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Abstract

We study context multi-armed bandit problems where the context comes from a metric space and the
payoff satisfies a Lipschitz condition with respect to the metric. Abstractly, a context multi-armed bandit
problem models a situation where, in a sequence of independent trials, an online algorithm chooses an
action based on a given context (side information) from a set of possible actions so as to maximize the
total payoff of the chosen actions. The payoff depends on both the action chosen and the context. In
contrast, context-free multi-armed bandit problems, a focus of much previous research, model situations
where no side information is available and the payoff depends only on the action chosen.

Our problem is motivated by sponsored web search, where the task is to display ads to a user of an
Internet search engine based on her search query (context) so as to maximize the click-through rate of
the ads displayed. We cast this problem as a context multi-armed bandit problem where queries and
ads form metric spaces and the payoff function is Lipschitz with respect to both the metrics. For any
ε > 0 we present an algorithm with regret O(T

a+b+1
a+b+2+ε) where a, b are the covering dimensions of the

query space and the ad space respectively. We prove a lower bound Ω(T
ã+b̃+1
ã+b̃+2

−ε) for the regret of any
algorithm where ã, b̃ are packing dimensions of the query spaces and the ad space respectively. For finite
spaces or bounded subsets of Euclidean spaces, this gives an (almost) matching upper and lower bound.
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1 Introduction

Internet search engines, such as Google, Yahoo! and MSN, receive revenue from advertisements shown to
a user’s query. Whenever a user decides to click on an ad displayed for a search query, the advertiser pays
the search engine. Thus, part of the search engine’s goal is to display ads that are most relevant to the user
in the hopes of increasing the chance of a click, and possibly increasing its expected revenue. In order to
achieve this, the search engine has to learn over time which ads are the most relevant to display for different
queries. On the one hand, it is important to exploit currently relevant ads, and on the other hand, one should
explore potentially relevant ads.

This problem can be naturally posed as a multi-armed bandit problem with context. Here by context we
mean a user’s query. Each time a query x arrives and an ad y is displayed there is an (unknown) probability
µ(x, y) that the user clicks on the ad.1 We call µ(x, y) the click-through rate of x and y.

Our goal is to design an online algorithm, which given a query in each time step and a history of past
queries and ad clicks, displays an ad to maximize the expected number of clicks. In our setting, we make a
crucial yet very natural assumption that the space of queries and ads are endowed with a metric and the click-
through rate µ(x, y) satisfies a Lipschitz condition with respect to each coordinate. Informally, we assume
that the click-through rates of two similar ads for the same query are close, and that of two similar queries
for the same ad are also close. Lastly, we assume that the queries are fixed in advance by an adversary and
revealed in each time step (aka oblivious adversary).

Clearly, the best possible algorithm—Bayes optimal —displays, for a given query, the ad which has the
highest click-through rate. Of course, in order to execute it the click-through rates must be known. Instead
we are interested in algorithms that do not depend on the knowledge the click-through rates and whose
performance is still asymptotically the same as that of the Bayes optimal. More precisely, for any algorithm
A, we consider the expected difference between the number of clicks that the Bayes optimal receives and A
receives for T queries. This difference is called the regret of A and is denoted by RA(T ). An algorithm is
said to be asymptotically Bayes optimal if the per-query regret RA(T )/T approaches 0 as T →∞ for any
sequence of queries. The algorithm we present in this paper has this property.

The standard measure of quality of an asymptotically Bayes optimal algorithm is the speed of con-
vergence at which per-round regret approaches zero. Equivalently, one measures the growth of the regret
RA(T ) as T → ∞. The bounds are usually of the form RA(T ) = O(T γ) for some γ < 1. Such regret
bounds are the standard way of measuring performance of algorithms for multi-armed bandit problems, for
online learning problems and, more broadly, for reinforcement learning problems.

Our contribution: The main contribution of this paper are upper and lower bounds on the regret,
independent of the click-through rates, in terms of the covering and packing dimensions of the query space
and the ad space, respectively. The covering dimension of a metric space is defined as the smallest d such
that the number of balls of radius r required to cover the space is O((1/r)d). The packing dimension, is
defined as the largest d̃ such that there for any r there exists a subset of disjoint balls of radius r of size
Ω((1/r)d̃).

For the upper bound, we present an algorithm, which we call the query-ad-clustering algorithm, that
for any ε > 0 achieves regret at most O(T

a+b+1
a+b+2

+ε) where a, b are the covering dimensions of the query

space and the ad space, respectively. We present lower bound Ω(T
ã+b̃+1

ã+b̃+2
−ε) on regret of any algorithm on a

problem where ã, b̃ are the packing dimensions of the query and ads space respectively. More precisely, our
results are stated in the following theorem.

1For simplicity we assume that only one ad is displayed per query. Actual search engines usually display multiple ads at once.
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Theorem 1. Consider a context Lipschitz multi-armed bandit problem with query space X and ads space Y
of size at least 2. Let a, b be the covering dimensions of X, Y respectively. Let ã, b̃ be the packing dimensions
of X, Y respectively. Then,

• For any γ > a+b+1
a+b+2 , there exists an algorithm A and positive constants T0, C such that for any

instance (i.e. click-through rates) µ, any T ≥ T0 and any sequence of queries of T queries the regret
is at most RA(T ) ≤ C · T γ .

