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Abstract
We study the problem of efficient online multi-
class linear classification with bandit feedback,
where all examples belong to one of K classes
and lie in the d-dimensional Euclidean space.
Previous works have left open the challenge of
designing efficient algorithms with finite mistake
bounds when the data is linearly separable by a
margin γ. In this work, we take a first step to-
wards this problem. We consider two notions of
linear separability, strong and weak.

1. Under the strong linear separability condi-
tion, we design an efficient algorithm that
achieves a near-optimal mistake bound of
O
(
K/γ2

)
.

2. Under the more challenging weak linear
separability condition, we design an effi-
cient algorithm with a mistake bound of
min(2Õ(K log2(1/γ)), 2Õ(

√
1/γ logK)).1 Our

algorithm is based on kernel Perceptron and
is inspired by the work of Klivans & Serve-
dio (2008) on improperly learning intersec-
tion of halfspaces.

1. Introduction
We study the problem of ONLINE MULTICLASS LINEAR
CLASSIFICATION WITH BANDIT FEEDBACK (Kakade
et al., 2008). The problem can be viewed as a repeated
game between a learner and an adversary. At each time
step t, the adversary chooses a labeled example (xt, yt)
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1We use the notation Õ(f(·)) = O(f(·) polylog(f(·))).

and reveals the feature vector xt to the learner. Upon re-
ceiving xt, the learner makes a prediction ŷt and receives
feedback. In contrast with the standard full-information
setting, where the feedback given is the correct label yt,
here the feedback is only a binary indicator of whether the
prediction was correct or not. The protocol of the problem
is formally stated below.

Protocol 1 ONLINE MULTICLASS LINEAR CLASSIFICA-
TION WITH BANDIT FEEDBACK
Require: Number of classes K, number of rounds T .
Require: Inner product space (V, 〈·, ·〉).
for t = 1, 2, . . . , T do

Adversary chooses example (xt, yt) ∈ V ×
{1, 2, . . . ,K} where xt is revealed to the learner.
Predict class label ŷt ∈ {1, 2, . . . ,K}.
Observe feedback zt = 1 [ŷt 6= yt] ∈ {0, 1}.

The performance of the learner is measured by its cumu-
lative number of mistakes

∑T
t=1 zt =

∑T
t=1 1 [ŷt 6= yt],

where 1 denotes the indicator function.

In this paper, we focus on the special case when the ex-
amples chosen by the adversary lie in Rd and are linearly
separable with a margin. We introduce two notions of lin-
ear separability, weak and strong, formally stated in Defi-
nition 1. The standard notion of multiclass linear separa-
bility (Crammer & Singer, 2003) corresponds to the weak
linear separability. For multiclass classification with K
classes, weak linear separability requires that all examples
from the same class lie in an intersection of K − 1 halfs-
paces and all other examples lie in the complement of the
intersection of the halfspaces. Strong linear separability
means that examples from each class are separated from
the remaining examples by a single hyperplane.

In the full-information feedback setting, it is well known
(Crammer & Singer, 2003) that if all examples have norm
at most R and are weakly linearly separable with a margin
γ, then the MULTICLASS PERCEPTRON algorithm makes
at most b2(R/γ)2c mistakes. It is also known that any
(possibly randomized) algorithm must make 1

2

⌊
(R/γ)2

⌋
mistakes in the worst case. The MULTICLASS PERCEP-
TRON achieves an information-theoretically optimal mis-
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take bound, while being time and memory efficient.2 3

The bandit feedback setting, however, is much more chal-
lenging. For the strongly linearly separable case, we are
not aware of any prior efficient algorithm with a finite mis-
take bound. 4 We design a simple and efficient algorithm
(Algorithm 1) that makes at most O(K(R/γ)2) mistakes
in expectation. Its memory complexity and per-round time
complexity are both O(dK). The algorithm can be viewed
as running K copies of the BINARY PERCEPTRON algo-
rithm, one copy for each class. We prove that any (possibly
randomized) algorithm must make Ω(K(R/γ)2) mistakes
in the worst case. The extra O(K) multiplicative factor in
the mistake bound, as compared to the full-information set-
ting, is the price we pay for the bandit feedback, or more
precisely, the lack of full-information feedback.

For the case when the examples are weakly linearly sepa-
rable, it was open for a long time whether there exist effi-
cient algorithms with finite mistake bound (Kakade et al.,
2008; Beygelzimer et al., 2017). Furthermore, Kakade
et al. (2008) ask the question: Is there any algorithm with
a finite mistake bound that has no explicit dependence on
the dimensionality of the feature vectors? We answer both
questions affirmatively by providing an efficient algorithm
with finite dimensionless mistake bound (Algorithm 2).5

The strategy used in Algorithm 2 is to construct a non-
linear feature mapping φ and associated positive definite
kernel k(x, x′) that makes the examples strongly linearly
separable in a higher-dimensional space. We then use the
kernelized version of Algorithm 1 for the strongly separa-
ble case. The kernel k(x, x′) corresponding to the feature
mapping φ has a simple explicit formula and can be com-
puted in O(d) time, making Algorithm 2 computationally
efficient. For details on kernel methods see e.g. (Schölkopf
& Smola, 2002) or (Shawe-Taylor & Cristianini, 2004).

