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Abstract. We define a novel, basic, unsupervised learning problem -
learning the the lowest density homogeneous hyperplane separator of an
unknown probability distribution. This task is relevant to several prob-
lems in machine learning, such as semi-supervised learning and cluster-
ing stability. We investigate the question of existence of a universally
consistent algorithm for this problem. We propose two natural learning
paradigms and prove that, on input unlabeled random samples generated
by any member of a rich family of distributions, they are guaranteed to
converge to the optimal separator for that distribution. We complement
this result by showing that no learning algorithm for our task can achieve
uniform learning rates (that are independent of the data generating dis-
tribution).

1 Introduction

While the theory of machine learning has achieved extensive understanding of
many aspects of supervised learning, our theoretical understanding of unsuper-
vised learning leaves a lot to be desired. In spite of the obvious practical impor-
tance of various unsupervised learning tasks, the state of our current knowledge
does not provide anything that comes close to the rigorous mathematical per-
formance guarantees that classification prediction theory enjoys.

In this paper we make a small step in that direction by analyzing one specific
unsupervised learning task – the detection of low-density linear separators for
data distributions over Euclidean spaces.

We consider the following task: for an unknown data distribution over R
n,

find the homogeneous hyperplane of lowest density that cuts through that distribu-
tion. We assume that the underlying data distribution has a continuous density
function and that the data available to the learner are finite i.i.d. samples of
that distribution.

Our model can be viewed as a restricted instance of the fundamental issue of
inferring information about a probability distribution from the random samples
it generates. Tasks of that nature range from the ambitious problem of density



estimation [7], through estimation of level sets [3], [12], [11], densest region de-
tection [2], and, of course, clustering. All of these tasks are notoriously difficult
with respect to both the sample complexity and the computational complexity
aspects (unless one presumes strong restrictions about the nature of the under-
lying data distribution). Our task seems more modest than these. Although we
are not aware of any previous work on this problem (from the point of view of
statistical machine learning, at least), we believe that it is a rather basic problem
that is relevant to various practical learning scenarios.

One important domain to which the detection of low-density linear data sep-
arators is relevant is semi-supervised learning [6]. Semi-supervised learning is
motivated by the fact that in many real world classification problems, unlabeled
samples are much cheaper and easier to obtain than labeled examples. Conse-
quently, there is great incentive to develop tools by which such unlabeled samples
can be utilized to improve the quality of sample based classifiers. Naturally, the
utility of unlabeled data to classification depends on assuming some relationship
between the unlabeled data distribution and the class membership of data points
(see [4] for a rigorous discussion of this point). A common postulate of that type
is that the boundary between data classes passes through low-density regions
of the data distribution. The Transductive Support Vector Machines paradigm
(TSVM) [8] is an example of an algorithm that implicitly uses such a low density
boundary assumption. Roughly speaking, TSVM searches for a hyperplane that
has small error on the labeled data and at the same time has wide margin with
respect to the unlabeled data sample.

Another area in which low-density boundaries play a significant role is the
analysis of clustering stability. Recent work on the analysis of clustering stability
found close relationship between the stability of a clustering and the data density
along the cluster boundaries – roughly speaking, the lower these densities the
more stable the clustering ([5], [10]).

A low-density-cut algorithm for a family F of probability distributions takes
as an input a finite sample generated by some distribution f ∈ F and has to
output a hyperplane through the origin with low density w.r.t. f . In particular,
we consider the family of all distributions over R

n that have continuous density
functions. We investigate two notions of success for low-density-cut algorithms –
uniform convergence (over a family of probability distributions) and consistency.
For uniform convergence we prove a general negative result, showing that no al-
gorithm can guarantee any fixed convergence rates (in terms of sample sizes).
This negative result holds even in the simplest case where the data domain
is the one-dimensional unit interval. For consistency (e.g., allowing the learn-
ing/convergence rates to depend on the data-generating distribution), we prove
the success of two natural algorithmic paradigms; Soft-Margin algorithms that
choose a margin parameter (depending on the sample size) and output the sep-
arator with lowest empirical weight in the margins around it, and Hard-Margin
algorithms that choose the separator with widest sample-free margins.