• For any γ < ã+b̃+1
ã+b̃+2

there exists positive constants C, T0 such that for any T ≥ T0 and any algorithm A

there exists an instance µ and a sequence of T queries such that the regret is at leastRA(T ) ≥ C ·T γ .

If the query space and the ads space are bounded subsets of Euclidean spaces or are finite then ã = a
and b̃ = b (finite spaces have zero dimension) and the theorem provides matching upper and lower bounds.

Discussion: In this paper we ignore any computational issues. We present the query-ad-clustering algo-
rithm merely as a function or a decision rule, not as a computational procedure. Nevertheless the algorithm
can be turned into an efficiently computable procedure with running time polynomial in T provided that one
can effectively construct coverings of the query and ads spaces.

Organization of the paper: The paper is organized as follows. In section 1.1 we discuss related work.
In section 1.2 we formally define the Lipschitz context multi-armed problem, and we introduce the necessary
notations and definitions. In the rest of the paper we prove Theorem 1. The first part of Theorem 1 is proven
in section 2 where we present the query-ad-clustering algorithm and prove the upper bound on its regret.
The second part of Theorem 1—the lower bound on regret of any algorithm—is proven in section 3.

1.1 Related Work

There is a body of relevant literature on context-free multi-armed bandit problems: first bounds on the regret
for the model with finite action space were obtained in the classic paper by Lai and Robbins [17]; a more
detailed exposition can be found in Auer et al. [2]. A version of the model where the payoffs are chosen
adversarially in each round was introduced by Auer, et al. [3]. In recent years much work has been done
on very large action spaces. Flaxman et al [10] considered a setting where actions form a convex set and in
each round a convex payoff function is adversarially chosen. Continuum actions spaces and payoff functions
satisfying (variants of) Lipschitz condition were studied in [13, 14, 5]. Most recently, metric action spaces
where the payoff function is Lipschitz was considered by Kleinberg et al. [15]. Inspired by their work, we
also consider metric spaces for our work.

Our model can be viewed as a direct and strict generalization of the classical multi-armed bandit prob-
lem by Lai and Robbins and the bandit problem in continuum and general metric spaces as presented by
Agrawall [1] and Kleinberg et al. [15]. These models can be viewed as a special case of our model where
the query space is a singleton. Our upper and lower bounds on the regret apply to these models as well.
Compared to Kleinberg et al.’s results [15] whose bounds are in terms of a metric dependent max-min-
covering dimension, our lower bound might seem contradictory. However, the important difference is the
non-uniformity over the payoff function µ. Namely, our bounds do not depend on µ whereas theirs do.

Online learning model with expert advice is a class of models related to multi-armed bandit problems,
see the book by Cesa-Bianchi and Lugosi [6]. These can viewed as multi-armed bandit problems with side
information, but their structure is different than the structure of our model.

We are aware of two papers that define multi-armed bandit problem with side information: Wang, Kulka-
rni and Poor [20] and Goldenshluger and Zeevi [11]. However, the models in these paper are very different
from ours.
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Regret bounds for reinforcement learning has been studied by several authors. See for example, papers
by Auer and Orbert [4], Mansour and Evan-Dar [9]. For a general overview of reinforcement learning see
the book [19] by Sutton and Barto.

1.2 Notation

Definition 2. A Lipschitz context multi-armed bandit problem (Lipschitz context MAB) is a pair of metric
spaces—a metric space of queries (X, LX) of and a metric space of ads (Y, LY ). An instance of the problem
is a payoff function µ : X × Y → [0, 1] which is Lipschitz in each coordinate, that is,

∀x, x′ ∈ X, ∀y, y′ ∈ Y |µ(x, y)− µ(x′, y′)| ≤ LX(x, x′) + LY (y, y′) . (1)

The above condition can still be meaningful if the metric spaces have diameter greater than unity, how-
ever, we steer clear of the issue of learning meaningful metrics. In the above definition, the Lipschitz
condition (1) can be equivalently, perhaps more intuitively, written as a pair of Lipschitz conditions, one
condition for the query space and one for the ad space:

∀x, x′ ∈ X, ∀y ∈ Y |µ(x, y)− µ(x′, y)| ≤ LX(x, x′) ,

∀x ∈ X, ∀y, y′ ∈ Y |µ(x, y)− µ(x, y′)| ≤ LY (y, y′) .

An algorithm for a Lipschitz context MAB is a sequence A = {At}∞t=1 of functions At : (X × Y ×
[0, 1])t−1 ×X → Y where the function At maps a history (x1, y1, µ̂1), (x2, y2, µ̂2), . . . , (xt−1, yt−1, µ̂t−1)
and a current query xt to an ad yt. The algorithm operates in rounds t = 1, 2, . . . in an online fashion. In
each round t the algorithm first receives a query xt, then (based on the query and the history) it displays an
ad yt, and finally it receives payoff2 µ̂t ∈ [0, 1] which is an independent random variable with expectation
µ(xt, yt). Regret of A after T rounds on a fixed sequence of queries x1, x2, . . . , xT is defined as

RA(T ) =
T∑

t=1

sup
y′t∈Y

µ(xt, y
′
t)−E

[
T∑

t=1

µ(xt, yt)

]

where the expectation is taken over the random choice of the payoff sequence µ̂1, µ̂2, . . . , µ̂T that the algo-
rithm receives.

