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Introduction

• Long history of non-parametric estimators of entropy and mutual
information based on nearest neighbor graphs [Kozachenko and
Leonenko, 1987, Hero and Michel, 1999, Goria et al., 2005, Leonenko et al.,
2008b, Wang et al., 2009].
•We are the first to correctly prove almost sure consistency and

rates of convergence [Leonenko et al., 2008a, Kozachenko and Leo-
nenko, 1987, Wang et al., 2009].
•We use the mathematical machinery of additive Euclidean func-

tionals [Yukich, 1998, Steele, 1997, Koo and Lee, 2007].
•Computationally more efficient than minimum spanning tree es-

timator [Hero and Michel, 1999, Póczos et al., 2010].

Definitions

The Rényi entropy and the Rényi mutual information of order
α of d real-valued random variables X = (X1, X2, . . . , Xd) with joint
density f : Rd → R and marginal densities fi : R → R, 1 ≤ i ≤ d are
for α 6= 1 respectively defined by

Hα(f ) =
1

1− α
log

∫
Rd

fα(x1, x2, . . . , xd) d(x1, x2, . . . , xd) ,

Iα(f ) =
1

α− 1
log

∫
Rd

fα(x1, x2, . . . , xd)

(
d∏
i=1

fi(x
i)

)1−α

d(x1, x2, . . . , xd).

The limits H1(f ) = limα→1Hα(f ) and I1(f ) = limα→1 Iα(f ) are the Shan-
non entropy and the Shannon mutual information respectively.

Generalized Nearest Neighbor Graphs

Fix a finite non-empty set S of positive integers; e.g. S =
{1, 2, . . . , k} or S = {k}. Given a finite set V of points in Rd we de-
fine a generalized nearest neighbor graph NNS(V ) as a directed
graph on V where for each point x ∈ V and each i ∈ S there is an
edge from x to its i-th nearest neighbor in V . We define

Lp(V ) =
∑

(x,y)∈E(NNS(V ))

‖x− y‖p .

Theorem. (Constant γ) If Un is an i.i.d. sample of size n from the uni-
form distribution over [0, 1]d then for any p ∈ [0, d] and any S there
exists a constant γ > 0 such that

lim
n→∞

Lp(Un)
n1−p/d

= γ a.s.

Using this theorem we can estimate the constant γ to arbitrary
precision.

Figure 1: Nearest neighbor graph
NNS(Un) on a sample consisting
of n = 200 points drawn i.i.d. from
the uniform distribution over [0, 1]2

and with S = {1, 2, 3}.

Entropy Estimator

Given an i.i.d. sample X1:n = (X1,X2, . . . ,Xn) where each Xi has
density f , we estimate Hα(f ) for α ∈ (0, 1) by

Ĥα(X1:n) =
1

1− α
log

Lp(X1:n)

γn1−p/d
where p = d(1− α) .

Theorem (Consistency and Rate for Ĥα). Let X1:n = (X1,X2, . . . ,Xn)
be an i.i.d. sample from a distribution over Rd with bounded sup-
port and density f . Then,

lim
n→∞

Ĥα(X1:n) = Hα(f ) a.s.

Moreover, if f is Lipschitz then for any δ > 0 with probability at least
1− δ,∣∣∣Ĥα(X1:n)−Hα(f )

∣∣∣ ≤
O

(
n−

d−p
d(2d−p)(log(1/δ))1/2−p/(2d)

)
, if 0 < p < d− 1 ;

O
(
n−

d−p
d(d+1)(log(1/δ))1/2−p/(2d)

)
, if d− 1 ≤ p < d .

Copulas and Estimator of Mutual Information

We estimate the Rényi mutual information Iα(f ) by

Îα(X1:n) = Ĥα(Empirical Copula(X1:n)) .

Theorem (Consistency and Rate for Îα). Let d ≥ 3 and α = 1 − p/d ∈
(1/2, 1). Let µ be an absolutely continuous distribution over Rd with
density f . If X1:n = (X1,X2, . . . ,Xn) is an i.i.d. sample from µ then

lim
n→∞

Îα(X1:n) = Iα(f ) a.s.

Moreover, if the density of the copula of µ is Lipschitz, then for any
δ > 0 with probability at least 1− δ,

∣∣∣Îα(X1:n) − Iα(f )
∣∣∣ ≤


O
(
max{n−

d−p
d(2d−p), n−p/2+p/d}

√
log(1δ)

)
, if 0 < p ≤ 1 ;

O
(
max{n−

d−p
d(2d−p), n−1/2+p/d}

√
log(1δ)

)
, if 1 ≤ p ≤ d− 1 ;

O
(
max{n−

d−p
d(d+1), n−1/2+p/d}

√
log(1δ)

)
, if d− 1 ≤ p < d .
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Figure 2: Sample from the uniform distribution over a triangle with
vertices (0, 0), (3, 0), (0, 3) and its empirical copula.
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