/δ) .

Equivalently, with probability at least 1− δ,

1

n

(
n∑
t=1

`(Wt)

)
− 1

n

(∑
t=1

`t(Wt)

)
− `(w∗) +

1

n

(
n∑
t=1

`t(w
∗)

)
<

√
2 ln(1/δ)

n
.

We use (14.2) to lower bound the first term and infw∈H
∑n

t=1 `t(w) ≤
∑n

t=1 `t(w
∗) to lower

bound the fourth term. We obtain that with probability at least 1− δ,

`(W n) +
1

n

(∑
t=1

`t(Wt)

)
− `(w∗) + inf

w∈H

(
n∑
t=1

`t(w)

)
<

√
2 ln(1/δ)

n
.

Since w∗ is the minimizer or `, the last inequality is equivalent to the second part of the
theorem.

2If the minimizer does not exists, let w∗ be such that `(w∗) < infw∈H `(w) + ε. Then take ε→ 0.

95

Chapter 15

Multi-Armed Bandits

Multi-armed bandit problem. Online learning problem. We do not see the losses for all the
decisions.

Examples: Getting to school. Loss is travel time. Decisions: take the bus, bike, walk,
drive. Also: Clinical trials. Ad-allocation problem. Recommendation system. Adaptive user
interfaces.

Simple case: Decision space is finite.
Full-information setting, EWA, see Chapter 4.
We do not assume anything about D, Y and the loss function ` doesn’t need to convex

anymore. The only assumption that we make is that `(p, y) ∈ [0, 1]. Also note that the
numbers p̂1,t, p̂2,t, . . . , p̂N,t are non-negative and sum to 1 and therefore the distribution of It
is valid probability distribution.

We have N actions.
Initially, wi,0 = 1 for each expert i and W0 = N . Then, in each round t = 1, 2, . . . , n, the

algorithm does the following:

1. It receives experts’ predictions f1,t, f2,t, . . . , fN,t ∈ D.

2. It calculates p̂i,t = wi,t−1/Wt−1, i = 1, . . . , N .

3. It draws It ∈ {1, 2, . . . , N} randomly so that Pr[It = i] = p̂i,t holds for i = 1, . . . , N .

4. It predicts fIt,t.

5. The environment reveals the outcome yt ∈ Y .

6. The algorithm suffers the loss `(fIt,t, yt) and each expert i = 1, 2, . . . , N suffers a loss
`(fi,t, yt).

7. The algorithm updates the weights: wi,t = wi,t−1e
−η`(fi,t,yt).

8. The algorithm updates the sum of the weights: Wt =
∑N

i=1wi,t.

96

Since we do not have `i,t = `(fi,t, yt), for i 6= It, we come up with an estimate of it:

˜̀
i,t

def
=

I{It = i} `i,t
pi,t

=

{
`i,t
pi,t
, if It = i ,

0, otherwise .

This estimate is constructed such that E
[˜̀
i,t

]
= `i,t. Indeed, by the tower rule,

E
[˜̀
i,t

]
= E

[
E
[˜̀
i,t|I1, . . . , It−1

]]
= E [`i,t/pi,t E [I{It = i}|I1, . . . , It−1]] = E [`i,t/pi,t pi,t] = `i,t.

15.1 Exp3-γ algorithm

Same as EWA, except that in Step 7 when we do the update, we use ˜̀i,t instead of `i,t:

wi,t = wi,t−1e
−η˜̀i,t .

Exp3 stands for exponetial weights for exploration and exploitation. The ending, −γ stands
for not using exploration (wait for the next section to understand this).

Note: pi,t becomes random, whereas in EWA it was not random.
Regret bound for the expected regret.
Assume that `i,t ∈ [0, 1].

Define L̃i,n =
∑n

t=1
˜̀
i,t.

Usual proof:

Wn

W0

=

∑N
i=1 e

−ηL̃i,n

N
≥ e−ηL̃i,n

N
. (15.1)

Now,

Wt

Wt−1

=
N∑
i=1

wi,t
Wt−1

=
N∑
i=1

wi,t−1

Wt−1

e−η
˜̀
i,t .

Instead of using Hoeffding as in Chapter 4, we use that ex ≤ 1 + x + x2 holds when x ≤ 1
to get

Wt

Wt−1

≤
N∑
i=1

wi,t−1

Wt−1

{
1− η˜̀i,t + η2˜̀2

i,t

}
= 1− η

N∑
i=1

pi,t˜̀i,t + η2

N∑
i=1

pi,t˜̀2
i,t .

Now,
∑N

i=1 pi,t
˜̀
i,t = `It,t. This, and 1 +x ≤ ex (which holds for any x ∈ R) gives Wt/Wt−1 ≤

exp(−η`It,t + η2
∑N

i=1 pi,t
˜̀2
i,t). Therefore,

Wn

W0

≤ exp

(
−

n∑
t=1

{
η `It,t + η2

N∑
i=1

pi,t ˜̀2
i,t

})
≤ exp

(
−ηL̂n + η2

n∑
t=1

N∑
i=1

pi,t˜̀2
i,t

)

97

The second term in the exponent is upper bounded as follows:

N∑
i=1

pi,t ˜̀2
i,t =

N∑
i=1

pi,t
I{It = i}`i,t

pi,t
˜̀
i,t =

N∑
i=1

I{It = i}`i,t ˜̀i,t ≤ N∑
i=1

˜̀
i,t ,

where in the last step we used `i,t ≤ 1. Combining the previous inequality with this bound
and (15.1) and taking logarithms of both sides we get

−ηL̃i,n − ln(N) ≤ −ηL̂n + η2

N∑
i=1

L̃i,n .

Now, by construction E
[
L̃i,n

]
= Li,n, therefore taking the expectation of both sides gives

−ηLi,n − ln(N) ≤ −ηE
[
L̂n

]
+ η2

N∑
i=1

Li,n .

Reordering gives

E
[
L̂n

]
− Li,n ≤

lnN

η
+ η

N∑
i=1

Li,n ≤
lnN

η
+ ηnN ≤ 2

√
nN lnN .

15.2 A high probability bound for the Exp3.P algo-

rithm

We work with gains!

gi,t = 1− `i,t ∈ [0, 1], g̃i,t =
I{It = i}gi,t

pi,t
.

We also need

g′i,t = g̃i,t +
β

pi,t
, β > 0.

Plus, we need exploration:

pi,t+1 = (1− γ)
wi,t
Wt

+
γ

N
, 0 < γ ≤ 1 .

Because 0 < γ, the algorithm explores with positive probability. The resulting algorithm is
called Exp3.P, where P is added to the name to indicate that the algorithm is designed to
work with high probability.

Introduce Gi,n, G′i,n, G̃i,n.

98

Now,

Wn

W0

=

∑N
i=1 e

ηG′i,n

N
≥ eηmax1≤i≤N G′i,n

N
. (15.2)

Also,

Wt

Wt−1

=

∑N
i=1wi,t
Wt−1

=
N∑
i=1

wi,t−1

Wt−1

eηg
′
i,t .

By definition,
wi,t−1

Wt−1

=
pi,t − γ

N

1− γ
≤ pi,t

1− γ
.

Assume
ηg′i,t ≤ 1. (15.3)

Then using ex ≤ 1 + x+ x2, which holds for x ≤ 1, we get

Wt

Wt−1

≤
N∑
i=1

pi,t − γ
N

1− γ
{

1 + ηg′i,t + η2 (g′i,t)
2
}

(because
wi,t−1

Wt−1
=

pi,t− γ
N

1−γ)

≤ 1 +
η

1− γ

N∑
i=1

pi,t g
′
i,t +

η2

1− γ

N∑
i=1

pi,t (g′i,t)
2 (because pi,t − γ

N
≤ pi,t and g′i,t ≥ 0)

By the definition of g′i,t, pi,t g
′
i,t ≤ pi,tg̃i,t + β ≤ I{It = i}gi,t + β. This can be used to

bound both the second and third term above. The third term is further upper bounded by
pi,t (g′i,t)

2 = (pi,t g
′
i,t)g

′
i,t ≤ (1 + β)g′i,t. Therefore,

Wt

Wt−1

≤ 1 +
η

1− γ
(gIt,t +Nβ) +

η2

1− γ
(1 + β)

N∑
i=1

g′i,t

≤ exp

(
η

1− γ
(gIt,t +Nβ) +

η2

1− γ
(1 + β)

N∑
i=1

g′i,t

)
.