Our results are upper and lower bounds on the regret. We express those bounds in terms of covering and
packing dimensions of the query space and the ad space, respectively. These dimensions are in turn defined
in terms of covering and packing numbers. We specify these notions formally in the following definition.

Definition 3. Let (Z,LZ) be a metric space. Covering number N (Z,LZ , r) is the smallest number of sets
needed to cover Z such that in each set of the covering any two points have distance less than r. The
covering dimension of (Z,LZ) is

COV(Z,LZ) = inf
{

d : ∃c > 0 ∀r ∈ (0, 1] N (Z,LZ , r) ≤ cr−d
}

.

2In the case of clicks, µ̂t ∈ {0, 1} where µ̂t = 1 indicates that the user has clicked on the ad. Our results, however, are the
same regardless of whether the range of µ̂t is {0, 1} or [0, 1].
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A subset Z0 ⊆ Z is called r-separated if for all z, z′ ∈ Z0 we have LZ(z, z′) ≥ r. The packing number
M(Z,LZ , r) is the largest size of a r-separated subset. Packing dimension of (Z,LZ) is3

PACK(Z,LZ) = sup
{

d : ∃c > 0 ∀r ∈ (0, 1] M(Z,LZ , r) ≥ cr−d
}

.

In the rest of the paper, when a Lipschitz context MAB (X, Y ) is understood, we denote by a, b the
covering dimensions of X, Y respectively and we denote by ã, b̃ the packing dimension of X, Y respectively.

2 Query-Ad-Clustering Algorithm

In this section we present the query-ad-clustering algorithm for the Lipschitz context MAB. Strictly speak-
ing, the algorithm represents, in fact, a class of algorithms, one for each MAB (X, Y ) and each γ > a+b+1

a+b+2 .
First we present the algorithm and then we prove O(T γ) upper bound on its regret.

Before we state the algorithm we define several parameters that depend on (X, Y ) and γ and fully
specify the algorithm. Let a, b to be the covering dimensions of X, Y respectively. We define a′, b′ so that
a′ > a, b′ > b and γ > a′+b′+1

a′+b′+2 . We also let c, d be constants such that the covering numbers of X, Y

respectively are bounded as N (X, r) ≤ cr−a′ and N (Y, r) ≤ dr−b′ . Existence of such constants c, d is
guaranteed by the definition of covering dimension.

Algorithm Description: The algorithm works in phases i = 0, 1, 2, . . . consisting of 2i rounds each.
Consider a particular phase i, at the beginning of the phase, the algorithm partitions the query space X into
disjoint sets (clusters) X1, X2, . . . , XN each of diameter at most r where

r = 2−
i

a′+b′+2 and N = c · 2
a′i

a′+b′+2 . (2)

The existence of such partition X1, X2, . . . , XN follows from the assumption that the covering dimension
of X is a. Similarly, at the beginning of the phase, the algorithm picks a subset Y0 ⊆ Y of size K such that
each y ∈ Y is within distance r to a point in Y , where

K = d · 2
b′i

a′+b′+2 . (3)

The existence of such Y0 comes from the fact that the covering dimension of Y is b. (In phase i, the algorithm
displays only ads from Y0.)

In each round t of the current phase i, when a query xt is received, the algorithm determines the cluster
Xj of the partition to which xt belongs. Fix a cluster Xj . For each ad y ∈ Y0, let nt(y) be the number of

3Despite their names, the main difference between the covering dimension and packing dimension is not that one uses cov-
ering numbers and the other packing numbers. In fact any of those dimensions remains the same regardless of whether we use
M(Z, LZ , r) or N (Z, LZ , r) in the definition. This follows from the classical result:

∀r > 0 M(Z, LZ , 2r) ≤ N (Z, LZ , r) ≤M(Z, LZ , r) ,

which is usually attributed to Kolmogorov and Tihomirov [16]. The main difference between the two dimensions is that one
definition uses infimum and the other uses supremum. Thus, in general,

PACK(Z, LZ) ≤ COV(Z, LZ) .

The inequality might be strict when N (Z, LZ , r) (or equivalently M(Z, LZ , r)) as a function of (1/r) oscillates between two
polynomials (in (1/r)) of two different degrees. In this light, perhaps better names for the dimensions would be upper and lower
covering dimension. For finite spaces or bounded subsets of an Euclidean space, however, this strange behavior does not occur, and
the covering and the packing dimension coincide.
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times that the ad y has been displayed for a query from Xj during the current phase up to round t and let
µt(y) be the corresponding empirical average payoff of ad y. If nt(y) = 0 we define µt(y) = 0. In round t,
the algorithm displays ad y ∈ Y0 that maximizes the upper confidence index

It−1(y) = µt−1(y) + Rt−1(y)

where Rt =
√

4i
1+nt(y) is the confidence radius. Note that in round t the quantities nt−1(y), µt−1(y),

Rt−1(y) and It−1(y) are available to the algorithm. If multiple ads achieve the maximum upper confidence
index, we break ties arbitrarily. This finishes the description of the algorithm.

We now bound the regret of the query-ad-clustering algorithm. In Lemma 4 we bound the regret for a
cluster of queries during one phase. The regret of all clusters during one phase is bounded in Lemma 5. The
resulting O(T γ) bound is stated as Lemma 6. In proof of Lemma 4 we make use of Hoeffding’s bound,
proof of which can be found in the book [8, Chapter 2] or in the original paper by Hoeffding [12].

