# Showing Relevant Ads via Context Multi-Armed Bandits

#### Dávid Pál

December 17, 2008 A&C Seminar

joint work with Tyler Lu and Martin Pál

#### The Problem

- we're running a popular website
- users visit our website
- we want to show each user relevant ad for him/her
  - relevant = likely to click on
- for each user there is some side information
  - (search query, geographic location, cookies, etc.)

#### Multi-Armed Bandits







- pulling an arm = showing an ad
- reward = click on the ad

Context-Free Multi-Armed Bandits

- historical papers by Robbins in early 1950's
- stochastic version: Lai & Robbins 1985, Auer et al. 2002
- non-stochastic version: Auer et al. 1995
- Lipschitz version: R. Kleinberg 2005, Auer et al. 2007, R. Kleinberg et al. 2008

#### Overview

- Our model with *context* and *Lipschitz* condition
- Regret and No-Regret learning
- Statement of our results:
  - upper and lower bound on the regret
- Our algorithm
- Idea of the analysis of the algorithm

### Lipschitz Context Multi-Armed Bandits

- information *x* about the user (*context*)
- suppose we show ad *y*
- with probability  $\mu(x, y)$  the user's clicks on the ad
- assume  $\mu$  :  $X \times Y \rightarrow [0, 1]$  is Lipschitz:

$$|\mu(x,y) - \mu(x',y')| \le L_X(x,x') + L_Y(y,y')$$

where  $L_X$  and  $L_Y$  are metrics

#### The Game

- adversary chooses  $\mu : X \times Y \rightarrow [0, 1]$  and a sequence  $x_1, x_2, \dots, x_T$
- algorithm chooses  $y_1, y_2, \ldots, y_T$  online:
- in round t = 1, 2, ..., T the algorithm has access to
  - $x_1, x_2, \ldots, x_{t-1}$
  - $y_1, y_2, \ldots, y_{t-1}$
  - $\hat{\mu}_1, \hat{\mu}_2, \dots, \hat{\mu}_{t-1} \in \{0, 1\}$
- adversary reveals *x*<sup>*t*</sup>
- based on this the algorithm outputs  $y_t$



• optimal strategy: in round t = 1, 2, ..., T show

$$y_t^* = \underset{y \in Y}{\operatorname{argmax}} \ \mu(x_t, y)$$

- the algorithm shows instead  $y_1, y_2, \ldots, y_T$
- difference between expected payoffs

$$\operatorname{Regret}(T) = \sum_{t=1}^{T} \mu(x_t, y_t^*) - \mathsf{E}\left[\sum_{t=1}^{T} \mu(x_t, y_t)\right]$$

# No Regret Learning

• per-round regret vanishes:

$$\lim_{T \to \infty} \frac{\operatorname{Regret}(T)}{T} = 0$$

• how fast is the convergence? typical result:

$$\operatorname{Regret}(T) = O(T^{\gamma})$$

where  $0 < \gamma < 1$ .

#### **Our Results**

# (Oversimplifying and lying somewhat.) Theorem

If X has "dimension" a and Y has "dimension" b, then

• there exists an algorithm with

$$\operatorname{Regret}(T) = \widetilde{O}\left(T^{\frac{a+b+1}{a+b+2}}\right)$$

• for any algorithm

Regret(*T*) = 
$$\Omega\left(T^{\frac{a+b+1}{a+b+2}}\right)$$

# **Covering Dimension**

- let  $(Z, L_Z)$  be a metric space
- cover the space with ε-balls
- How many balls do we need?
- roughly  $(1/\epsilon)^d$
- define *d* to be the dimension



# **Optimal Algorithm**

- suppose that *T* is known to the algorithm
- *X*, *Y* have dimensions *a*, *b* respectively
- discretize *X* and *Y*:

$$\epsilon = T^{-\frac{1}{a+b+2}}$$

- *X*<sub>0</sub> are centers of ε-balls covering *X*
- *Y*<sub>0</sub> are centers of ε-balls covering *Y*
- round *x*<sub>t</sub> to nearest element of *X*<sub>0</sub>
- display only ads from *Y*<sub>0</sub>

### Optimal Algorithm, continued

- for each  $x_0 \in X_0$  and  $y_0 \in Y_0$  maintain:
  - number of times *y*<sup>0</sup> was displayed for *x*<sub>0</sub>:

 $n(x_0, y_0)$ 

corresponding number of clicks:

 $m(x_0, y_0)$ 

• estimate of the click-through rate:

$$\overline{\mu}(x_0, y_0) = \frac{m(x_0, y_0)}{n(x_0, y_0)}$$

## Optimal Algorithm, continued

- when  $x_t$  arrives "round" it to  $x_0 \in X_0$
- show ad  $y_0 \in Y_0$  that maximizes

$$\overline{\mu}(x_0, y_0) + \sqrt{\frac{\log T}{1 + n(x_0, y_0)}}$$

(exploration vs. exploitation trade-off)



• let

$$R_t(x_0, y_0) = \sqrt{\frac{\log T}{1 + n(x_0, y_0)}}$$
$$I_t(x_0, y_0) = \overline{\mu}(x_0, y_0) + R_t(x_0, y_0)$$

• By Chernoff-Hoeffding bound with high probability

 $I_t(x_0, y_0) \in [\mu(x_0, y_0) - \epsilon, \ \mu(x_0, y_0) + 2R_t(x_0, y_0) + \epsilon]$ 

for all  $x_0 \in X_0$ ,  $y_0 \in Y_0$  and all t = 1, 2, ..., T simultaneously.



The confidence intervals



- The algorithm displays the ad maximizing  $I_t(x_0, \cdot)$ .
- $I_t(x_0, y_0)$ 's lies w.h.p. in the confidence interval.





If

$$\mu(x_0,y)+R_t(x_0,y)+\varepsilon<\mu(x_0,y^*)-\varepsilon\ ,$$
 the algorithm stops displaying the suboptimal ad  $y.$ 



$$R_t(x_0, y) = \sqrt{\frac{\log T}{1 + n(x_0, y)}}$$

- Confidence interval for *y* shrinks as  $n_t(x_0, y)$  increases.
- Thus we can upper bound  $n_t(x_0, y)$  in terms of the difference

$$\mu(x_0, y^*) - \mu(x_0, y)$$

• Rest is just a long calculation.

#### Conclusion

- formulation of Context Multi-Armed Bandits
- roughly matching upper and lower bounds:

#### $T^{\frac{a+b+1}{a+b+2}}$

- www.cs.uwaterloo.ca/~dpal/papers/
- possible future work: non-stochastic clicks

# Thanks!