The paper is organized as follows: Section 2 provides the formal definition of
our learning task as well as the success criteria that we investigate. In Section



3 we present two natural learning paradigms for the problem over the real line
and prove their universal consistency over a rich class of probability distribu-
tions. Section 4 extends these results to show the learnability of lowest-density
homogeneous linear cuts for probability distributions over Rd for arbitrary di-
mension, d. In Section 5 we show that the previous universal consistency results
cannot be improved to obtain uniform learning rates (by any finite-sample based
algorithm). We conclude the paper with a discussion of directions for further re-
search.

2 Preliminaries

We consider probability distributions over R
d. For concreteness, let the domain

of the distribution be the d-dimensional unit ball.
A linear cut learning algorithm is an algorithm that takes as input a finite

set of domain points, a sample S ⊆ R
d, and outputs a homogenous hyperplane,

L(S) (determined by a weight vector, w ∈ R
d, such that ||w||2 = 1).

We investigate algorithms that aim to detect hyperplanes with low density
with respect to the sample-generating probability distribution.

Let f : R
d → R

+
0 be a d-dimensional density function. We assume that f is

continuous. For any homogeneous hyperplane h(w) = {x ∈ R
d : wTx = 0}

defined by a unit weight vector w ∈ R
d, we consider the (d − 1)-dimensional

integral of the density over h,

f(w) :=

∫

h(w)

f(x) dx .

Note that w 7→ f(w) is a continuous mapping defined on the (d − 1)-sphere
Sd−1 = {w ∈ R

d : ‖w‖2 = 1}. Note that, for any such weight vector w,
f(w) = f(−w). For the 1-dimensional case, these hyperplanes are replaced by
points, x on the real line, and f(x) = f(x) – the density at the point x.

Definition 1. A linear cut learning algorithm is a function that maps samples
to homogeneous hyperplanes. Namely,

L :

∞
⋃

m=1

(Rd)m → Sd−1.

When d = 1, we require that

L :
∞
⋃

m=1

R
m → [0, 1].

(The intention is that L finds the lowest density linear separator of the sample
generating distribution.)

Definition 2. Let µ be a probability distribution and f its density function. For
a weight vector w we define the half-spaces h+(w) = {x ∈ R

d : wT x ≥ 0} and
h−(w) = {x ∈ R

d : wT x ≤ 0}. For any weight vectors w and w′,



1. DE(w,w′) = 1 − |wTw
′|

2. Dµ(w,w′) = min{µ(h+(w)∆h+(w′)), µ(h−(w)∆h+(w′))}
3. Df (w,w′) = |f(w′) − f(w)|

We shall mostly consider the distance measure DE in R
d, for d > 1 and

DE(x, y) = |x − y| for x, y ∈ R. In theses cases we omit any explicit reference
to D. All of our results hold as well when D is taken to be the probability mass
of the symmetric difference between L(S) and w∗ and when D is taken to be
D(w,w′) = |f(w) − f(w′)|.

Definition 3. Let F denote a family of probability distributions over R
d. We

assume that all members of F have density functions, and identify a distribution
with its density function. Let D denote a distance function over hyperplanes. For
a linear cut learning algorithm, L, as above,

1. We say that L, is consistent for F w.r.t a distance measure D, if, for any
probability distribution f in F , if f attains a unique minimum density hy-
perplane then

∀ε > 0 lim
m→∞

Pr
S∼fm

[D(L(S),w∗) ≥ ε] = 0 . (1)

where w∗ is the minimum density hyperplane for f .

2. We say that L is uniformly convergent for F (w.r.t a distance measure,
D), if, for every ε, δ > 0, there exists a m(ε, δ) such that for any probability
distribution f ∈ F , if f has a unique minimizer w∗ then, for all m ≥ m(ε, δ)
we have

Pr
S∼fm

[D(L(S),w∗) ≥ ε] ≤ δ. (2)

3 The One Dimensional Problem

Let F1 be the family of all probability distributions over the unit interval [0, 1]
that have continuous density function. We consider two natural algorithms for
lowest density cut over this family. The first is a simple bucketing algorithm. We
explain it in detail and show its consistency in section 3.1. The second algorithm
is the hard-margin algorithm which outputs the mid-point of the largest gap
between two consecutive points the sample. In section 3.2 we show hard-margin
algorithm is consistent and in section 3.1 that the bucketing algorithm is consis-
tent. In section 5 we show there are no algorithms that are uniformly convergent
for F1.