Combining this with (15.2) we get

exp(ηmaxj G
′
j,n)

N
≤ exp

(
η

1− γ

(
Ĝn + βnN

)
+

η2

1− γ
(1 + β)

N∑
i=1

G′i,t

)

≤ exp

(
η

1− γ

(
Ĝn + βnN

)
+

η2

1− γ
(1 + β)N max

1≤i≤N
G′i,t

)
.

Taking the logarithm of both sides gives

ηmax
j
G′j,n − lnN ≤ η

1− γ
Ĝn +

ηβnN

1− γ
+

η2

1− γ
(1 + β)N max

j
G′j,n .

99

Reordering gives

Ĝn ≥ [1− γ − η(1 + β)N] max
j
G′j,n −

lnN

η
− nNβ .

Goal: G′i,n > Gi,n − βnN with high probability.

Lemma 15.1. Let 0 ≤ δ ≤ 1. Assume that
√

ln(N/δ)
nN

≤ β ≤ 1. Then with probability at least

1− δ/N ,
G′i,n ≥ Gi,n − βnN.

Proof. We want to prove that Pr
(
Gi,n > G′i,n + βnN

)
≤ δ/N . We have

Pr
(
Gi,n > G′i,n + βnN

)
= Pr

(
Gi,n −G′i,n > βnN

)
= Pr

(
β(Gi,n −G′i,n) > β2nN

)
= Pr

(
exp(β(Gi,n −G′i,n)) > exp(β2nN)

)
≤ E

[
exp(β(Gi,n −G′i,n))

]
exp(−β2nN) ,

where in the last step we have used Markov’s inequality which says that if X ≥ 0 then
Pr (X ≥ a) ≤ E [X] /a. Define Zt = exp(β(Gi,t −G′i,t)). It suffices to prove that E [Zn] ≤ 1.
Let I1:t = (I1, . . . , It). Then, E [Zn] = E [E [Zn|I1:n−1]]. Now, Zn = Zn−1 exp(β(gi,n − g′i,n))

and since Zn−1 is a function of I1:n−1, E [Zn|I1:n−1] = Zn−1 E
[
exp(β(gi,n − g′i,n))|I1:n−1

]
.

Using the definition of g′i,n, we get that

E
[

exp(β(gi,n − g′i,n)) | I1:n−1

]
= exp(− β2

pi,n
) E [exp(β(gi,n − g̃i,n)) | I1:n−1] .

By assumption, β(gi,n − g̃i,n) ≤ 1, since by assumption 0 ≤ β ≤ 1. Therefore, we can use
ex ≤ 1 + x+ x2. Using E [gi,n − g̃i,n | I1:n−1] = 0, which holds by the construction of g̃i,n, and
E [(gi,n − g̃i,n)2 | I1:n−1] ≤ E

[
g̃2
i,n | I1:n−1

]
(because Var(X) ≤ E [X2]), and E

[
g̃2
i,n | I1:n−1

]
=

g2
i,n/pi,n ≤ 1/pi,n we have

E
[

exp(β(gi,n − g′i,n)) | I1:n−1

]
≤ exp(− β2

pi,n
)

(
1 +

β2

pi,n

)
≤ exp(− β2

pi,n
+

β2

pi,n
) because 1 + x ≤ ex

= 1 .

Thus, E [Zn|I1:n−1] ≤ E [Zn−1]. Now, taking expectation of both sides and repeating the
above argument, we get that E [Zn] ≤ E [Zn−1] ≤ E [Zn−2] ≤ . . . ≤ E [Z0] = 1, finishing the
proof of the Lemma.

So, let’s assume that

1− γ − η(1 + β)N ≥ 0 ,√
ln(N/δ)

β
≤ β ≤ 1 .

100

By the union bound, with probability at least 1 − δ, maxj G
′
j,n ≥ maxj Gj,n − βnN .

Hence,

Ĝn ≥ [1− γ − η(1 + β)N]

(
max
j
Gj,n − βnN

)
− lnN

η
− nNβ .

Reordering,

max
j
Gj,n − Ĝj,n ≤ (γ + η(1 + β)N) max

j
Gj,n + (2− γ − η(1 + β)N)βnN +

lnN

η

≤ (γ + η(1 + β)N)n+ 2βnN +
lnN

η
.

Now since the bound is increasing in β, choose β to be its lower bound. Next, choose
γ = 2ηN etc.

We get the bound
C
√
nN ln(N/δ) ,

which holds w.p. 1− δ for any fixed n big enough, where C is a fixed numerical constant.
Note: This is a non-uniform algorithm! You choose δ then you choose the parameters!

This is unlike the previous result!

101

Chapter 16

Lower Bounds for Bandits

The upper bound on the expected regret of Exp3-γ is O(
√
nN lnN). In fact, the newer

INF algorithm enjoys a minimax upper bound of size O(
√
nN). Is there an algorithm which

enjoys a smaller minimax upper bound? To answer this question, we need to study minimax
lower bounds for this problem.

The gains will be randomized as usual in a lower bound proof. Let gi,n be an i.i.d.
sequence taking values in [0, 1]. We will develop a bound on

R̄n = max
1≤j≤N

E [Gj,n]− E
[
Ĝn

]
.

Then E [Rn] ≥ R̄n, therefore it suffices to develop a lower bound on R̄n (thanks to the
randomization device).

Note that E [Gi,n] = nE [gi,n]. Let

∆i = max
j

E [gj,t]− E [gi,t] .

Then, by Wald’s identity

R̄n =
N∑
i=1

E [Ti,n] ∆i,

where Ti,n =
∑n

t=1 I{It = i} is the number of times arm i is pulled up to time n.
By von Neumann’s minimax theorem, it suffices to consider deterministic algorithms. An

algorithmA will be a function from histories to the space of actions. Let It = A(gI1,1, . . . , gIt−1,t−1)..
.

Let ht = gIt,t and h1:t = (h1, . . . , ht−1). With this notation, It = A(h1:t). (Note that h1:0

is the empty history.)
Plan for the lower bound:

(Step 1) Choose joint distributions Πk for (gi,t) whose relative distance from each other is
controlled (k = 1, . . . , N).

(Step 2) Show that if two joint distributions are close then the behavior of the algorithm
does not change much.

102

(Step 3) Derive the lower bound from this.

Fix 1 ≤ i ≤ N . Let Πi be the joint distribution, where the payoff distributions for all the
arms is a Bernoulli 1/2 distribution, except for arm i, whose payoff has Bernoulli 1/2 + ε

distribution, where 0 < ε < 1/2 will be chosen later. Let g
(i)
j,t ∼ Ber(1/2 + I{i = j}ε) be an

i.i.d payoff sequence generated from Πi. All of these are independent.
We further need Π0: In Π0 all payoffs have Bernoulli 1/2 distributions.
Notation: Pi, E [i] ·, pi the PMF. Let R̄j be R̄ when we are in the jth world.
R̄j = (n− Ej[nj])ε.
Notice that pi(h1:n−1) is completely dependent on A. Step 2.

Ei [ni]− E0 [ni] =
∑

h1:n−1∈{0,1}n−1

pi(h1:n−1)
n∑
t=1

I{A(h1:t−1) = i}

−
∑

h1:n−1∈{0,1}n−1

p0(h1:n−1)
n∑
t=1

I{A(h1:t−1) = i}

≤ n
∑

h1:n−1∈{0,1}n−1

(pi(h1:n−1)− p0(h1:n−1))+

=
n

2
‖pi(h1:n−1)− p0(h1:n−1)‖1

≤ n

2

√
2KL (p0(h1:n−1)‖pi(h1:n−1)) ,

where the last step used Pinsker’s inequality.
Conditional KL divergence:

KL (p(X|Y)‖q(X|Y)) =
∑
x,y

p(x, y) log
p(x|y)

q(x|y)

(
= E [KL (p(X|y)‖q(X|y))]

)
.

Chain rule:

KL (p(x, y)‖q(x, y)) = KL (p(x)‖q(x)) + KL (p(y|x)‖q(y|x)) .

By the chain rule,

KL (p0(h1:n−1)‖pi(h1:n−1)) =
n∑
t=1

KL (p0(ht|h1:t−1)‖pi(ht|h1:t−1)

=
n∑
t=1

∑
h1:t

p0(h1:t) log
p0(ht|h1:t−1)

pi(ht|h1:t−1)
.

