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Introduction

e LONQg history of non-parametric estimators of entropy and mutual
iInformation based on nearest neighlbbor graphs (Kozachenko and
Leonenko, 1987, Hero and Michel, 1999, Goria et al., 2005, Leonenko et al.,
2008b, Wang et al., 2009).

e We are the first to correctly prove almost sure consistency and
rates of convergence (Leonenko et al., 2008a, Kozachenko and Leo-
nenko, 1987, Wang et al., 2009).

e We use the mathematical machinery of additive Euclidean func-
fionals (Yukich, 1998, Steele, 1997, Koo and Lee, 2007).

e Computationally more efficient than minimum spanning free es-
fimafor (Hero and Michel, 1999, Poczos et al., 2010).

The Rényi entropy and the Rényi mutual information of order
o of d real-valued random variables X = (X! X2, ..., X% with joint
density f : R? — R and marginal densities f; : R - R, 1 < i < d are
for a # 1 respectively defined by

1
H.(f) = . log . ot 2?2 d(zt 22, 5

b d l—«
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1=1

The limits Hy(f) = lim, 1 H,(f) and [(f) = lim,_; I,(f) are the Shan-
non entropy and the Shannon mutual information respectively.

Generalized Nearest Neighbor Graphs

Fix a finite non-empty set S of positive infegers; e.g. S =
{1,2,...,k} or S = {k}. Given a finite set V of points in R? we de-
fine a generadlized nearest neighbor graph NNg(V) as a directed
graph on V where for each point x € V. and each i € S there is an
edge from x to ifs +-th nearest neighbor in V. We define

Lp<v> — Z

(x,y)EE(NNs(V))

Theorem. (Constant ~) IfU,, is an i..d. sample of size n from the uni-

form distribution over [0,1]¢ then for any p € [0,d] and any S there

exists a constant ~ > 0 such that

. L,(U,

tim 2C0

Using this theorem we can estimate the constant ~ tfo arbitrary
precision.
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Figure 1: Nearest neighbor graph
NNg(U,) on a sample consisting
of n = 200 points drawn I.i.d. from
the uniform distribution over [0, 1]
and with S = {1, 2, 3}.

Entropy Estimator

Given ani.i.d. sample X, = (X, Xy, ..., X,,) where each X, has
density f, we estimate H,(f) fora € (0,1) by

- 1 Lp(Xlzn)
Ha(Xlzn) — 1 — o 10% an_p/d

where p=d(l—a).

Theorem (Consistency and Rate for H,). Let X,.,, = (X1, X, ..., X,)
be an i.i.d. sample from a distribution over R? with bounded sup-
port and density f. Then,

lim H.(Xy.,,) = H.(f)  as.

n—oo

Moreover, If f Is Lipschitz then for any 6 > 0 with probability at least
1— 0,

_ O (n ™7 (log(1 /5))1/2—p/<2d>) S ifo<p<d—1;

Ha X m) Hoz f S i
( 1 ) ( ) O n_d(d+1)(]Og(l/g))l/Q—p/(Qd)) : ifd—1< D < d .

Copulas and Estimator of Mutual Information

We estimate the Rényi mutual information I,(f) by

AN

1,(X1.,) = H,(Empirical Copula(X.,)) .

Theorem (Consistency and Rate for 1,). Letd > 3 and a = 1 — p/d €
(1/2,1). Let u be an absolutely continuous distribution over R with
density f. If Xy, = (X1, Xo,...,X,) IS an ii.d. sample from u then

lim I,(X.,) = L.(f)  a.s.

n—oo
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Moreover, if the density of the copula of . is Lipschitz, then for any
0 > 0 with probabllity at least 1 — 9,

O (max{n_%, n~P/2p/dY /log(%)) , Ifo<p<1;
T(X..) — L f)‘ <{0 (max{n—%, p /24l /log(%)) Cifl<p<d—1-:
O (max{n_dfldfw, n~1/2p/dY, /10g(%)> , Ifd—1<p<d.
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Figure 2: Sample from the uniform distribufion over a triangle with
vertices (0,0), (3,0), (0,3) and its empirical copula.
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