3.1 The Bucketing Algorithm

The algorithm is parameterized by a function k : N → N. For a sample of size
m, the algorithm splits the interval [0, 1] into k(m) equal length subintervals
(buckets). Given an input sample S, it counts the number of sample points lying



in each bucket and outputs the mid-point of the bucket with fewest sample
points. In case of ties, it picks the rightmost bucket. We denote this algorithm
by Bk. As it turns out, there exists a choice of k(m) which makes the algorithm
Bk consistent for F1.

Theorem 1. If the number of buckets k(m) = o(
√

m) and k(m) → ∞ as m →
∞, then the bucketing algorithm Bk is consistent for F1.

Proof. Fix f ∈ F1, assume f has a unique minimizer x∗. Fix ε, δ > 0. Let
U = (x∗ − ε/2, x∗ + ε/2) be an neighbourhood of the unique minimizer x∗. The
set [0, 1] \ U is compact and hence there exists α := min f([0, 1] \ U). Since x∗

is the unique minimizer of f , α > f(x∗) and hence η := α − f(x∗) is positive.
Thus, we can pick a neighbourhood V of x∗, V ⊂ U , such that for all x ∈ V ,
f(x) < α − η/2.

The assumptions on growth of k(m) imply that there exists m0 such that for
all m ≥ m0

1/k(m) < |V |/2 (3)

2

√

ln(1/δ)

m
<

η

2k(m)
(4)

Fix any m ≥ m0. Divide [0, 1] into k(m) buckets each of length 1/k(m). For
any bucket I, I ∩ U = ∅,

µ(I) ≥ α

k(m)
. (5)

Since 1/k(m) < |V |/2 there exists a bucket J such that J ⊆ V . Furthermore,

µ(J) ≤ α − η/2

k(m)
. (6)

For a bucket I, we denote by |I ∩ S| the number of sample points in the
bucket I. From the well known Vapnik-Chervonenkis bounds [1], we have that
with probability at least 1 − δ over i.i.d. draws of sample S of size m, for any
bucket I,

∣

∣

∣

∣

|I ∩ S|
m

− µ(I)

∣

∣

∣

∣

≤
√

ln(1/δ)

m
. (7)



Fix any sample S satisfying the inequality (7) . For any bucket I, I ∩U = ∅,

|J ∩ S|
m

≤ µ(J) +

√

ln(1/δ)

m
by (7)

≤ α − η/2

k(m)
+

√

ln(1/δ)

m
by (6)

<
α

k(m)
− 2

√

ln(1/δ)

m
+

√

ln(1/δ)

m
by (4)

≤ µ(I) −
√

ln(1/δ)

m
by (5)

≤ |I ∩ S|
m

by (7)

Since |J ∩ S| > |I ∩ S|, the algorithm Bk must not output the mid-point of any
bucket I for which I ∩U = ∅. Henceforth, the algorithm’s output, Bk(S), is the
mid-point of an bucket I which intersects U . Thus the estimate Bk(S) differs
from x∗ by at most the sum of the radius of the neighbourhood U and the radius
of the bucket. Since the length of a bucket is 1/k < |V |/2 and V ⊂ U , the sum
of the radii is

|U |/2 + |V |/4 <
3

4
|U | < ε .

Combining all the above, we have that for any ε, δ > 0 there exists m0 such
that for any m ≥ m0, with probability at least 1 − δ over the draw of an i.i.d.
sample S of size m, |Bk(S) − x∗| < ε. This is the same as saying that Bk is
consistent for f . ut

Note that in the above proof we cannot replace the condition k(m) = o(
√

m)
with k(m) = O(

√
m) since Vapnik-Chervonenkis bounds do not allow us to

detect O(1/
√

m)-difference between probability masses of two buckets.

The following theorems shows that if there are too many buckets the buck-
eting algorithm is not consistent anymore.

