YAHOO!

Parameter-Free Convex Learning through Coin Betting

Francesco Orabona and Dávid Pál

Yahoo Research, NY

Standard Machine Learning procedures

Regularized empirical risk minimization:

$$\underset{w \in \mathbb{R}^d}{\operatorname{arg\,min}} \ \frac{\lambda}{2} \|w\|^2 + \sum_{i=1}^N f(w, x_i, y_i)$$

where f is convex in w.

Standard Machine Learning procedures

Regularized empirical risk minimization:

$$\underset{w \in \mathbb{R}^d}{\operatorname{arg\,min}} \ \frac{\lambda}{2} \|w\|^2 + \sum_{i=1}^N f(w, x_i, y_i)$$

where f is convex in w.

■ How do you choose the regularizer weight λ ?

Standard Machine Learning procedures

Stochastic approximation:

$$w_t = w_{t-1} - \eta_t \nabla f(w_{t-1}, x_t, y_t)$$

where f is convex in w.

Standard Machine Learning procedures

Stochastic approximation:

$$w_t = w_{t-1} - \eta_t \nabla f(w_{t-1}, x_t, y_t)$$

where f is convex in w.

■ How do you choose the learning rate η_t ?

Wasn't machine learning about learning *automatically* from data?

- There is a history of 7 years of parameter-free algorithms that *do not have learning rates nor regularizers to tune*.
- But they were very unintuitive and complex

One Coin to Rule Them All

Online Coin betting algorithms give rise to *optimal* and *parameter-free* learning algorithms

Simple Algorithm & Good Results

- Parameter-free
- Extremely simple algorithm
- Same complexity of SGD
- Kernelizable

See how at the poster!