Now, p0(h1:t) = p0(h1:t−1)p0(ht|h1:t−1). Therefore,

KL (p0(h1:n−1)‖pi(h1:n−1)) =
n∑
t=1

∑
h1:t

p0(h1:t−1)
∑
ht

p0(ht|h1:t−1) log
p0(ht|h1:t−1)

pi(ht|h1:t−1)
.

103

By the choice of Π0, the innermost sum is

1

2
log

1/2

pi(0|h1:t−1)
+

1

2
log

1/2

pi(1|h1:t−1)
.

If the algorithm does not choose arm i given the history h1:t−1 then pi(b|h1:t−1) = 1/2,
making this expression zero (b ∈ {0, 1}). In the other case, this sum is 1

2
log 1

4(1/2−ε)(1/2+ε))
=

1
2

log 1
1−4ε2

. Therefore,

KL (p0(h1:n−1)‖pi(h1:n−1)) =
1

2
log

(
1

1− 4ε2

) n∑
t=1

∑
h1:t

p0(h1:t−1)I{A(h1:t−1) = i}

=
1

2
log

(
1

1− 4ε2

)
E0 [ni]

≤ 4ε2 E0 [ni] ,

where the last inequality holds thanks to − log(1− x) ≤ 2x which holds when 0 ≤ x ≤ 1/2.
We summarize what we have achieved in the following lemma.

Lemma 16.1.
Ei [ni]− E0 [ni] ≤

√
2εn
√

E0 [ni] .

Back to the main proof. We have

R̄i = ε(n− Ei [ni]) ≥ ε(n−
√

2εn
√

E0 [ni]− E0 [ni]) .

Using the randomization hammer,

R̄ ≥ 1/N
n∑
i=1

R̄i

≥ 1/N
N∑
i=1

ε(n−
√

2εn
√

E0 [ni]− E0 [ni])

≥ 1/Nε(nN −
√

2εn
N∑
i=1

√
E0 [ni]− n)

≥ 1/Nε(nN −
√

2εn

√√√√N

N∑
i=1

E0 [ni]− n)

= 1/Nε(nN −
√

2εn
√
Nn− n)

≥ εn−
√

2ε2N−1/2n3/2 − n

N
ε.

Choose ε = 1/2
√
N/(2n), we get c

√
nN .

Theorem 16.2. There exists a constant c > 0 such that for any N, n ≥ 1 and any algorithm
A, there exists a sequence of rewards in [0, 1] such that the regret Rn of algorithm A on this
sequence of rewards satisfies

E [Rn] ≥ c
√
nN ∩ n .

104

Chapter 17

Exp3-γ as FTRL

The prediction with expert advice problem can be casted as a prediction problem over the
simplex with linear losses as follows (see also Exercise 8.1): The decision set K0 available
to the online learner is the set of unit vectors {e1, . . . , ed} of the d-dimensional Euclidean
space, while the loss function in round t is `t(w) = f>t w. Choosing expert i is identified with
choosing unit vector ei and if the loss assigned to expert i in round t is `t,i, we set ft,i = `t,i.
This way the two games become “isomorphic”.1 From now on we will thus work with the
vectorial representation.

In general, the choice ŵt ∈ K0 made in round t is random. Assume that ei is selected in
round t with probability wt,i, where wt = (wt,1, . . . , wt,d)

> ∈ ∆d and wt is computed based
on past information. Due to the linearity of the losses E [`t(ŵt)] = E [`t(wt)]. Thus, the real
issue is to select the vectors wt ∈ ∆d (see also Exercise 17.1).

Our main interest in this chapter is the bandit setting, where the learner receives only
`t(ŵt) after round t, as opposed to the full-information setting, when the learner is told the
whole function `t(·). The goal is still to keep the regret,

L̂n − Ln(u) =
n∑
t=1

`t(ŵt)−
n∑
t=1

`t(u)

small. More precisely, in this chapter we focus on the expected regret only.

17.1 Black-box Use of Full-information Algorithms

We saw that good (low regret) algorithms exist for the full-information setting. A simple idea
then is to reuse a low-regret algorithm developed for the full-information case as a black-box
(see Figure 17.1 for an illustration of this idea). Since a full-information algorithm needs
the vector ft, we assume that an estimate of ft is constructed in some way, which is fed to

1By the two games being “isomorphic” we mean that there is a one-to-one correspondence between the
strategies in the two games such that the correspondence leaves the losses incurred invariant.

105

B

A

q−1

×
wt

f̃t

f̃t−1 ŵt

ft

f>t ŵt

Figure 17.1: Illustration of how the full-information algorithm A is used as a black-box.
Block B (to be designed) feeds A with f̃t, an estimate of ft. In addition, it might introduce
additional randomization to facilitate the estimation of ft. The block marked by q−1 indicates
a time-delay.

the full-information algorithm. Let f̃t be the estimate of ft developed in round t. Definễ
Ln =

∑n
t=1
˜̀
t(wt) and L̃n(u) =

∑n
t=1
˜̀
t(u), where ˜̀t(w) = f̃>t w.

The following result shows that if f̃t is an appropriately constructed estimate of ft, it
suffices to study the regret of the full-information algorithm fed with the sequence of losses˜̀
t:

Proposition 17.1. Assume that E [ŵt | ŵ1, . . . , ŵt−1] = wt and

E
[
f̃t | ŵ1, . . . , ŵt−1

]
= ft , (17.1)

i.e., given all past information, f̃t is an unbiased estimate of ft. Then,

E

[̂̃
Ln

]
= E

[
L̂n

]
, and E

[
L̃n(u)

]
= Ln(u) .

The proof of the proposition is left as an exercise (cf. Exercise 17.2).

17.2 Analysis of Exp3-γ

Consider the FTRL algorithm with the un-normalized negative entropy regularizer R(w) =∑d
i=1wi lnwi − wi, w ∈ Rd

+. Remember that R is strongly convex w.r.t. the 1-norm on the
open probability simplex (cf. Exercise 8.1, Part d). Therefore, by Theorem 8.14,

̂̃
Ln − L̃n(u) ≤ η

n∑
t=1

‖f̃t‖2
∞ +

ln d

η
. (17.2)

106

Thus, we see that a small expected regret can be achieved as long as E
[∑n

t=1 ‖f̃t‖2
∞

]
is

small.
Consider, for example, the importance weighted estimator

f̃t,i =
I{ŵt = ei}ft,i

wt,i
, (17.3)

which makes the algorithm identical to the Exp3-γ algorithm of Section 15.1. By construction

(and as it was also shown earlier) f̃t satisfies (17.1). Therefore, it remains to study E
[
‖f̃t‖2

∞

]
.

Introduce the shorthand notation Et [·] = E [· | ŵ1, . . . , ŵt−1]. We have

Et

[
‖f̃t‖2

∞

]
≤ Et

[
‖f̃t‖2

2

]
=

d∑
i=1

Et

[
f̃ 2
t,i

]
.

Since

Et

[
f̃ 2
t,i

]
=
f 2
t,i

w2
t,i

Et [I{ŵt = ei}]

and Et [I{ŵt = ei}] = Pr (ŵt = ei | ŵ1, . . . , ŵt−1) = wt,i, we get Et

[
f̃ 2
t,i

]
=

f2t,i
wt,i

. Thus,

Et

[
‖f̃t‖2

∞

]
≤

d∑
i=1

f 2
t,i

wt,i
. (17.4)

Unfortunately, this expression is hard to control since the weights can become arbitrarily
close to zero. One possibility then is to bias ŵt so that the probability of choosing ŵt = ei is
lower bounded. This is explored in Exercises 17.4 and 17.5, though the rates we can obtain
with this technique (alone) are suboptimal. However, as we already saw earlier, Exp3-γ
enjoys a low regret without any adjustment. This motivates us to refine the above analysis.

17.2.1 Local Norms

First, remember that in the studied case FTRL and PPA coincide (cf. Exercise 9.3, Part (c)).
Therefore, we can use Lemma 9.2, which was stated for PPA and linear losses, to bound the
regret:

̂̃
Ln − L̃n(u) ≤ ln d

η
+

n∑
t=1

〈f̃t, wt − w̃t+1〉 . (17.5)

Here w̃t+1 = argminw∈Rd++

[
η ˜̀t(w) +DR(w,wt)

]
. Now, the idea is to choose a pair of dual

norms ‖ · ‖t, ‖ · ‖t,∗ to upper bound the inner products in the second term as follows:

〈f̃t, wt − w̃t+1〉 ≤ ‖f̃t‖t,∗ ‖wt − w̃t+1‖t .

107

These norms are called “local” because they will be chosen based on local information so
that both of the terms on the right-hand side are tightly controlled.