Theorem 2. If the number of buckets k(m) = ω(m/ log m), then Bk is not
consistent for F1.

To prove the theorem we need a proposition of the following lemma dealing
with the classical coupon collector problem.

Lemma 1 (The Coupon Collector Problem [9]). Let the random variable
X denote the number of trails for collecting each of the n types of coupons. Then
for any constant c ∈ R, and m = n lnn + cn,

lim
n→∞

Pr[X > m] = 1 − e−e−c

.



Proof (of Theorem 2). Consider the following density f on [0, 1],

f(x) =











(4 − 16x)/3 if x ∈ [0, 1
4 ]

(16x − 4)/3 if x ∈ (1
4 , 1

2 )

4/3 if x ∈ [ 12 , 1]

which attains unique minimum at x∗ = 1/4.
From the assumption on the growth of k(m) for all sufficiently large m,

k(m) > 4 and k(m) > 8m/ lnm. Consider the all buckets lying in the interval
[12 , 1] and denote them by b1, b2, . . . , bn. Since the bucket size is less than 1/4,
they cover the interval [34 , 1]. Hence their length total length is at least 1/4 and
hence there are

n ≥ k(m)/4 > 2m/ lnm

such buckets.
We will show that for m large enough, with probability at least 1/2, at

least one of the buckets b1, b2, . . . , bn receives no sample point. Since probability
masses of b1, b2, . . . , bn are the same, we can think of these buckets as coupon
types we are collecting and the sample points as coupons. By Lemma 1, it suffices
to verify, that the number of trials, m, is at most 1

2n lnn. Indeed, we have

1

2
n lnn ≥ 1

2

2m

lnm
ln

(

2m

lnm

)

=
m

lnm
(lnm + ln 2 − ln lnm) ≥ m ,

where the last inequality follows from that large enough m. Now, Lemma 1
implies that for sufficiently large m, with probability at least 1/2, at least one
of the buckets b1, b2, . . . , bn contains no sample point.

If there are empty buckets in [12 , 1], the algorithm outputs a point in [12 , 1].
Since this happens with probability at least 1/2 and since x∗ = 1/4, the algo-
rithm cannot be consistent. ut

When the number of buckets k(m) is asymptotically somewhere in between√
m and m/ lnm, the bucketing algorithm switches from being consistent to

failing consistency. It remains an open question to determine where exactly the
transition occurs.

3.2 The Hard-Margin Algorithm

Let the hard-margin algorithm be the function that outputs the mid-point of
the largest interval between the adjacent sample points. More formally, given a
sample S of size m, the algorithm sorts the sample S ∪ {0, 1} so that x0 = 0 ≤
x1 ≤ x2 ≤ · · · ≤ xm ≤ 1 = xm+1 and outputs the midpoint (xi + xi+1)/2 where
the index i, 0 ≤ i ≤ m, is such that the gap [xi, xi+1] is the largest.

Henceforth, the notion largest gap refers to the length of the largest interval
between the adjacent points of a sample.

Theorem 3. The hard-margin algorithm is consistent for the family F1.



To prove the theorem we need the following lemma.

Lemma 2. Let Lm be the random variable denoting the largest gap between
adjacent points of an i.i.d. sample of size m from the uniform distribution on
[0, 1]. For any ε > 0

lim
m→∞

Pr

[

Lm ∈
(

(1 − ε)
lnm

m
, (1 + ε)

lnm

m

)]

= 1.

Proof (of Lemma). Consider the uniform distribution over the unit circle. Sup-
pose we draw an i.i.d. sample of size m from this distribution. Let Km denote
the size of the largest gap between two adjacent samples. It is not hard so see
that the distribution of Km is the same as that of Lm−1. Furthermore, since

ln(m)/m
ln(m+1)/(m+1) → 1, we can thus prove the lemma with Lm replaced by Km.