Hoeffding’s Inequality. Let X1, X2, . . . , Xn be independent bounded random variables such that Xi, 1 ≤
i ≤ n, has support [ai, bi]. Then for the sum S = X1 + X2 + · · ·+ Xn we have for any u ≥ 0,

Pr [|S −E[S]| ≥ u] ≤ 2 exp
(
− 2u2∑n

i=1(ai − bi)2

)
.

Lemma 4. Assume that during phase i, up to step T , n queries were received in a cluster Xj . Then, the
contribution of these queries to the regret is bounded as

Ri,j(T ) = E

 ∑
2i≤t≤min(T,2i+1)

xt∈Xj

sup
y′t∈Y

µ(xt, yt)− µ(xt, yt)

 ≤ 6rn + K

(
16i

r
+ 1
)

where r is the diameter defined in (2) and K is the size of the ads space covering defined in (3).

Proof. For i = 0 the bound is trivial. Henceforth we assume i ≥ 1. Fix an arbitrary query point x0 in Xj .
Let the good event be that µt(y) ∈ [µ(x0, y) − Rt(y) − r, µ(x0, y) + Rt(y) + r] for all y ∈ Y and all t,
2i ≤ t < min(T, 2i). The complement of the good event is the bad event.

We use Hoeffding’s inequality to show that with high probability the good event occurs. Consider any
y ∈ Y0 and any t, 2i ≤ t < T , for which nt(y) ≥ 1. By Lipschitz condition

|E[µt(y)]− µ(x0, y)| ≤ r .

Therefore by Hoeffding’s inequality

Pr [µt(y) 6∈ [µ(x0, y)−Rt(y)− r, µ(x0, y) + Rt(y) + r]]
≤ Pr [|µt(y)−E[µt(y)]| > Rt(y)]

≤ 2 exp
(
−2nt(y)(Rt(y))2

)
≤ 2e−4i

≤ 4−i
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and the same inequality, Pr [µt(y) 6∈ [µ(x0, y)−Rt(y)− r, µ(x0, y) + Rt(y) + r]] ≤ 4−i, holds trivially
if nt(y) = 0 since Rt(y) > 1. We use the union bound over all y ∈ Y0 and all t, 2i ≤ t < min(T, 2i+1) to
bound the probability of the bad event:

Pr [bad event] ≤ 2i|Y0|4−i ≤ K2−i . (4)

Now suppose that the good event occurs. Let R̂ be the actual regret,

R̂ =
∑

2i≤t≤min(T,2i+1)
xt∈Xj

(
sup
y′t∈Y

µ(xt, y
′
t)− µ(xt, yt)

)
.

Since the algorithm during the phase i displays ads only from Y0, the actual regret R̂ can be decomposed as
a sum R̂ =

∑
y∈Y0

R̂y where R̂y is the contribution to the regret by displaying the ad y, that is,

R̂y =
∑

2i≤t≤min(T,2i+1)
xt∈Xj
yt=y

(
sup
y′t∈Y

µ(xt, y
′
t)− µ(xt, y)

)

Fix y ∈ Y0. Pick any ε > 0. Let y∗ be an ε-optimal for query x0, that is, y∗ is such that µ(x0, y
∗) ≥

supy∈Y µ(x0, y) − ε. Let y∗0 be the optimal ad in Y0 for the query x0, that is, y∗0 = argmaxy∈Y0
µ(x0, y).

Lipschitz condition guarantees that for any xt ∈ Xj

sup
y′t∈Y

µ(xt, y
′
t) ≤ sup

y∈Y
µ(x0, y) + r ≤ µ(x0, y

∗) + r + ε ≤ µ(x0, y
∗
0) + 2r + ε ,

µ(xt, y) ≥ µ(x0, y)− r .

Using the two inequalities the bound on R̂y simplifies to

R̂y ≤ nT (y) [µ(x0, y
∗
0) + 3r + ε− µ(x0, y)] .

Since ε can be chosen arbitrarily small, we have

∀y ∈ Y0 R̂y ≤ nT (y) [µ(x0, y
∗
0)− µ(x0, y) + 3r] . (5)

We split the set Y0 into two subsets, good ads Ygood and bad ads Ybad. An ad y is good when µ(x0, y
∗)−

µ(x0, y) ≤ 3r or it was not displayed (during phase i up to round T for a query in Xj), otherwise the ad is
bad. It follows from (5) and the definition of a good ad that

∀y ∈ Ygood R̂y ≤ 6rnT (y) . (6)

For bad ads we use inequality (5) and give an upper bound on nT (y). To upper bound nT (y) we use the
good event property. According to the definition of the upper confidence index, the good event is equivalent
to It(y) ∈ [µ(x0, y)− r, µ(x0, y) + 2Rt(y) + r] for all y ∈ Y and all rounds t, 2i ≤ i < T . Therefore, the
good event implies that for any ad y when the upper bound, µ(x0, y)+2Rt−1(y)+ r, on It−1(y) gets below
the lower bound, µ(x0, y

∗
0) − r, on It−1(y∗0) the algorithm stops displaying the ad y for queries from Xj .
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Therefore, in the last round t when the ad y is displayed to a query in Xj , is nt−1(y) + 1 = nt(y) = nT (y)
and

µ(x0, y) + 2Rt−1(y) + r ≥ µ(x0, y
∗
0)− r .