A simple idea is to try some weighted norms. As it turns out ‖v‖2
t,∗ =

∑d
i=1wt,i v

2
i is a

good choice.2 How can we bound ‖wt − w̃t+1‖t? The dual of ‖ · ‖t,∗ is ‖v‖2
t =

∑d
i=1w

−1
t,i v

2
i .

Hence, using w̃t+1,i = wt,i exp(−ηf̃t,i), we get

‖wt − w̃t+1‖2
t =

d∑
i=1

w−1
t,i (wt,i − wt,ie−ηf̃t,i)2 =

d∑
i=1

wt,i(1− e−ηf̃t,i)2

≤ η2

d∑
i=1

wt,if̃
2
t,i = η2 ‖f̃t‖2

t,∗ .

In the inequality, we used that 1 − e−x ≤ x (this holds for any x ∈ R) and thus for any
x ≥ 0, (1− e−x)2 ≤ x2 holds true. Therefore,

〈f̃t, wt − w̃t+1〉 ≤ η‖f̃t‖2
t,∗ = η

d∑
i=1

wt,if̃
2
t,i . (17.6)

By the choice of the estimator, Et

[
‖f̃t‖2

t,∗

]
≤ ‖ft‖2 , and thus,

Et

[
〈f̃t, wt − w̃t+1〉

]
≤ η‖ft‖2 .

When the losses are in bounded by 1, ‖ft‖2 ≤ d. Combining these with (17.5), we get the
following theorem:

Theorem 17.2. Assume that the losses are in the [0, 1] interval and that Exp3-γ is run with

η =
√

ln d
nd

. Then, its expected regret is bounded by 2
√
nd ln d.

Remark 17.3 (Coincidence?). Notice that ∇2R(w) = diag(w−1
1 , . . . , w−1

d). Hence, ‖ · ‖t =
‖ · ‖∇2R(wt). This raises the question if, for other choices of R, it is beneficial to use the
local norm ‖ · ‖∇2R(wt) in the analysis of the Linearized Proximal Point algorithm. In the
case when R satisfies certain additional properties, this has been investigated in a series of
papers published at COLT by Abernethy, Hazan, and Rakhlin.

2Note that the notation ‖v‖t clashes with our earlier notation of `p norms, which is unfortunate. However,
we trust that the reader can figure out the meaning of which norm is intended based on the semantics of the
norm-index.

108

17.3 Avoiding local norms

Starting from (17.5), we can arrive at the same bound as before, while avoiding local norms

completely. This can be done as follows. Let us upper bound the inner product 〈f̃t, wt−w̃t+1〉:

〈f̃t, wt − w̃t+1〉 =
d∑
i=1

f̃t,iwt,i(1− e−ηf̃t,i)

≤ η
d∑
i=1

f̃ 2
t,iwt,i (17.7)

=
d∑
i=1

f 2
t,i

I{ŵt = ei}
wt,i

,

where the inequality follows because f̃t,i, wt,i ≥ 0 and 1 − e−x ≤ x holds for any x ∈ R.
Therefore,

Et

[
〈f̃t, wt − w̃t+1〉

]
≤ η

d∑
i=1

f 2
t,i = η‖ft‖2 .

17.3.1 Relaxing nonnegativity of losses

A crucial assumption of the previous argument was that ˜̀t,i ≥ 0. The nonnegativity was
used to derive (17.7). Therefore, we replace this step. First, notice that for x ≥ −1,

x(1− e−x) ≤ cx2, where c = e− 1 ≈ 1.72 ≤ 2. Therefore, assuming ηf̃t,i ≥ −1, we get

〈f̃t, wt − w̃t+1〉 =
d∑
i=1

f̃t,iwt,i(1− e−ηf̃t,i) ≤ cη
d∑
i=1

f̃ 2
t,iwt,i , (17.8)

hence,

Et

[
〈f̃t, wt − w̃t+1〉

]
≤ cη‖ft‖2 .

The condition that ηf̃t,i ≥ −1 (or the stronger condition that η|f̃t,i| ≤ 1) can be achieved
for example by adding exploration. When this condition holds, continuing as before we can
bound the expected regret. See Exercise 17.5 for the details.

17.3.2 An alternative method

Yet another alternative elementary argument is as follows. We upper bound the inner product
〈f̃t, wt − w̃t+1〉 using Cauchy-Schwartz:

〈f̃t, wt − w̃t+1〉 ≤ ‖f̃t‖2 ‖wt − w̃t+1‖2 .

109

By the same argument as in the Section 17.2.1, assuming f̃t ≥ 0, we also have

‖wt − w̃t+1‖2
2 ≤ η2

d∑
j=1

w2
t,j f̃

2
t,j .

Now, observe that f̃t,if̃t,j = 0 if i 6= j. Hence,

〈f̃t, wt − w̃t+1〉2 ≤ η2

(
d∑
i=1

f̃ 2
t,i

) (
d∑
j=1

w2
t,j f̃

2
t,j

)
= η2

d∑
i=1

w2
t,if̃

4
t,i .

Now, take the square root of both sides and use
√∑

i |xi| ≤
∑

i

√
|xi| to get

〈f̃t, wt − w̃t+1〉 ≤ η

d∑
i=1

wt,if̃
2
t,i = η

d∑
i=1

f 2
t,i

I{ŵt = ei}
wt,i

and thus it holds that

Et

[
〈f̃t, wt − w̃t+1〉

]
≤ η

d∑
i=1

f 2
t,i .

To reiterate, the key ideas were that f̃i,tf̃j,t is zero very often and also not to take expectation

until one takes the square root, since the lower power f̃i,t has before taking expectation, the
better the bound will be.

17.4 Exercises

Exercise 17.1. (Randomization over the simplex) Consider a problem when K = ∆d.
Let wt be the sequence of choices of algorithm A against a sequence of linear loss functions
`1, . . . , `n, where `t : K → [0, 1]. Consider the randomizing algorithm which, in round t,
chooses ŵt ∈ {e1, . . . , ed} with probability wt,i (1 ≤ i ≤ d).

(a) Show that for any u ∈ K, the expected regret of the randomizing algorithm equals to
the regret of algorithm A.

(b) Show that for any u ∈ K, with high probability, the regret of the randomizing algorithm
is not much larger than that of algorithm A.

Exercise 17.2. Prove Proposition 17.1.

Hint: Show that E
[
f>t ŵt|ŵ1, . . . , ŵt−1

]
= f>t wt = E

[
f̃>t wt|ŵ1, . . . , ŵt−1

]
and apply the

tower rule.

110

Exercise 17.3. (Biased estimates) Let ŵt, wt, ft, f̃t be as in Proposition 17.1. Prove
the following extension of Proposition 17.1: Let

bt = E
[
f̃t|ŵ1, . . . , ŵt−1

]
− ft

be the bias of f̃t at time t. Then, for any u ∈ K,

E
[
L̂n

]
− Ln(u) ≤ E

[̂̃
Ln − L̃n(u)

]
+ E

[
n∑
t=1

sup
v,w∈K

b>t (v − w)

]
.

Exercise 17.4. (Biased estimates, biased predictions) Consider the same setting as
in Exercise 17.3, except that now allow a bias in ŵt, too. In particular, let

dt = E [ŵt|ŵ1, . . . , ŵt−1]− wt

be the bias of ŵt. As before, define

bt = E
[
f̃t|w̃1, . . . , w̃t−1

]
− ft

to be the bias of f̃t at time t, Remember that by assumption for any t ∈ {1, . . . , n}, w ∈ K,
it holds that `t(w) ∈ [0, 1].

Show that for any u ∈ K,

E
[
L̂n

]
− Ln(u) ≤ E

[̂̃
Ln − L̃n(u)

]
+ E

[
n∑
t=1

sup
w∈K

b>t w

]
+ E

[
n∑
t=1

sup
f∈F

d>t f

]
,

where F = {f ∈ Rd : 0 ≤ infw∈K f
>w ≤ supw∈K f

>w ≤ 1}.

Exercise 17.5. Consider the algorithm where FTRL with the un-normalized negentropy
is fed with the estimates

f̃t =
I{ŵt = ei}ft,i

wt,i(γ)
.

where ŵt is a randomly chosen from {e1, . . . , ed} and the probability of ŵt = ei is wt,i(γ)
def
=

γ/d+ (1− γ)wt,i, where 0 < γ < 1 is an exploration parameter. Assume that |ft,i| ≤ 1.

