
Showing Relevant Ads
via

Context Multi-Armed Bandits
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The Problem

• we’re running a popular website
• users visit our website
• we want to show each user relevant ad for him/her

• relevant = likely to click on
• for each user there is some side information

• (search query, geographic location, cookies, etc.)



Multi-Armed Bandits

• pulling an arm = showing an ad
• reward = click on the ad



Previous Work

Context-Free Multi-Armed Bandits
• historical papers by Robbins in early 1950’s
• stochastic version: Lai & Robbins 1985, Auer et al.

2002
• non-stochastic version: Auer et al. 1995
• Lipschitz version: R. Kleinberg 2005, Auer et al. 2007,

R. Kleinberg et al. 2008



Overview

• Our model with context and Lipschitz condition
• Regret and No-Regret learning
• Statement of our results:

• upper and lower bound on the regret

• Our algorithm
• Idea of the analysis of the algorithm



Lipschitz Context Multi-Armed Bandits

• information x about the user (context)
• suppose we show ad y
• with probability µ(x, y) the user’s clicks on the ad
• assume µ : X × Y → [0, 1] is Lipschitz:

|µ(x, y) − µ(x ′, y ′)| ≤ LX(x, x ′) + LY(y, y ′)

where LX and LY are metrics



The Game

• adversary chooses µ : X × Y → [0, 1] and a sequence
x1, x2, . . . , xT

• algorithm chooses y1, y2, . . . , yT online:
• in round t = 1, 2, . . . ,T the algorithm has access to

• x1, x2, . . . , xt−1
• y1, y2, . . . , yt−1
• µ̂1, µ̂2, . . . , µ̂t−1 ∈ {0, 1}

• adversary reveals xt

• based on this the algorithm outputs yt



Regret

• optimal strategy: in round t = 1, 2, . . . ,T show

y∗t = argmax
y∈Y

µ(xt, y)

• the algorithm shows instead y1, y2, . . . , yT

• difference between expected payoffs

Regret(T) =

T∑
t=1

µ(xt, y∗t ) − E

[
T∑

t=1

µ(xt, yt)

]



No Regret Learning

• per-round regret vanishes:

lim
T→∞

Regret(T)

T
= 0

• how fast is the convergence? typical result:

Regret(T) = O(Tγ)

where 0 < γ < 1.



Our Results

(Oversimplifying and lying somewhat.)

Theorem
If X has “dimension” a and Y has “dimension” b, then
• there exists an algorithm with

Regret(T) = Õ
(

T
a+b+1
a+b+2

)
• for any algorithm

Regret(T) = Ω
(

T
a+b+1
a+b+2

)



Covering Dimension

• let (Z,LZ) be a metric space
• cover the space with ε-balls
• How many balls do we need?
• roughly (1/ε)d

• define d to be the dimension
ε



Optimal Algorithm

• suppose that T is known to the algorithm
• X,Y have dimensions a, b respectively
• discretize X and Y:

ε = T− 1
a+b+2

• X0 are centers of ε-balls covering X
• Y0 are centers of ε-balls covering Y
• round xt to nearest element of X0

• display only ads from Y0



Optimal Algorithm, continued

• for each x0 ∈ X0 and y0 ∈ Y0 maintain:
• number of times y0 was displayed for x0:

n(x0, y0)

• corresponding number of clicks:

m(x0, y0)

• estimate of the click-through rate:

µ(x0, y0) =
m(x0, y0)

n(x0, y0)



Optimal Algorithm, continued

• when xt arrives “round” it to x0 ∈ X0

• show ad y0 ∈ Y0 that maximizes

µ(x0, y0) +

√
log T

1 + n(x0, y0)

(exploration vs. exploitation trade-off)

x0

xt
ε



Idea of Analysis

• let

Rt(x0, y0) =

√
log T

1 + n(x0, y0)

It(x0, y0) = µ(x0, y0) + Rt(x0, y0)

• By Chernoff-Hoeffding bound with high probability

It(x0, y0) ∈ [µ(x0, y0) − ε, µ(x0, y0) + 2Rt(x0, y0) + ε]

for all x0 ∈ X0, y0 ∈ Y0 and all t = 1, 2, . . . ,T
simultaneously.



Idea of Analysis

Fix x0 ∈ X0

µ(x0, ·)

Y0

y1

y2

y3

y4
µ(x0, y4)

µ(x0, y3)

µ(x0, y2)

µ(x0, y1)



Idea of Analysis

The confidence intervals

µ(x0, ·) − ε µ(x0, ·) + 2Rt(x0, ·) + ε



Idea of Analysis

• The algorithm displays the ad maximizing It(x0, ·).
• It(x0, y0)’s lies w.h.p. in the confidence interval.

It(x0, ·)



Idea of Analysis

Regret(T) =

T∑
t=1

µ(xt, y∗t ) − E

[
T∑

t=1

µ(xt, yt)

]

optimal ad y∗

suboptimal ad y

contribution to the regret: µ(x0, y
∗)− µ(x0, y)



Idea of Analysis
If

µ(x0, y) + Rt(x0, y) + ε < µ(x0, y∗) − ε ,

the algorithm stops displaying the suboptimal ad y.

µ(x0, y
∗)− ε

µ(x0, y) + 2Rt(x0, y) + ε



Idea of Analysis

Rt(x0, y) =

√
log T

1 + n(x0, y)

• Confidence interval for y shrinks as nt(x0, y)

increases.
• Thus we can upper bound nt(x0, y) in terms of the

difference
µ(x0, y∗) − µ(x0, y)

• Rest is just a long calculation.



Conclusion

• formulation of Context Multi-Armed Bandits
• roughly matching upper and lower bounds:

T
a+b+1
a+b+2

• www.cs.uwaterloo.ca/˜dpal/papers/
• possible future work: non-stochastic clicks

Thanks!

www.cs.uwaterloo.ca/~dpal/papers/