Fix ε > 0. First, let us show that for m sufficiently large Km is with probabil-

ity 1−o(1) above the lower bound (1−ε) ln m
m . We split the unit circle b = m(1−ε)

ln m

buckets, each of length (1 − ε) lnm
m . It follows from Lemma 1, that for any con-

stant ζ > 0 and an i.i.d. sample of (1 − ζ)b ln b points at least one bucket is
empty with probability 1 − o(1). We show that for some ζ, m ≤ (1 − ζ)b ln b.
The expression on the right side can be rewritten as

(1 − ζ)b ln b = (1 − ζ)(1 + δ)
m

ln m
ln

(

(1 − ζ)(1 + δ)
m

lnm

)

≥ m(1 − ζ)(1 + δ)

(

1 − O

(

ln lnm

lnm

))

For ζ sufficiently small and m sufficiently large the last expression is greater
than m, yielding that a sample of m points misses at least one bucket with
probability 1 − o(1). Therefore, the largest gap Km is with probability 1 − o(1)
at least (1 − ε) ln m

m .
Next, we show that for m sufficiently large, Km is with probability 1 − o(1)

below the upper bound (1 + ε) lnm
m . We consider 3/ε bucketings B1,B2, . . . ,B3/ε.

Each bucketing Bi, i = {1, 2, . . . , (3/ε)}, is a division of the unit circle into
b = m

(1+ε/3) lnm equal length buckets; each bucket has length ` = (1 + ε/3) lnm
m .

The bucketing Bi will have its left end-point of the first bucket at position i(`ε/3).
The position of the left end-point of the first bucket of a bucketing is called the
offset of the bucketing.

We first show that there exists ζ > 0 such that m ≥ (1 + ζ)b ln b for all
sufficiently large m. Indeed,

(1 + ζ)b ln b = (1 + ζ)
m

(1 + ε/3) lnm
ln

(

m

(1 + ε/3) lnm

)

≤ 1 + ζ

1 + ε/3
m

(

1 − O

(

ln lnm

lnm

))

.

For any ζ < ε/3 and sufficiently large m the last expression is greater than m.



The existence of such ζ and Lemma 1 guarantee that for all sufficiently large
m, for of each bucketing Bi, with probability 1 − o(1), each bucket is hit by a
sample point. We now apply union bound and get that, for all sufficiently large
m, with probability 1− (3/ε)o(1) = 1− o(1), for each bucketing Bi, each bucket
is hit by at least one sample point. Consider any sample S such that for each
bucketing, each bucket is hit by at least one point of S. Then, the largest gap in
S can not be bigger than the bucket size plus the difference of offsets between
two adjacent bucketings, since otherwise the largest gap would demonstrate an
empty bucket in at least one of the bucketings. In other, words the largest gap,
Km, is at most

Km ≤ (`ε/3) + ` = (1 + ε/3)` = (1 + ε/3)2
lnm

m
< (1 + ε)

lnm

m

for any ε < 1.
ut

Proof (of the Theorem). Consider any two disjoint intervals U, V ⊆ [0, 1] such

that for any x ∈ U and any y ∈ V , f(x)
f(y) < p < 1 for some p ∈ (0, 1). We claim

that with probability 1 − o(1), the largest gap in U is bigger than the largest
gap in V .

If we draw an i.i.d. sample m points from µ, according to the law of large
numbers for an arbitrarily small χ > 0, the ratio between the number of points
mU in the interval U and the number of points mV in the interval V with
probability 1 − o(1) satisfies

mU

mV
≤ p(1 + χ)

|U |
|V | . (8)

For a fixed χ, choose a constant ε > 0 such that 1−ε
1+ε > p + χ.

From Lemma 2 we show that with probability 1−o(1) the largest gap between
adjacent sample points falling into U is at least (1 − ε)|U | lnmU

mU
. Similarly, with

probability 1 − o(1) the largest gap between adjacent sample points falling into
V is at most (1 + ε)|V | ln mV

mV

. From (8) it follows that the ratio of gap sizes with
probability 1 − o(1) is at least

(1 − ε)|U | ln mU

mU

(1 + ε)|V | ln mV

mV

>
1 − ε

1 + ε

1

p + χ

lnmU

lnmV
= (1 + γ)

lnmU

lnmV

≥ (1 + γ)
ln((p + χ) |U|

|V |mV )

lnmV
= (1 + γ) (1 + O(1)/lnmV ) → (1 + γ) as m → ∞

for a constant γ > 0 such that 1 + γ ≤ 1−ε
1+ε

1
p+χ . Hence for sufficiently large m

with probability 1− o(1), the largest gap in U is strictly bigger than the largest
gap in V .