Equivalently,
2Rt−1(y) ≥ µ(x0, y

∗
0)− µ(x0, y)− 2r .

We substitute the definition of Rt−1(y) into this inequality and square both sides of the inequality. (Note
that both side are positive.) This gives an upper bound on nT (y) = nt−1(y) + 1:

nT (y) = nt−1(y) + 1 ≤ 16i

(µ(x0, y∗0)− µ(x0, y)− 2r)2
.

Combining with (5) we have

R̂y ≤ nT (y) [µ(x0, y
∗
0)− µ(x0, y) + 3r]

≤ nT (y) [µ(x0, y
∗
0)− µ(x0, y)− 2r] + 5rnT (y)

≤ 16i

µ(x0, y∗)− µ(x0, y)− 2r
+ 5rnT (y) .

Using the definition of a bad ad we get that

∀y ∈ Ybad R̂y ≤
16i

r
+ 5rnT (y) . (7)

Summing over all ads, both bad and good, we have

R̂ =
∑

y∈Ygood

R̂y +
∑

y∈Ybad

R̂y

≤
∑

y∈Ygood

6rnT (y) +
∑

y∈Ybad

(
16i

r
+ 5rnT (y)

)

≤ 6rn + |Ybad|
16i

r
(since n ≤ 2i)

≤ 6rn + K
16i

r
.

Finally, we bound the expected regret

Ri,j(T ) = E
[
R̂
]
≤ n Pr[bad event] +

(
6rn + K

16i

r

)
Pr[good event]

≤ nK2−i + 6rn + K
16i

r

≤ K + 6rn + K
16i

r

≤ 6rn + K

(
16i

r
+ 1
)

.
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Lemma 5. Assume n queries were received up to round T during a phase i (in any cluster). The contribution
of these queries to the regret is bounded as

Ri(T ) = E

 ∑
2i≤t≤min(T,2i+1)

sup
y′t∈Y

µ(xt, y
′
t)− µ(xt, yt)

 ≤ 6rn + NK

(
16i

r
+ 1
)

.

where r is the diamter defined in (2), N is the size of the query covering defined in (2) and K is the size of
the ads space covering defined in (3).

Proof. Let denote by nj the number of queries belonging to cluster Xj . Clearly n =
∑N

j=1 nj . From the
preceding lemma we have

Ri(T ) =
N∑

j=1

Ri,j(T ) ≤
N∑

j=1

(
6rnj + K

(
16i

r
+ 1
))

≤ 6rn + NK

(
16i

r
+ 1
)

.

Lemma 6. For any T ≥ 0, the regret of the query-ad-clustering algorithm is bounded as

RA(T ) ≤ (24 + 64cd log2 T + 4cd)T
a′+b′+1
a′+b′+2 = O (T γ) .

The lemma proves the first part of Theorem 1.

Proof. Let k be the last phase, that is, k is such that 2k ≤ T < 2k+1. In other words k = blog2 T c. We sum
the regret over all phases 0, 1, . . . , k. We use the preceding lemma and recall that in phase i

r = 2−
i

a′+b′+2 N = c · 2
a′i

a′+b′+2 K = d · 2
b′i

a′+b′+2 n ≤ 2i .

We have

RA(T ) =
k∑

i=0

Ri(T )

≤
k∑

i=0

6 · 2−
i

a′+b′+2 · 2i + 2
a′i

a′+b′+2 · d · 2
b′i

a′+b′+2 ·
(

16i

2−
i

a′+b′+2

+ 1
)

≤
k∑

i=0

6 · 2i a′+b′+1
a′+b′+2 + 16cd · i · 2i a′+b′+1

a′+b′+2 + cd2i a′+b′
a′+b′+2

≤ (6 + 16cdk + cd)
k∑

i=0

(
2

a′+b′+1
a′+b′+2

)i

≤ (6 + 16cdk + cd) 4
(

2
a′+b′+1
a′+b′+2

)k

≤ (24 + 64cd log2 T + 4cd) T
a′+b′+1
a′+b′+2

= O

(
T

a′+b′+1
a′+b′+2 log T

)
= O(T γ) .
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3 The Lower Bound

In this section we prove for any γ < ã+b̃+1
ã+b̃+1

lower bound Ω(T γ) on the regret of any algorithm for a context

Lipschitz MAB (X, Y ) with ã = PACK(X, LZ), b̃ = COV(Y, LY ). On the highest level, the main idea of the
lower bound is a simple averaging argument. We construct several “hard” instances and we show that the
average regret of any algorithm on those instances is Ω(T γ).

Before we construct the instances we define several parameters that depend on (X, Y ) and γ. We define
a′, b′ so that a′ ∈ [0, ã], b′ ∈ [0, b̃] and γ = a′+b′+1

a′+b′+2 . Moreover, if ã > 0 we ensure that a′ ∈ (0, ã)
and likewise if b̃ > 0 we ensure b′ ∈ (0, b̃). Let c, d be constants such that for any r ∈ (0, 1] there exist
2r-separated subsets of X, Y of sizes at least cr−a′ and dr−b′ respectively. Existence of such constants is
guaranteed by the definition of the packing dimension. We also use positive constants α, β, C, T0 that can
be expressed in terms of a′, b′, c, d only. We don’t give the formulas for these constants; they can be in
principle extracted from the proofs.