(a) Using the result of the previous exercise, combined with (17.2) and (17.4) (applied
appropriately), show that the expected regret of the resulting algorithm is not larger
than

γn+ d2 η

γ
+

ln d

η
.

(b) Show that by appropriately choosing γ and η, the regret is bounded by 2d2/3n2/3(4 ln d)1/3.
(This is thus a suboptimal bound.)

111

(c)

Exercise 17.6. (Estimating the gradient – linear losses)
Consider an online learning problem where the losses are deterministic, linear functions:

`t(w) = f>t w, t = 1, . . . , n. Assume that `t(w) ∈ [0, 1] and that the decision region is a
convex subset K of Rd. Consider a sequence of random choices ŵ1, . . . , ŵn ∈ K. Introduce
Et [· | ŵ1, . . . , ŵt−1]. Let Ct = Et

[
ŵtŵ

>
t

]
and wt = Et [ŵt]. Consider the estimate

f̃t = C†t ŵt`t(ŵt) ,

where C†t denotes the Moore-Penrose pseudo-inverse of Ct.

(a) Assume that Ct is invertible. Show that in this case f̃t is an unbiased estimate of ft.

(b) Now, assume that ŵt is discrete random variable. Show that for any vector w such that

Pr (ŵt = w) > 0, Et

[
f̃>t w

]
= `t(w).

(c) Show that Et

[
ŵtC

†
t ŵt

]
≤ rank(Ct) ≤ d.

Hint: For Parts (b) and (c), use an eigendecomposition of Ct.

Exercise 17.7. (Finitely spanned decision sets) Consider an online learning problem
with linear losses, `t(w) = f>t w, t = 1, . . . , n. Assume that `t(w) ∈ [0, 1] and that the
decision set, K ⊂ Rd, is the convex hull of finitely many vectors of Rd, i.e.,

K =

{
p∑
i=1

αivi : αi ≥ 0,

p∑
i=1

αi = 1

}
,

with some v1, . . . , vp ∈ Rd.
Consider the following algorithm: Fix 0 < η, 0 < γ < 1 and µ = (µi) ∈ ∆p. Assume

that µi > 0 holds for all i ∈ {1, . . . , p}. The algorithm keeps a weight αt ∈ ∆p. Initially,
the weights are uniform: α1 = (1/p, . . . , 1/p)>. In round t, the algorithm predicts ŵt ∈
{v1, . . . , vp}, where the probability of ŵt = vi is αt,i(γ)

def
= γµi + (1− γ)αt,i. (In other words,

the algorithm chooses a unit vector α̂t ∈ Rp randomly such that the probability of selecting
ei is αt,i(γ), and then predicts ŵt = V α̂t.) Next, `t(ŵt) = f>t ŵt is observed, based on which,
the algorithm produces the estimates

f̃t = C†t ŵt`t(ŵt) , g̃t = V >f̃t ,

where V = [v1, . . . , vp] ∈ Rd×p, and Ct =
∑p

i=1 αt,i(γ)viv
>
i . Making use of these estimates,

the weights (1 ≤ i ≤ p) are updated using

αt+1,i =
α̃t+1,i∑p
j=1 α̃t+1,j

, α̃t+1,i = αt,ie
−ηg̃t,i .

112

Let L̂n =
∑n

t=1 `t(ŵt) be the cumulated loss of the algorithm, Ln(u) =
∑n

t=1 `t(u) be the
cumulated loss of a competitor u ∈ K. The goal is to show that the expected regret,

E
[
L̂n − Ln(u)

]
, can be kept “small” independently of u provided that µ, η and γ are ap-

propriately chosen.

(a) Let gt = V >ft. Show that Et [g̃t] = gt.

(b) Show that E
[
L̂n

]
≤ E

[̂̃
Ln

]
+ γ n, where

̂̃
Ln =

∑n
t=1 g̃

>
t αt.

(c) Show that for any u ∈ K, α ∈ ∆p such that u = V α, it holds that Ln(u) = E
[
L̃n(α)

]
,

where L̃n(α) =
∑n

t=1 g̃
>
t α.

(d) Show that for any α ∈ ∆p,

̂̃
Ln − L̃n(α) ≤ ln p

η
+

n∑
t=1

〈g̃t, αt − α̃t+1〉 .

(e) Let V 2
max = max1≤i≤p ‖v‖2 and let λ0 be the smallest, positive eigenvalue of the matrix∑p

i=1 µiviv
>
i (why is this well-defined?). Show that ‖g̃t‖∞ ≤ V 2

max/(λ0γ). Therefore, if
we choose γ = ηV 2

max/λ0, then no matter how we choose η > 0, it holds that

|ηg̃t,i| ≤ 1 , 1 ≤ i ≤ d, 1 ≤ t ≤ n . (17.9)

(f) Assume that (17.9) holds. Show that 〈g̃t, αt− α̃t+1〉 ≤ cη
∑p

i=1 αt,ig̃
2
t,i, where c = e−1 ≈

1.71828182845905.

(g) Show that

(1− γ)

p∑
i=1

αt,ig̃
2
t,i ≤ ŵ>t C

†
t ŵt ,

and therefore we also have that (1− γ) Et

[∑p
i=1 αt,ig̃

2
t,i

]
≤ d.

(h) Show that for any u ∈ K, η > 0, if γ = ηV 2
max/λ0, γ ≤ 1/2, then

E
[
L̂n

]
− Ln(u) ≤ ln p

η
+ ηn

(
V 2

max

λ0

(1 + 2ηcd) + cd

)
.

(i) Show that by selecting η appropriately, the expected regret can be further bounded by

E
[
L̂n

]
− Ln(u) ≤ 2

√
n

(
V 2

max

λ0

+ cd

)
ln p+ 4

V 2
max

λ0

ln p .

113

Hint: Don’t panic! Use the result of this chapter and the previous exercises. In addition,
the following might be useful for Part (e): For a matrix M , let ‖M‖ denote its operator
norm derived from ‖ · ‖: ‖M‖ = max‖x‖=1 ‖Mx‖. By its very definition, ‖Mx‖ ≤ ‖M‖‖x‖
holds for any vector x. Now, let M be a positive semidefinite matrix. Denote by λmax(M)
the largest eigenvalue of M . Remember that ‖M‖ = λmax(M) (in general, ‖M‖, also called
the spectral norm, equals the largest singular value of M). Finally, let λ+

min(M) denote the
smallest non-zero (i.e., positive) eigenvalue of M , if M has such an eigenvalue, and zero
otherwise. Remember that A � B if A − B � 0, i.e., if A − B is positive semidefinite.
Finally, remember that if A,B � 0 and A � B then λmin(A) ≥ λmin(B) (this follows from
Weyl’s inequality).

Exercise 17.8. (Bandits with aggregated reporting) Consider a bandit game with N
arms, when the losses are reported in an aggregated fashion. As an example, imagine that
your job is to select an ad to put on a webpage from a pool of N ads, however, you learn the
number of clicks at the end of the day only. In particular, for simplicity assume that you get
the sum of losses after exactly k pulls (and you get no information in the interim period).

Design an algorithm for this problem. In particular, can you design an algorithm whose
expected regret is O(

√
n) after playing for n = sk rounds? How does the regret scale with

k and N?
Hint: Consider mapping the problem into an online learning problem with linear losses over
a finitely spanned decision set. In particular, consider the space RNk, and the convex hull
generated by decision set

K0 =
{

(e>i1 , . . . , e
>
ik

) : 1 ≤ ij ≤ N, 1 ≤ j ≤ k
}
.

If the original sequence of losses is `t(w) = f>t w (with the usual identification of the ith

arm/expert and the ith unit vector, ei ∈ RN), then the aggregated loss for round s is
`As (w1, . . . , wk) = f>s(k−1)+1w1 + . . . + f>skwk. Argue that a small regret in this new game

with decision set K, loss functions `As (s = 1, 2, . . .) means a small regret in the original
game. Then consider the algorithm of Exercise 17.7. In this algorithm, you need to choose
a distribution µ over ∆p, where p = |K0|. Consider choosing this distribution as follows:
Let Q ∈ RN be a random variable whose distribution is uniform over {e1, . . . , eN}, the set
of unit vectors of RN (i.e., Pr (Q = ei) = 1/N). Let Q1, . . . , Qk be k independent copies of
Q. Let R = (Q>1 , . . . , Q

>
k)> be a random vector obtained from Q1, . . . , Qk by stacking these

vectors on the top of each other. Let µi = Pr (R = vi), where K0 = {v1, . . . , vp}. Notice
that µi > 0 (in fact µi is just the uniform distribution, but you do not actually need this)
and notice also that M =

∑p
i=1 µiviv

>
i = E

[
RR>

]
. Calculate E

[
RR>

]
as a block matrix

(what is E
[
QiQ

>
j

]
=?). To calculate a lower bound on λ0 = λ+

min(M), notice that λ0 ≥
λmin(M) = minx∈RNk:‖x‖=1 x

>Mx. Therefore, it suffices to uniformly lower bound x>Mx,
where ‖x‖ = 1. Since the vectors in K0 span RNk, x =

∑p
i=1 αivi for some α = (αi) ∈ Rp.