Now, we can choose intervals V1, V2 such that [0, 1]\(V1∪V2) is an arbitrarily
small neighbourhood containing x∗. We can pick an even smaller neighbourhood



U containing x∗ such that for all x ∈ U and all y ∈ V1 ∪ V2,
f(x)
f(y) < p < 1 for

some p ∈ (0, 1). Then with probability 1 − o(1), the largest gap in U is bigger
than largest gap in V1 and the largest gap in V2. ut

4 Learning Linear Cut Separators in High Dimensions

In this section we consider the problem of learning the minimum density homoge-
neous (i.e. passing through origin) linear cut in distributions over R

d. Namely, as-
suming that some unknown probability distribution generates i.i.d. finite sample
of points in R

d. We wish to process these samples to find the (d−1)-dimensional
hyperplane, through the origin of R

d, that has the lowest probability density
with respect to the sample-generating distribution. In other words, we wish to
find how to cut the space R

d through the origin in the “sparsest direction”.

Formally, let Fd be the family of all probability distributions over the R
d

that have a continuous density function. We wish to show that there exists a
linear cut learning algorithm that is consistent for Fd. Note by Theorem 5, no
algorithm achieves uniform convergence for Fd (even for d = 1).

Define the soft-margin algorithm with parameter γ : N → R
+ as follows.

Given a sample S of size m, it counts for every hyperplane, the number of
sample points lying within distance γ := γ(m) and outputs the hyperplane with
the lowest such count. In case of the ties, it breaks them arbitrarily. We denote
this algorithm by Hγ . Formally, for any weight vector w ∈ Sd−1 (the unit sphere
in R

d) we consider the “γ-strip”

h(w, γ) = {x ∈ R
d : |wTx| ≤ γ}

and count the number of sample points lying in it. We output the weight vector
w for which the number of sample points in h(w, γ) is the smallest; we break
ties arbitrarily.

To fully specify the algorithm, it remains to specify the function γ(m). As
it turns out, there is a choice of the function γ(m) which makes the algorithm
consistent.

Theorem 4. If γ(m) = ω(1/
√

m) and γ(m) → 0 as m → ∞, then Hγ is
consistent for Fd.

Proof. The structure of the proof is similar to the proof of Theorem 1. However,
we will need more technical tools.

First let’s fix f . For any weight vector w ∈ Sd−1 and any γ > 0, we define

fγ(w) as the d-dimensional integral

fγ(w) :=

∫

h(w,γ)

f(x) dx



over γ-strip along w. Note that for any w ∈ Sd−1,

lim
m→∞

fγ(m)(w)

γ
= f(w)

(assuming that γ(m) → 0). In other words, the sequence of functions
{

fγ(m)/γ(m)
}∞

m=1
,

f/γ(m) : Sd−1 → R
+
0 , converges point-wise to the function f : Sd−1 → R

+
0 .

Note that f/γ(m) : Sd−1 → R
+
0 is continuous for any m, and recall that Sd−1

is compact. Therefore the sequence
{

fγ(m)/γ(m)
}∞

m=1
converges uniformly to

f . In other words, for every ζ > 0 there exists m0 such that for any m ≥ 0 and
any w ∈ Sd−1,

∣

∣

∣

∣

∣

fγ(m)(w)

γ(m)
− f(w)

∣

∣

∣

∣

∣

< ζ .

Fix f and ε, δ > 0. Let U = {w ∈ Sd−1 : |wT w∗| > 1− ε} be the “ε-double-
neighbourhood” of the antipodal pair {w∗,−w∗}. The set Sd−1 \ U is compact
and hence α := min f(Sd−1 \ U) exists. Since w∗,−w∗ are the only minimizers
of f , α > f(w∗) and hence η := α − f(w∗) is positive.