Hard instances: Let time horizon T be given. The “hard” instances are constructed as follows. Let
r = α · T−1/(a′+b′+2) and X0 ⊆ X , Y0 ⊆ Y be 2r-separated subsets of sizes at least c · r−a′ , d · r−b′

respectively. We construct |Y0||X0| instances each defined by a function v : X0 → Y0. For each v ∈ Y X0
0

we define an instance µv : X × Y → [0, 1] as follows. First we define µv on X0 × Y as

µv(x0, y) = 1/2 + max{0, r − LY (y, v(x0))} for any x0 ∈ X0, y ∈ Y ,

and then we make into a Lipschitz function on the whole domain X × Y as follows. For any x ∈ X let
x0 ∈ X0 be the closest point to x and define for any y ∈ Y

µv(x, y) = 1/2 + max{0, r − LY (y, v(x0))− LX(x, x0)} .

Furthermore, we assume that in each round t the payoff µ̂t the algorithm receives lies in {0, 1}, that is, µ̂t is
a Bernoulli random variable with parameter µv(xt, yt).

Now, we choose a sequence of T queries. The sequence of queries will consists of |X0| subsequences,
one for each x0 ∈ X0, concatenated together. For each x0 ∈ X0 the corresponding subsequence consists
of M =

⌊
T
|X0|

⌋
(or M =

⌊
T
|X0|

⌋
+ 1) copies of x0. In Lemma 7 we lower bound the contribution of each

subsequence to the total regret. The proof of Lemma 7 is an adaptation of the proof Theorem 6.11 from [6,
Chapter 6] of a lower bound for the finitely-armed bandit problem. In Lemma 8 we sum the contributions
together and give the final lower bound.

Lemma 7. For x0 ∈ X0 consider a sequence of M copies of query x0. Then for T ≥ T0 and for any
algorithm A the average regret on this sequence of queries is lower bounded as

Rx0 =
1

|Y0||X0|

∑
v∈Y

X0
0

Rv
A(M) ≥ β

√
|Y0|M ,

where Rv
A(M) denotes the regret on instance µv.

Proof. Deferred to Appendix A.

Lemma 8. For any algorithm A, there exists an v ∈ Y X0
0 , and an instance µv and a sequence of T ≥ T0

queries on which regret is at least
RA(T ) ≥ C · T γ

9



Proof. We use the preceding lemma and sum the regret over all x0 ∈ X0.

sup
v∈Y

X0
0

Rv
A(T ) ≥ 1

|Y0||X0|

∑
v∈Y

X0
0

Rv
A(T )

≥
∑

x0∈X0

Rx0

≥ β|X0|
√

MT

= β|X0|

√
|Y0|

⌊
T

|X0|

⌋

≥ β|X0|

√
|Y0|

(
T

|X0|
− 1
)

= β
√
|Y0||X0|T − |Y0||X0|2

= β
√
|Y0||X0|T − β|X0|

√
|Y0|

(using
√

x− y >
√

x−√y for any x > y > 0)

= β
√

dr−b′ · cr−a′ · T − βcr−a′
√

dr−b′

= β

√
dT

b′
a′+b′+2 · cT

a′
a′+b′+2 · T − βcT

a′
a′+b′+2

√
dT

b′
a′+b′+2

= β
√

cd · T
a′+b′+1
a′+b′+2 − βc

√
d · T

a′+b′/2

a′+b′+2

≥ 1
2
β
√

cd · T
a′+b′+1
a′+b′+2

(by choosing T0 > (2c)
a′+b′+2
b′/2+1 )

=
1
2
β
√

cd · T γ

Setting C = 1
2β
√

cd finishes the proof.

4 Conclusions

We have introduced a novel formulation of the problem of displaying relevant web search ads in the form
of a Lipschitz context multi-armed bandit problem. This model naturally captures an online scenario where
search queries (context) arrive over time and relevant ads must be shown (multi-armed bandit problem) for
each query. It is a strict generalization of previously studied multi-armed bandit settings where no side
information is given in each round. We believe that our model applies to many other real life scenarios
where additional information is available that affects the rewards of the actions.

When the query and ad spaces are endowed with a metric for which the reward function is Lipschitz,
we prove upper and lower bounds on the regret with respect to the Bayesian optimal. Specifically, the upper
bound O(T

a+b+1
a+b+2

+ε) is dependent on the covering dimension of the query (a) and ad spaces (b) and the

lower bound Ω(T
ã+b̃+1

ã+b̃+2
−ε) is dependent on the packing dimensions of spaces (ã, b̃). For bounded Euclidean

spaces and finite sets, these dimensions are equal and imply nearly tight bounds on the regret. The lower

bound can be strengthened to
∞
Ω(T γ) for any γ < max

{
a+b̃+1
a+b̃+2

, ã+b+1
ã+b+2

}
. So, if either ã = a or b̃ = b, then

10



we can still prove a lower bound that matches the upper bound. However, the lower bound will hold “only”
for infinitely many time horizons T (as opposed to all horizons). It seems that for Lipschitz context MABs
where ã 6= a and b̃ 6= b one needs to craft a different notion of dimension, which would somehow capture
the growths of covering numbers of both the query space and the ads space.