Now write x>Mx by considering the diagonal and off-diagonal blocks in it (consider k × k
blocks). Finish by completing the square, thereby reducing the problem to calculating the
sum of elements in the blocks of x (this sum can be related to α).

114

For the initiated: Is there a way to efficiently implement your algorithm? Keeping around
and updating Nk weights is not practical. Can you implement the algorithm using much
less memory and time?

Exercise 17.9. (Cognitive radio) Can you help engineers to create really smart cognitive
radios? A “cognitive radio” problem is as follows: Engineers have split up the frequency
spectrum available for radio communication into a finite number of channels. These days, all
these channels are already preallocated for various users who paid for the exclusive right to
use the channels. However, since the demand for communication is still increasing, engineers
want to find a way of using the already preassigned channels. The main idea is that the
primary users of the channels do not necessarily use it all the time. Therefore, the unused
channels could be used for other purposes. Intelligent protocols make sure that if the primary
user uses a channel, no one can interfere, so the primary users are not impacted. The problem
then is to design algorithms, which efficiently learn which channels to use for what purposes.

Mathematically, the problem can be formulated as follows: In each round t, the radio
serves S “secondary users” who wish to use the channels available. Let bt ∈ {0, 1}N be the
binary vector which encodes which of the N channels are used at time t. Let cs,j ∈ [0, 1] be
the loss suffered when the secondary user s (1 ≤ s ≤ S) attempts to broadcast on channel j
(1 ≤ j ≤ N) without success because the jth channel is busy (bt,j = 1). Let gs,j ∈ [0, 1] be
the gain of the user when the jth channel is available. An assignment of secondary users to
channels can be represented by a mapping π : {1, . . . , S} → {1, . . . , N}. Since only one user
is allowed per channel, only mappings satisfying π(s) 6= π(s′), s 6= s′ are considered. Given
such an assignment π, the total loss suffered at time t when using this assignment will be

`t(π) =
S∑
s=1

bt,π(s)cs,π(s) − (1− bt,π(s))gs,π(s) .

More generally, consider the problem when the costs cs,π(s) and gains gs,π(s) are unknown
and can change in time (we may denote these changing quantities by the respective symbols
ct,s,j, gt,s,j). When an assignment πt is selected, only the actual loss `t(πt) is learned.

Design an online learning algorithm for this problem that has a small regret when playing
against any fixed assignment. Can you design an algorithm which achieves O(

√
n) expected

regret? What is the price of learning the aggregated information only after every kth round?
Hint: Try mapping the problem into the setting of Exercise 17.7. First, consider the

decision set

K0 =
{

(e>i1 , . . . , e
>
iS

)> : 1 ≤ ij ≤ N, 1 ≤ j ≤ S, j 6= k ⇒ ij 6= ik
}
,

where ei is the ith unit vector of RN . Given an assignment π, let vπ = (e>π(1), . . . , e
>
π(S))

>.
Note that for any admissible assignment π, vπ ∈ K0 and vice versa. Now, it is not hard to
see that it holds that

`t(π) = f>t vπ ,

115

where

ft =



bt,1ct,1,1 − (1− bt,1)gt,1,1
bt,2ct,1,2 − (1− bt,2)gt,1,2

...
bt,Nct,1,N − (1− bt,N)gt,1,N

bt,1ct,2,1 − (1− bt,1)gt,2,1
bt,2ct,2,2 − (1− bt,2)gt,2,2

...
bt,Nct,2,N − (1− bt,N)gt,2,N

...
bt,Nct,N,N − (1− bt,N)gt,N,N



.

116

Chapter 18

Solutions to Selected Exercises

Answer to Exercise 5.1. For any number p ∈ [0, 1], E [|p− Yt|] = 1
2
|p − 0| + 1

2
|p − 1| =

1
2
(p + 1 − p) = 1

2
. Now fix t. We know that p̂

(A)
t is a function of outcomes up to time

t − 1, as well as the expert decisions up to time t, and some internal randomization of the
algorithm. Then, p̂

(A)
t = pt(Y1, . . . , Yt−1, Rt) for some appropriate function pt which may

depend on A and the experts FN and Rt is the sequence of random numbers used up to
time t by A. (Under our assumptions, such a function always exists. Why?) Then, for any
y1, . . . , yt−1 ∈ {0, 1},

E
[
|p̂(A)
t − Yt| |Y1 = y1, . . . , Yt−1 = yt−1, Rt = rt

]
= E [|pt(y1, . . . , yt−1, rt)− Yt| |Y1 = y1, . . . , Yt−1 = yt−1, Rt = rt]

= E [|pt(y1, . . . , yt−1, rt)− Yt|] .

Here, the last step follows, since Yt is independent of Y1, . . . , Yt−1 and Rt. By our previous
observation, since pt(y1, . . . , yt−1, rt) is just a fixed number in the [0, 1] interval,

E [|pt(y1, . . . , yt−1, rt)− Yt|] = 1/2.

Thus, E
[
|p̂(A)
t − Yt| |Y1 = y1, . . . , Yt−1 = yt−1

]
= 1/2. Therefore, by the law of total expec-

tation, we must also have E
[
|p̂(A)
t − Yt|

]
= 1/2.

Answer to Exercise 5.2. Obviously, Zi,tσt is {−1,+1}-valued and Pr (Zi,tσt = −1) =
Pr (Zi,tσt = +1) = 1/2. We also need to show that the elements of this matrix are indepen-
dent. This should be clear for the elements Zi,tσt and Zj,sσs when s 6= t. That this also

117

holds when s = t (and i 6= j) can be shown by the following calculation: When s = t,

Pr (Zi,tσt = v, Zj,tσt = w)

= Pr (Zi,tσt = v, Zj,tσt = w |σt = −1) Pr (σt = −1)

+ Pr (Zi,tσt = v, Zj,tσt = w |σt = 1) Pr (σt = 1)

=
1

2
(Pr (Zi,t = −v, Zj,t = −w |σt = −1) + Pr (Zi,t = v, Zj,t = w |σt = +1))

=
1

2
(Pr (Zi,t = −v, Zj,t = −w) + Pr (Zi,t = v, Zj,t = w))

=
1

2

(
1

4
+

1

4

)
=

1

4
= Pr (Zi,tσt = v) Pr (Zj,tσt = w) .

In fact, a little linear algebra shows that the claim holds even if we only assume pairwise
independence of (Zi,t), (σs).

Answer to Exercise 6.1. Consider N = 2, when f1t = 0, f2t = 1.

Answer to Exercise 17.2. Define Et [·] = E [·|ŵ1, . . . , ŵt−1]. Then, Et

[
f>t ŵt

]
= f>t wt =

Et

[
f̃>t wt

]
, where in the first equality we used that ft is a deterministic sequence and Et [ŵt] =

wt, while in the second equality we used that wt is a deterministic function of ŵ1, . . . , ŵt−1

and (17.1). Therefore, by the tower-rule, E
[
L̂n

]
= E

[̂̃
Ln

]
. That E

[
L̃n(u)

]
= Ln(u) follows

immediately from the tower rule and (17.1).

Answer to Exercise 17.3. Like in the solution to Exercise 17.2, define

Et [·] = E [·|ŵ1, . . . , ŵt−1] .

Then, we have ft + bt = Et

[
f̃t

]
. By definition, bt is a deterministic function of ŵ1, . . . , ŵt−1.

Therefore, Et

[
f>t ŵt

]
= f>t wt = (ft + bt)

>wt − b>t wt = Et

[
f̃>t wt

]
− b>t wt. Next, Et

[
f̃>t u

]
=

〈Et

[
f̃t

]
, u〉 = (ft + bt)

>u = f>t u+ b>t u. Therefore,

E
[
L̂n

]
− Ln(u) = E

[̂̃
Ln

]
− E

[
n∑
t=1

b>t wt

]
−
{

E
[
L̃n(u)

]
− 〈E [

∑n
t=1 bt] , u〉

}
= E

[̂̃
Ln

]
− E

[
L̃n(u)

]
+ E

[
n∑
t=1

b>t (u− wt)

]

≤ E
[
L̂n

]
− Ln(u) + E

[
n∑
t=1

sup
v,w∈K

b>t (v − w)

]
.