The assumptions on γ(m) imply that there exists m0 such that for all m ≥
m0,

2

√

d + ln(1/δ)

m
<

η

3
γ(m) (9)

∣

∣

∣

∣

∣

fγ(m)(w)

γ(m)
− f(w)

∣

∣

∣

∣

∣

< η/3 for all w ∈ Sd−1 (10)

Fix any m ≥ m0. For any w ∈ Sd−1 \ U , we have

fγ(m)(w)

γ(m)
> f(w) − η/3 by (10)

≥ f(w∗) + η − η/3 by choice of η and U

= f(w∗) + 2η/3

>
fγ(m)(w

∗)

γ(m)
− η/3 + 2η/3 by (10)

=
fγ(m)(w

∗)

γ(m)
+ η/3 .

From the above chain of inequalities, after multiplying by γ(m), we have

fγ(m)(w) > fγ(m)(w
∗) + ηγ(m)/3 . (11)



From the well known Vapnik-Chervonenkis bounds [1], we have that with
probability at least 1− δ over i.i.d. draws of S of size m we have that for any w,

∣

∣

∣

∣

|h(w, γ) ∩ S|
m

− fγ(m)(w)

∣

∣

∣

∣

≤
√

d + ln(1/δ)

m
, (12)

where |h(w, γ) ∩ S| denotes the number of sample points lying in the γ-strip
h(w, γ).

Fix any sample S satisfying the inequality (12). We have, for any w ∈ Sd−1 \
U ,

|h(w, γ) ∩ S|
m

≥ fγ(m)(w) −
√

d + ln(1/δ)

m

> fγ(m)(w
∗) + ηγ(m)/3 −

√

d + ln(1/δ)

m

≥ |h(w∗, γ) ∩ S|
m

−
√

d + ln(1/δ)

m
+ ηγ/3 −

√

d + ln(1/δ)

m

>
|h(w∗, γ) ∩ S|

m

Since |h(w, γ) ∩ S| > |h(w∗, γ) ∩ S|, the algorithm must not output a weight
vector w lying in Sd−1 \ U . In other words, the algorithm’s output, Hγ(S), lies
in U i.e. |Hγ(S)Tw∗| > 1 − ε.

We have proven, that for any ε, δ > 0, there exists m0 such that for all
m ≥ m0, if a sample S is drawn i.i.d. from f , then |Hγ(S)Tw∗| > 1− ε. In other
words, Hγ is consistent for f . ut

5 The impossibility of Uniform Convergence

In this section we show a negative result that roughly says one cannot hope for
an algorithm that can achieve ε accuracy and 1 − δ confidence for sample sizes
that only depend on these parameters and not on properties of the probability
measure.

Theorem 5. No linear cut learning algorithm is uniformly convergent for F1

with respect to any of the distance functions DE, Df and Dµ.

Proof. For a fixed δ > 0 we show that for any m ∈ N there are distributions with
density functions f and g such that no algorithm using a random sample of size
at most m drawn from one of the distributions chosen uniformly at random, can
identify the distribution with probability of error less than 1/2 with probability
at least δ over random choices of a sample.

Since for any δ and m we find densities f and g such that with probability
more than (1 − δ) the output of the algorithm is bounded away by 1/4 from
either 1/4 or 3/4, for the family F1 no algorithm converges uniformly w.r.t. any
distance measure.



Consider two partly linear density functions f and g defined in [0, 1] such
that for some n, f is linear in the intervals [0, 1

4 − 1
2n ], [14 − 1

2n , 1
4 ], [14 , 1

4 + 1
2n )],

and [14 + 1
2n , 1], and satisfies

f(0) = f

(

1

4
− 1

2n

)

= f

(

1

4
+

1

2n

)

= f(1), f

(

1

4

)

= 0,

and gm is the reflection of fm w.r.t. to the centre of the unit interval, i.e. f(x) =
g(1 − x). The functions f and g can be simply described as constant functions
anywhere except of a thin V -shape around 1/4 resp. 3/4 with the bottom at 0
in each of them. For any x /∈ [ 14 − 1

2n , 1
4 + 1

2n ] ∪ [34 − 1
2n , 3

4 + 1
2n ], f(x) = g(x).

1/n

f

x∗ = 1/4

1/n
g

x∗ = 3/4

Fig. 1. f is uniform everywhere except a small neighbourhood around 1/4 where it has
a sharp ‘v’ shape. And g is the reflection of f about x = 1/2.