Our paper raises some intriguing extensions. First, we can explore the setting where queries are coming
IID from a fixed distribution (known or unknown). We expect the worst distribution to be uniform over the
query space and have the same regret as the adversarial setting. However, what if the query distribution was
concentrated in several regions of the space? In web search we would expect some topics to be much hotter
than others. It would be interesting to develop algorithms that can exploit this structure. As well, we can
use a more refined metric multi-armed bandit algorithm such as the zooming algorithm [15] for more benign
reward functions. Further, one can modify the results for an adaptive adversary with access to an algorithm’s
decisions and is able to change the Lipschitz reward function in each round.

Acknowledgements. We would like to thank Bobby Kleinberg and John Langford and for useful dis-
cussions.
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A Proof of Lemma 7

Think of v(x0) being uniformly randomly chosen from Y0 and let E denote the expectation with respect to
both the random choice of v(x0) and the payoffs µ̂1, µ̂2, . . . , µ̂M . Clearly, the Bayes optimal payoff is

E

[
M∑
t=1

sup
y′t∈Y

µv(x0, y
′
t)

]
= M E

[
sup
y∈Y

µv(x0, y)

]
= M E [µv(x0, v(x0))] = M(1/2 + r) .

The non-trivial part is to upper bound the payoff of A. First, we partition the ads space Y by forming a
Voronoi diagram with sites in Y0. That is, we consider the partition P = {Sy : y ∈ Y0} where Sy ⊆ Y is
the set of ads which are closer to y ∈ Y0 than to any other y′ ∈ Y0. We break ties arbitrarily, but we ensure
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that P is a partition of Y . Note that since Y0 is 2r-separated Sy contains an open ball of radius r centered
at y. Also note that for any y′ ∈ Sy the highest payoff µv(x0, y) is achieved at the Voronoi site y regardless
of v. For y ∈ Y0 let ny be the random variable denoting the number of times the algorithm displays an ad
from Sy.

Now, let for y ∈ Y0 denote by Ey the conditional expectation E[· | v(x0) = y]. The expected payoff of
A can be bounded as

E

[
M∑
t=1

µv(x0, yt)

]
=

1
|Y0|

∑
y∈Y0

Ey

[
M∑
t=1

µv(x0, yt)

]

≤ 1
|Y0|

∑
y∈Y0

Ey

∑
y′∈Y0

ny′


=

1
|Y0|

∑
y∈Y0

Ey [M/2 + rny]

= M/2 +
r

|Y0|
∑
y∈Y0

Ey ny

Hence,

Rx0 ≥ r

M − 1
|Y0|

∑
y∈Y0

Ey ny

 (8)

and the proof reduces to bounding Ey ny from above. We do this by comparing the behavior of A on an
“completely noisy” independent instance µ′ for which µ′(x0, y) = 1/2 and the payoffs µ̂′1, µ̂

′
2, . . . , µ̂

′
M are

i.i.d. Bernoulli random variables with parameter 1/2 and are independent from µ̂1, µ̂2, . . . , µ̂M , y1, y2, . . . , yM

and v(x0). We denote by y′1, y
′
2, . . . , yM the random variables denoting the ads displayed on µ′. For y ∈ Y0

let n′y be a random variable denoting the number of times algorithm A displays an ad from Sy for the noisy
instance µ′.

For fixed y ∈ Y0 we define two probability distributions, q and q′, over {0, 1}M as follows. For any
B = (b1, b2, . . . , bM ) ∈ {0, 1}M let

q′(B) = 2−M = Pr[µ̂′1 = b1, µ̂
′
2 = b2, . . . , µ̂

′
M = bM | v(x0) = y]

and
q(B) = Pr[µ̂1 = b1, µ̂2 = b2, . . . , µ̂M = bM | v(x0) = y] .

Note that the sequence of payoffs received by the algorithm uniquely determines its behavior and hence for
any y ∈ Y0,

Ey[ny | µ̂1 = b1, µ̂2 = b2, . . . , µ̂M = bM ] = E[n′y | µ̂′1 = b1, µ̂
′
2 = b2, . . . , µ̂

′
M = bM ]

13



Consider, for any y ∈ Y0,

En′y −Ey ny =
∑

B∈{0,1}M

q(B)Ey[ny | µ̂1 = b1, µ̂2 = b2, . . . , µ̂M = bM ]

−
∑

B∈{0,1}M

q′(B)E[n′y | µ̂′1 = b1, µ̂
′
2 = b2, . . . , µ̂

′
M = bM ]

=
∑

B∈{0,1}M

(q(B)− q′(B))Ey[ny | µ̂1 = b1, µ̂2 = b2, . . . , µ̂M = bM ]

≤
∑

B∈{0,1}M

q(B)>q′(B)

(q(B)− q′(B))Ey[ny | µ̂1 = b1, µ̂2 = b2, . . . , µ̂M = bM ]

≤ M
∑

B∈{0,1}M

q(B)>q′(B)

(q(B)− q′(B))

=
M

2

∑
B∈{0,1}M

|q(B)− q′(B)| (9)

where the last inequality follows from that ny ≤ M . The last expression is M/2 times the so-called total
variation (or L1) distance between the distributions q, q′. It may be bounded by Pinsker’s inequality [7,
Lemma 11.6.1] which states that ∑

B∈{0,1}M

|q(B)− q′(B)| ≤
√

2D(q′‖q) , (10)

where

D(q′‖q) =
∑

B∈{0,1}m

q′(B) ln
(

q′(B)
q(B)

)
is the Kullback-Leibler divergence of the distributions q′ and q.

