Showing Relevant Ads

via
 Context Multi-Armed Bandits

Dávid Pál

December 17, 2008
A\&C Seminar
joint work with Tyler Lu and Martin Pál

The Problem

- we're running a popular website
- users visit our website
- we want to show each user relevant ad for him/her
- relevant $=$ likely to click on
- for each user there is some side information
- (search query, geographic location, cookies, etc.)

Multi-Armed Bandits

- pulling an arm = showing an ad
- reward $=$ click on the ad

Previous Work

Context-Free Multi-Armed Bandits

- historical papers by Robbins in early 1950's
- stochastic version: Lai \& Robbins 1985, Auer et al. 2002
- non-stochastic version: Auer et al. 1995
- Lipschitz version: R. Kleinberg 2005, Auer et al. 2007, R. Kleinberg et al. 2008

Overview

- Our model with context and Lipschitz condition
- Regret and No-Regret learning
- Statement of our results:
- upper and lower bound on the regret
- Our algorithm
- Idea of the analysis of the algorithm

Lipschitz Context Multi-Armed Bandits

- information x about the user (context)
- suppose we show ad y
- with probability $\mu(x, y)$ the user's clicks on the ad
- assume $\mu: X \times Y \rightarrow[0,1]$ is Lipschitz:

$$
\left|\mu(x, y)-\mu\left(x^{\prime}, y^{\prime}\right)\right| \leq L_{X}\left(x, x^{\prime}\right)+L_{Y}\left(y, y^{\prime}\right)
$$

where L_{X} and L_{Y} are metrics

The Game

- adversary chooses $\mu: X \times Y \rightarrow[0,1]$ and a sequence $x_{1}, x_{2}, \ldots, x_{T}$
- algorithm chooses $y_{1}, y_{2}, \ldots, y_{T}$ online:
- in round $t=1,2, \ldots, T$ the algorithm has access to
- $x_{1}, x_{2}, \ldots, x_{t-1}$
- $y_{1}, y_{2}, \ldots, y_{t-1}$
- $\hat{\mu}_{1}, \hat{\mu}_{2}, \ldots, \hat{\mu}_{t-1} \in\{0,1\}$
- adversary reveals x_{t}
- based on this the algorithm outputs y_{t}

Regret

- optimal strategy: in round $t=1,2, \ldots, T$ show

$$
y_{t}^{*}=\underset{y \in Y}{\operatorname{argmax}} \mu\left(x_{t}, y\right)
$$

- the algorithm shows instead $y_{1}, y_{2}, \ldots, y_{T}$
- difference between expected payoffs

$$
\operatorname{Regret}(T)=\sum_{t=1}^{T} \mu\left(x_{t}, y_{t}^{*}\right)-\mathbf{E}\left[\sum_{t=1}^{T} \mu\left(x_{t}, y_{t}\right)\right]
$$

No Regret Learning

- per-round regret vanishes:

$$
\lim _{T \rightarrow \infty} \frac{\operatorname{Regret}(T)}{T}=0
$$

- how fast is the convergence? typical result:

$$
\operatorname{Regret}(T)=O\left(T^{\gamma}\right)
$$

where $0<\gamma<1$.

Our Results

(Oversimplifying and lying somewhat.)
Theorem
If X has "dimension" a and Y has "dimension" b, then

- there exists an algorithm with

$$
\operatorname{Regret}(T)=\widetilde{O}\left(T^{\frac{a+b+1}{a+b+2}}\right)
$$

- for any algorithm

$$
\operatorname{Regret}(T)=\Omega\left(T^{\frac{a+b+1}{a+b+2}}\right)
$$

Covering Dimension

- let $\left(Z, L_{Z}\right)$ be a metric space
- cover the space with ϵ-balls
- How many balls do we need?
- roughly $(1 / \epsilon)^{d}$
- define d to be the dimension

Optimal Algorithm

- suppose that T is known to the algorithm
- X, Y have dimensions a, b respectively
- discretize X and Y :

$$
\epsilon=T^{-\frac{1}{a+b+2}}
$$

- X_{0} are centers of ϵ-balls covering X
- Y_{0} are centers of ϵ-balls covering Y
- round x_{t} to nearest element of X_{0}
- display only ads from Y_{0}