Let us lower-bound the probability that a sample of size m drawn from f
misses the set U ∪ V for U := [14 − 1

2n , 1
4 + 1

2n ] and V := [34 − 1
2n , 3

4 + 1
2n ].

For any x ∈ U and y /∈ U , f(x) ≤ f(y), and furthermore, f is constant on
the set [0, 1] \ U containing at most the entire probability mass 1. Therefore,
for pf (Z) denoting the probability that a point drawn from the distribution
with the density f hits the set Z, we have pf(U) ≤ pf (V ) ≤ 1

n−1 , yielding that

pf (U ∪V ) ≤ 2
n−1 . Hence, an i.i.d. sample of size m misses U ∪V with probability

at least (1−2/(n−1))m ≥ (1−η)e−2m/n for any constant η > 0 and n sufficiently
large. For a proper η and n sufficiently large we get (1− η)e−2m/n > 1− δ. From
the symmetry between f and g, a random sample of size m drawn from g misses
U ∪ V with the same probability.

We have shown that for any δ > 0, m ∈ N, and for n sufficiently large,
regardless of whether the sample is drawn from either of the two distributions,
it does not intersect U∪V with probability more than 1−δ. Since in [0, 1]\(U∪V )
both density functions are equal, the probability of error in the discrimination
between f and g conditioned on that the sample does not intersect U ∪V cannot
be less than 1/2.

ut

6 Conclusions and open questions

In this paper have presented a novel unsupervised learning problem that is mod-
est enough to allow learning algorithm with asymptotic learning guarantees,
while being relevant to several central challenging learning tasks. Our analysis



can be viewed as providing justification to some common semi-supervised learn-
ing paradigms, such as the maximization of margins over the unlabeled sample
or the search for empirically-sparse separating hyperplanes. As far as we know,
our results provide the first performance guarantees for these paradigms.

From a more general perspective, the paper demonstrates some type of mean-
ingful information about a data generating probability distribution that can
be reliably learned from finite random samples of that distribution, in a fully
non-parametric model – without postulating any prior assumptions about the
structure of the data distribution. As such, the search for a low-density data
separating hyperplane can be viewed as a basic tool for the initial analysis of
unknown data. Analysis that can be carried out in situations where the learner
has no prior knowledge about the data in question and can only access it via
unsupervised random sampling.

Our analysis raises some intriguing open questions. First, note that while
we prove the universal consistency of the ‘hard-margin’ algorithm for Real data
distributions, we do not have a similar result for higher dimensional data. Since
searching for empirical maximal margins is a common heuristic, it is interesting
to resolve the question of consistency of such algorithms.

Another natural research direction that this work calls for is the extension of
our results to more complex separators. In clustering, for example, it is common
to search for clusters that are separated by sparse data regions. however, such
between-cluster boundaries are often not linear. Can one provide any reliable
algorithm for the detection of sparse boundaries from finite random samples
when these boundaries belong to a richer family of functions?

Our research has focused on the information complexity of the task. However,
to evaluate the practical usefulness of our proposed algorithms, one should also
carry a computational complexity analysis of the low-density separation task.
We conjecture that the problem of finding the homogeneous hyperplane with
largest margins, or lowest density around it (with respect to a finite high dimen-
sional set of points) is NP-hard (when the Euclidean dimension is considered
as part of the input, rather than as a fixed constant parameter). however, even
if this conjecture is true, it will be interesting to find efficient approximation
algorithms for these problems.
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7. Luc Devroye and Gábor Lugosi, editors. Combinatorial Methods in Density Esti-

mation. Springer-Verlag, 2001.
8. Thorsten Joachims. Transductive inference for text classification using support

vector machines. In ICML, pages 200–209, 1999.
9. Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge

University Press, 1995.
10. Ohad Shamir and Naftali Tishby. Model selection and stability in k-means clus-

tering. In COLT, 2008.
11. A. Singh, C. Scott, and R. Nowak. Adaptive hausdorff estimation of density level

sets. 2007.
12. A. B. Tsybakov. On nonparametric estimation of density level sets. The Annals

of Statistics, 25(3):948–969, 1997.