We use the chain rule to compute D(q′‖q). First, for a sequence B = (b1, b2, . . . , bt−1) ∈ {0, 1}t−1,
1 ≤ t ≤ M , and b ∈ {0, 1} we denote by

qt(b|B) = Pr[µ̂t = b | µ̂1 = b1, µ̂2 = b2, . . . , µ̂t−1 = bt−1, v(x0) = y]

and
q′t(b|B) = Pr[µ̂′t = b | µ̂′1 = b1, µ̂

′
2 = b2, . . . , µ̂

′
t−1 = bt−1, v(x0) = y]

the conditional distributions of t-th payoffs µ̂t and µ̂′t. Note that the event µ̂1 = b1, µ̂2 = b2, . . . , µ̂t−1 =
bt−1 on which we are conditioning, is determined by B and in turn this event determines the ad yt that A
displays in t-round on the instances µv. We write yt as yt(B) to stress this dependence. Hence, by the chain
rule

D(q′‖q) =
M∑
t=1

1
2t−1

∑
B∈{0,1}t−1

D(q′t(·|B)‖qt(·|B))

=
M∑
t=1

1
2t−1

 ∑
B∈{0,1}t−1

yt(B)∈Sv(x0)

D(q′t(·|B)‖qt(·|B)) +
∑

B∈{0,1}t−1

yt(B) 6∈Sy

D(q′t(·|B)‖qt(·|B))
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where we have split the inner sum into two cases: (i) the ad yt(B) lies near the “correct” ad y, that is,
yt(B) ∈ Sy and (ii) the ad yt does not lie near the “correct” ad, that is, yt(B) 6∈ Sy.

The second inner sum in the last expression evaluates to zero, since when yt(B) 6∈ Sy, qt(·|B) =
q′t(·|B) = 1/2 are the same Bernoulli distribution and thus D(q′t(·|B)‖qt(·|B)) = 0. The terms of the first
inner sum can be bounded if we realize that qt(·|B) is a Bernoulli distribution with parameter 1/2+s where
s = max{0, r − LY (yt, y)} ≤ r and q′t(·|B) is a Bernoulli distribution with parameter 1/2. Hence, for B
for which yt ∈ Sy

D(q′t(·|B)‖qt(·|B)) =
1
2

ln
(

1/2
1/2 + s

)
+

1
2

ln
(

1/2
1/2− s

)
= −1

2
ln(1− 4s2)

≤ 8 ln(4/3)s2

≤ 8 ln(4/3)r2 ,

where used the inequality− ln(1−x) ≤ 4 ln(4/3)x for x ∈ [0, 1/4] which can be proved by checking it for
the left and the right end point of the interval and using the convexity of logarithm. We can guarantee that
r ∈ [0, 1/4] by picking T0 big enough.

D(q′‖q) ≤ 8 ln(4/3)r2
M∑
t=1

1
2t−1

∑
B∈{0,1}t−1

1{yt(B) ∈ Sy} (11)

where 1{·} is an indicator function.
We combine (9), Pinsker’s inequality (10) and the inequality (11) we have just obtained, and we have 1

|Y0|
∑
y∈Y0

Ey ny

− M

|Y0|
=

1
|Y0|

∑
y∈Y0

(
Ey ny −En′y

)
≤ M

2
1
|Y0|

∑
y∈Y0

√
2D(q‖q′)

≤ M

2
1
|Y0|

∑
y∈Y0

√√√√2 · 8 ln(4/3)r2

M∑
t=1

1
2t−1

∑
B∈{0,1}t−1

1{yt(B) ∈ Sy}

≤ M

2

√√√√ 1
|Y0|

∑
y∈Y0

2 · 8 ln(4/3)r2

M∑
t=1

1
2t−1

∑
B∈{0,1}t−1

1{yt(B) ∈ Sy}

(by the inequality between arithmetic and quadratic mean)

= Mr

√√√√4 ln(4/3)
|Y0|

M∑
t=1

1
2t−1

∑
B∈{0,1}t−1

∑
y∈Y0

1{yt(B) ∈ Sy}

= Mr

√
4 ln(4/3)
|Y0|M
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where the last equality follows since
∑

B∈{0,1}t−1

∑
y∈Y0

1{yt(B) ∈ Sy} = 2t−1. Therefore, combining
with (8) we have

Rx0 ≥ r

(
M

(
1− 1

|Y0|

)
−M3/2r

√
4 ln(4/3)
|Y0|

)
.

It can be easily verified that r = αC
√
|Y0|/M for some constant C lying in the interval I = [1/(2

√
cd), 2/

√
cd]

provided T0 is big enough. Substituting that for r leads to

Rx0 ≥
((

1− 1
|Y0|

)
Cα− C2α2

√
4 ln(4/3)

)√
M |Y0| .

If α > 0 is chosen small enough, |Y0| ≥ 2 and β = minC∈I

(
1− 1

|Y0|

)
Cα−C2α2

√
4 ln(4/3) is positive.

This finishes the proof.
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