118

Answer to Exercise 17.4. We proceed as in the solution to Exercise 17.3. First, define

Et [·] = E [·|ŵ1, . . . , ŵt−1] .

It follows from the definitions that

Et

[
f̃t

]
= ft + bt, and Et [ŵt] = wt + dt .

Therefore,

Et

[
f>t ŵt

]
= f>t Et [ŵt] = f>t wt + f>t dt = (ft + bt)

>wt − b>t wt + f>t dt

= Et

[
f̃>t wt

]
− b>t wt + f>t dt .

Next, Et[f̃
>
t u] = 〈Et[f̃t], u〉 = (ft + bt)

>u = f>t u+ b>t u. Therefore,

E
[
L̂n

]
− Ln(u)

= E

[̂̃
Ln

]
− E

[
n∑
t=1

b>t wt

]
+ E

[
n∑
t=1

f>t dt

]
−
{

E
[
L̃n(u)

]
− 〈E [

∑n
t=1 bt] , u〉

}
= E

[̂̃
Ln

]
− E

[
L̃n(u)

]
+ E

[
n∑
t=1

b>t (u− wt)

]
+ E

[
n∑
t=1

f>t dt

]

≤ E
[
L̂n

]
− Ln(u) + E

[
n∑
t=1

sup
v,w∈K

b>t (v − w)

]
+ E

[
n∑
t=1

sup
f∈F

d>t f

]
.

Answer to Exercise 17.5. By the result of Exercise 17.4, for any u ∈ K,

E
[
L̂n

]
− Ln(u) ≤ E

[̂̃
Ln − L̃n(u)

]
+ E

[
n∑
t=1

sup
f∈F

d>t f

]
,

where F = {f ∈ Rd : 0 ≤ infw∈K f
>w ≤ supw∈K f

>w ≤ 1} and we also used that
by construction the estimates are unbiased (therefore, with the notation of Exercise 17.4,
bt = 0). Since K is the probability simplex, for f ∈ Rd, supw∈K f

>w = maxi fi and
infw∈K f

>w = supw∈K(−f)>w = maxi(−fi) = −mini fi. Therefore, F = [0, 1]d and

supf∈F d
>
t f =

∑d
i=1(dt,i)+ (here, (x)+ = max(x, 0) denotes the positive part of x). Now,

dt = E [ŵt|ŵ1, . . . , ŵt−1]−wt = γd−1 1+(1−γ)wt−wt = γ(d−1 1−wt), where 1 = (1, . . . , 1)>.
Therefore,

∑d
i=1(dt,i)+ = γ

∑d
i=1(1/d − wt,i)+ ≤ γ, since wt,i ≥ 0. Now, if we use (17.2) to

bound
̂̃
Ln − L̃n(u), we get

E
[
L̂n

]
− Ln(u) ≤ η

n∑
t=1

E[‖f̃t‖2
∞] +

ln d

η
+ nγ .

119

By (17.4), E[‖f̃t‖2
∞] ≤

∑d
i=1 1/w̃t,i ≤ d2/γ, since w̃t,i ≥ γ/d. Therefore,

E
[
L̂n

]
− Ln(u) ≤ d2n

η

γ
+

ln d

η
+ nγ ,

finishing the first part of the problem.
For the second part, first choose η to balance the first two terms of the bound on the

regret. This gives η = (γd−2n−1 ln d)1/2 and results in the bound γ−1/2
√

4d2n ln d + nγ.
Now, to balance these terms, we set γ so that γ3/2 =

√
4d2n−1 ln d. Solving for γ gives

γ = d2/3n−1/3(4 ln d)1/3, and results in the final bound of 2d2/3n2/3(4 ln d)1/3.

Answer to Exercise 17.6.
Part (a): Introduce Et [·] def

= E [· | ŵt−1, . . . , ŵ1]. Therefore,

Et

[
C†t ŵt`t(ŵt)

]
= C†tEt

[
ŵtŵ

>
t

]
ft = C†tCtft ,

where in the first equality we used that Ct (and thus also C†t) is a deterministic function
of ŵt−1, . . . , ŵ1, and `t(w) = w>ft, where ft is a deterministic vector. Now, since Ct is

non-singular, C†t = C−1
t . Therefore, f̃t indeed satisfies Et

[
f̃t

]
= ft.

Part (b): Introduce 0† = 0, and for x 6= 0, let x† = 1/x. By Part (a), it suffices to show
that for w such that Pr (ŵt = w) > 0, w>C†tCt = w>. Since Ct is symmetric, so is C†t , and
hence this last equality holds if and only if CtC

†
tw = w. Since Ct is a positive semidefinite

matrix, its pseudo-inverse is C†t =
∑d

i=1 λ
†
iuiu

>
i , where λi ≥ 0 are the eigenvalues of Ct,

ui ∈ Rd are the corresponding eigenvectors and these eigenvectors form an orthonormal basis
of Rd. Let w =

∑
i αiui. Elementary calculation gives that CtC

†
tw =

∑d
i=1 I{λi > 0}αiui.

Hence, w−CtC†tw =
∑d

i=1 I{λi = 0}αiui and thus it suffices to show that for all i s.t. λi = 0,
we also have αi = 0. Thus, take an index i such that λi = 0. Note that αi = 〈w, ui〉. By
the definition of Ct, Ct = C + pww> for some p > 0 and some positive semidefinite matrix
C. Hence, u>i Ctui = u>i Cui + pα2

i . Since Ctui = 0, 0 ≤ α2
i = −u>i Cui/p ≤ 0, where we used

that u>i Cui ≥ 0. Thus, αi = 0.

120

Part (c): Consider the eigendecomposition of Ct as in the previous part: C†t =
∑d

i=1 λ
†
iuiu

>
i .

Then,

Et

[
ŵ>t C

†
t ŵt

]
=

d∑
i=1

λ†iEt

[
(ŵ>t ui)

2
]

=
d∑
i=1

λ†iu
>
i Et

[
ŵtŵ

>
t

]
ui

=
d∑
i=1

λ†iu
>
i Ctui (by the definition of Ct)

=
d∑
i=1

λ†iλiu
>
i ui (because ui is an eigenvalue of Ct)

=
d∑
i=1

λ†iλi (because ui is normed)

= rank(Ct) .

Here, the first equality used the eigendecomposition of Ct and the second used that ui is a
deterministic function of ŵ1, . . . , ŵt−1.

Answer to Exercise 17.7.
Part (a): Let Et [·] = E [· | α̂1, . . . , α̂t−1]. Note that Ct = Et

[
ŵtŵ

>
t

]
. Although Et [·] 6=

E [· | ŵ1, . . . , ŵt−1] (while ŵ1, . . . , ŵt−1 can be expressed as a deterministic function of α̂1, . . . , α̂t−1,
the reverse might not hold, e.g., when {v1, . . . , vp} has duplicate elements) the arguments in

Exercise 17.6 still hold. In particular, by Part (b) of this exercise, Et

[
f̃>t w

]
= f>t w holds

for any w ∈ {v1, . . . , vp}. Therefore, for any ei ∈ ∆p unit vector, Et

[
g̃>t ei

]
= Et

[
f̃>t V

]
ei =

f>t V ei = g>t ei. Therefore, Et [g̃t] = gt.
Part (b): The proof combines Part a, the ideas underlying the proof of Proposition 17.1,

and the ideas underlying the proof of Exercise 17.4. The details are as follows: First, note
that Et [α̂t] = αt(γ) = αt + γ(µ− αt). Therefore,

Et [`t(ŵt)] = Et

[
f>t ŵt

]
= Et

[
f>t V α̂t

]
= Et

[
g>t α̂t

]
= g>t αt + γg>t (µ− αt) = Et

[
g̃>t αt

]
+ γg>t (µ− αt)

≤ Et

[
g̃>t αt

]
+ γ ,

where the last inequality used that g>t αt = f>t (V αt) ≥ 0 and g>t µ = f>t (V µ) ≤ 1. Now, take
the sum and use the tower-rule.

Part (c): This follows immediately from Part a:

f>t u = f>t V α = g>t α = Et

[
g̃>t α

]
.