Optimal Algorithm, continued

- for each $x_{0} \in X_{0}$ and $y_{0} \in Y_{0}$ maintain:
- number of times y_{0} was displayed for x_{0} :

$$
n\left(x_{0}, y_{0}\right)
$$

- corresponding number of clicks:

$$
m\left(x_{0}, y_{0}\right)
$$

- estimate of the click-through rate:

$$
\bar{\mu}\left(x_{0}, y_{0}\right)=\frac{m\left(x_{0}, y_{0}\right)}{n\left(x_{0}, y_{0}\right)}
$$

Optimal Algorithm, continued

- when x_{t} arrives "round" it to $x_{0} \in X_{0}$
- show ad $y_{0} \in Y_{0}$ that maximizes

$$
\bar{\mu}\left(x_{0}, y_{0}\right)+\sqrt{\frac{\log T}{1+n\left(x_{0}, y_{0}\right)}}
$$

(exploration vs. exploitation trade-off)

Idea of Analysis

- let

$$
\begin{aligned}
R_{t}\left(x_{0}, y_{0}\right) & =\sqrt{\frac{\log T}{1+n\left(x_{0}, y_{0}\right)}} \\
I_{t}\left(x_{0}, y_{0}\right) & =\bar{\mu}\left(x_{0}, y_{0}\right)+R_{t}\left(x_{0}, y_{0}\right)
\end{aligned}
$$

- By Chernoff-Hoeffding bound with high probability

$$
I_{t}\left(x_{0}, y_{0}\right) \in\left[\mu\left(x_{0}, y_{0}\right)-\epsilon, \mu\left(x_{0}, y_{0}\right)+2 R_{t}\left(x_{0}, y_{0}\right)+\epsilon\right]
$$

for all $x_{0} \in X_{0}, y_{0} \in Y_{0}$ and all $t=1,2, \ldots, T$ simultaneously.

Idea of Analysis

Fix $x_{0} \in X_{0}$

$$
\begin{aligned}
& Y_{0} \\
& \uparrow \quad \mu\left(x_{0}, y_{4}\right) \\
& \mu\left(x_{0}, y_{3}\right) \\
& \mu\left(x_{0}, y_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mu\left(x_{0}, \cdot\right)
\end{aligned}
$$

Idea of Analysis

The confidence intervals

Idea of Analysis

- The algorithm displays the ad maximizing $I_{t}\left(x_{0}, \cdot\right)$.
- $I_{t}\left(x_{0}, y_{0}\right)$'s lies w.h.p. in the confidence interval.

Idea of Analysis

$$
\operatorname{Regret}(T)=\sum_{t=1}^{T} \mu\left(x_{t}, y_{t}^{*}\right)-\mathbf{E}\left[\sum_{t=1}^{T} \mu\left(x_{t}, y_{t}\right)\right]
$$

contribution to the regret: $\mu\left(x_{0}, y^{*}\right)-\mu\left(x_{0}, y\right)$
suboptimal ad y

Idea of Analysis

If

$$
\mu\left(x_{0}, y\right)+R_{t}\left(x_{0}, y\right)+\epsilon<\mu\left(x_{0}, y^{*}\right)-\epsilon,
$$

the algorithm stops displaying the suboptimal ad y.

Idea of Analysis

$$
R_{t}\left(x_{0}, y\right)=\sqrt{\frac{\log T}{1+n\left(x_{0}, y\right)}}
$$

- Confidence interval for y shrinks as $n_{t}\left(x_{0}, y\right)$ increases.
- Thus we can upper bound $n_{t}\left(x_{0}, y\right)$ in terms of the difference

$$
\mu\left(x_{0}, y^{*}\right)-\mu\left(x_{0}, y\right)
$$

- Rest is just a long calculation.

Conclusion

- formulation of Context Multi-Armed Bandits
- roughly matching upper and lower bounds:

$$
T^{\frac{a+b+1}{a+b+2}}
$$

- www.cs.uwaterloo.ca/~dpal/papers/
- possible future work: non-stochastic clicks

Thanks!