121

Part (d): This follows because the algorithm can be viewed as PPA with the losses g̃>t α.
In particular, the update rule can be written as

α̃t+1 = argmin
α∈Rp++

[ηg̃>t α +DR(α, αt)] ,

αt+1 = argmin
α∈∆p

[ηg̃>t α +DR(α, αt)] .

Here, R is the un-normalized negentropy regularizer over Rp
++. Therefore, Lemma 9.2 is

applicable and gives the desired inequality.
Part (e): By definition, g̃t,i = f̃>t vi = v>i C

†
t ŵt`t(ŵt). Therefore, using |`t(ŵ1)| ≤ 1 and

|v>i C
†
t ŵt| ≤ ‖vi‖ ‖ŵt‖ ‖C

†
t ‖ ≤ V 2

max‖C
†
t ‖ ≤ V 2

maxλmax(C†t), we get

|g̃t,i| ≤ V 2
maxλmax(C†t) .

Now, by the definition of the pseudo-inverse, λmax(C†t) = (λ+
min(Ct))

−1. Using the definition
of Ct, we get Ct =

∑p
i=1(γµi + (1−γ)αt,i) viv

>
i � γ

∑p
i=1 µi viv

>
i . Therefore, λ+

min(Ct) ≥ γλ0.
Putting together the inequalities obtained, we get

|g̃t,i| ≤
V 2

max

γλ0

.

Part (f): The argument of Section 17.3.1 is applicable since it only needs that αt,i > 0,
ηg̃t,i ≥ −1, the first of which is true by the definition of the algorithm, the second of which
holds since we assumed that (17.9) holds. This argument then gives exactly the desired
statement (see (17.8)).

Part (g): Since g̃t = V >f̃t, g̃t,i = v>i f̃t. Therefore,

p∑
i=1

αt,i(γ)g̃2
t,i =

p∑
i=1

αt,i(γ)(v>i f̃t)
2

=

p∑
i=1

αt,i(γ)f̃>t viv
>
i f̃t

= f̃>t

(
p∑
i=1

αt,iviv
>
i

)
f̃t

= f̃>t Ctf̃t (the definition of Ct)

= `2
t (ŵt)ŵ

>
t C
†
tCtC

†
t ŵt (the definition of f̃t)

= `2
t (ŵt)ŵ

>
t C
†
t ŵt (property of pseudo-inverse)

≤ ŵ>t C
†
t ŵt (assumption on `t) .

Now, by the definition of αt,i(γ),

(1− γ)

p∑
i=1

αt,ig̃
2
t,i ≤

p∑
i=1

αt,i(γ)g̃2
t,i .

122

Finally, by Part (c) of 17.6, (1− γ) Et

[
ŵ>t C

†
t ŵt

]
≤ rank(Ct) ≤ d.

Part (h): Putting together the inequalities obtained so far, for any u = V α,

E
[
L̂n

]
− Ln(u) ≤ E

[̂̃
Ln − L̃n(α)

]
+ nγ ≤ ln p

η
+
cηnd

1− γ
+ nγ .

Using 1/(1− x) ≤ 1 + 2x, which holds for 0 ≤ x ≤ 1/2 and plugging in γ = ηV 2
max/λ0 gives

the desired bound.
Part (i): This follows from the previous bound if we choose η =

√
ln p

n(
V 2
max
λ0

+cd)
and if we

note that for n so small that γ ≤ 1/2, the last, constant term, of the regret bound upper
bounds the regret.

Answer to Exercise 17.8. Following the advice, we can map the problem into the setting
of Exercise 17.7 and use the algorithm described there.

To calculate λ0, we can follow the hint. If i 6= j, because of independence, E
[
QiQ

>
j

]
=

E [Qi] E [Qj]
>. Now, E [Qi] = 1/N1, hence E

[
QiQ

>
j

]
= 1/N211>, where 1 = (1, 1, . . . , 1)> ∈

RN . Therefore, M = E
[
RR>

]
is k × k block-matrix, where the diagonal blocks are 1/N2

times the N×N identity matrix and the off-diagonal blocks are 1/N times the N×N matrix
11>. Clearly, λ0 ≥ minx:‖x‖=1 x

>Mx. Therefore, it suffices to lower bound x>Mx for some
x ∈ RNk with ‖x‖ = 1. Since the vectors in K0 span the whole space RN , we can write
x =

∑p
i=1 αivi. Let

vi =


vi,1
vi,2
...
vi,k

 , x =


x1

x2
...
xk


be the partitioning of (vi) and x into k blocks, each of length N . Now,

x>Mx =
1

N
‖x‖2 +

1

N2

∑
i 6=j

(x>i 1)(x>j 1)

=
1

N
+

1

N2


(

k∑
i=1

x>i 1

)2

−
k∑
i=1

(x>i 1)2

 ,

where the second equation follows by completing the square and because, by assumption,
‖x‖ = 1. Now, xi =

∑p
j=1 αjvj,i and therefore x>i 1 =

∑p
j=1 αjv

>
j,i1. By definition, v>j,i1 = 1.

Therefore, x>i 1 =
∑p

j=1 αj. Defining a =
∑p

j=1 αj, the expression in the bracket becomes

(ka)2 − ka2 = a2k(k − 1) ≥ 0. Thus, x>Mx ≥ 1/N , showing that λ0 ≥ 1/N .
Clearly, V 2

max = k. Now, because the range of the aggregated loss is [0, k], after s rounds
in the aggregated game (i.e., s days), disregarding the constant term, the expected regret
is bounded by 2k

√
s(V 2

max/λ0 + cd) ln p, where c = e − 1. We have d = kN and p = Nk,
therefore, ln p = k lnN , and

2k
√
s(V 2

max/λ0 + cd) ln p = 2k3/2
√

(1 + c)nN lnN ,

123

where we used that s aggregated rounds amounts to n = sk rounds in the original game.
Thus, the price of learning the feedback only after every kth round is an increase in the regret
by a factor of k3/2.

Answer to Exercise 17.9. As suggested in the hint, we can use the algorithm of Exer-
cise 17.7. We have d = SN . We also have p = N(N − 1)...(N − S + 1) ≤ NS. The range
of the loss is [−S, S], i.e., the length of the range is bounded by 2S. Therefore, the regret is
bounded by 2(2S)

√
nd ln p ≤ 4S2

√
nN lnN .

124

	Shooting Game
	Exercises

	Weighted Majority Algorithm
	The Halving Algorithm
	Analysis

	The Weighted-Majority Algorithm
	Analysis

	Exponentially Weighted Average Forecaster: Continuous Predictions
	The Exponentially Weighted Average forecaster
	Analysis
	Exercises

	Exponentially Weighted Average Forecaster: Discrete Predictions
	Randomized EWA
	A Bound on the Expected Regret
	A High Probability Bound
	Exercises

	A Lower Bound for Discrete Prediction Problems
	Some Preliminaries
	Results
	Exercises

	Tracking
	The problem of tracking
	Fixed-share forecaster
	Analysis
	Variable-share forecaster
	Exercises

	Linear classification with Perceptron
	The Perceptron Algorithm
	Analysis for Linearly Separable Data
	Analysis in the General Case
	Exercises

	Follow the Regularized Leader and Bregman divergences
	Legendre functions and Bregman divergences
	Strong Convexity and Dual Norms
	Analysis of FTRL
	Exercises

	Proximal Point Algorithm
	Analysis
	Time-Varying Learning Rate
	Linearized Proximal Point Algorithm
	Strongly Convex Losses
	Exercises

	Least Squares
	Analysis
	Ridge Regression with Projections
	Analysis of Regret

	Directional Strong Convexity
	Exercises

	Exp-concave Functions
	Exercises

	p-Norm Regularizers and Legendre Duals
	Legendre Dual
	p-Norms and Norm-Like Divergences
	Regret for Various Regularizers
	Exercises

	Exponentiated Gradient Algorithm
	Exercises

	Connections to Statistical Learning Theory
	Goals of Statistical Learning Theory
	Online-to-Batch Conversions
	Intermezzo: Martingales
	High-Probability Bounds for Averaging

	Multi-Armed Bandits
	Exp3- algorithm
	A high probability bound for the Exp3.P algorithm

	Lower Bounds for Bandits
	Exp3- as FTRL
	Black-box Use of Full-information Algorithms
	Analysis of Exp3-
	Local Norms

	Avoiding local norms
	Relaxing nonnegativity of losses
	An alternative method

	Exercises

	Solutions to Selected Exercises