The number of mistakes of the kernelized algorithm de-
pends on the margin in the corresponding feature space.
We analyze how the mapping φ transforms the margin pa-
rameter of weak separability in the original space Rd into a
margin parameter of strong separability in the new feature
space. This problem is related to the problem of learning

2We call an algorithm computationally efficient, if its running
time is polynomial in K, d, 1/γ and T .

3For completeness, we present these folklore results along
with their proofs in Appendix A in the supplementary material.

4Although Chen et al. (2009) claimed that their Conservative
OVA algorithm with PA-I update has a finite mistake bound un-
der the strong linear separability condition, their Theorem 2 is
incorrect: first, their Lemma 1 (with C = +∞) along with their
Theorem 1 implies a mistake upper bound of (R

γ
)2, which contra-

dicts the lower bound in our Theorem 3; second, their Lemma 1
cannot be directly applied to the bandit feedback setting.

5An inefficient algorithm was given by (Daniely & Helbertal,
2013).

intersection of halfspaces and has been studied previously
by Klivans & Servedio (2008). As a side result, we improve
on the results of Klivans & Servedio (2008) by removing
the dependency on the original dimension d.

The resulting kernelized algorithm runs in time polynomial
in the original dimension of the feature vectors d, the num-
ber of classes K, and the number of rounds T . We prove
that if the examples lie in the unit ball of Rd and are weakly
linearly separable with margin γ, Algorithm 2 makes at
most min(2Õ(K log2(1/γ)), 2Õ(

√
1/γ logK)) mistakes.

In Appendix G, we propose and analyze a very different al-
gorithm for weakly linearly separable data. The algorithm
is based on the obvious idea that two points that are close
enough must have the same label.

Finally, we study two questions related to the computa-
tional and information-theoretic hardness of the problem.
Any algorithm for the bandit setting collects information in
the form of so called strongly labeled and weakly labeled
examples. Strongly labeled examples are those for which
we know the class label. Weakly labeled example is an ex-
ample for which we know that class label can be anything
except for one particular class. In Appendix H, we show
that the offline problem of finding a multiclass linear clas-
sifier consistent with a set of strongly and weakly labeled
examples is NP-hard. In Appendix I, we prove a lower
bound on the number of mistakes of any algorithm that uses
only strongly-labeled examples and ignores weakly labeled
examples.

2. Related work
The problem of online bandit multiclass learning was ini-
tially formulated in the pioneering work of Auer & Long
(1999) under the name of “weak reinforcement model”.
They showed that if all examples agree with some classifier
from a prespecified hypothesis class H, then the optimal
mistake bound in the bandit setting can be upper bounded
by the optimal mistake bound in the full information set-
ting, times a factor of (2.01 + o(1))K lnK. Long (2017)
later improved the factor to (1 + o(1))K lnK and showed
its near-optimality. Daniely & Helbertal (2013) extended
the results to the setting where the performance of the al-
gorithm is measured by its regret, i.e. the difference be-
tween the number of mistakes made by the algorithm and
the number of mistakes made by the best classifier in H in
hindsight. We remark that all algorithms developed in this
context are computationally inefficient.

The linear classification version of this problem is ini-
tially studied by Kakade et al. (2008). They proposed
two computationally inefficient algorithms that work in the
weakly linearly separable setting, one with a mistake bound
of O(K2d ln(d/γ)), the other with a mistake bound of
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Õ((K2/γ2) lnT ). The latter result was later improved by
Daniely & Helbertal (2013), which gives a computation-
ally inefficient algorithm with a mistake upper bound of
Õ(K/γ2). In addition, Kakade et al. (2008) propose the
BANDITRON algorithm, a computationally efficient algo-
rithm that has aO(T 2/3) regret against the multiclass hinge
loss in the general setting, and has aO(

√
T ) mistake bound

in the γ-weakly linearly separable setting. In contrast to
mild dependencies on the time horizon for mistake bounds
of computationally inefficient algorithms, the polynomial
dependence of BANDITRON’s mistake bound on the time
horizon is undesirable for problems with a long time hori-
zon, in the weakly linearly separable setting. One key open
question left by Kakade et al. (2008) is whether one can de-
sign computationally efficient algorithms that achieve mis-
take bounds that match or improve over those of inefficient
algorithms. In this paper, we take a step towards answering
this question, showing that efficient algorithms with mis-
take bounds quasipolynomial in 1/γ (for constant K) and
quasipolynomial in K (for constant γ) can be obtained.

The general problem of linear bandit multiclass learning
has received considerable attention (Abernethy & Rakhlin,
2009; Wang et al., 2010; Crammer & Gentile, 2013; Hazan
& Kale, 2011; Beygelzimer et al., 2017; Foster et al., 2018).
Chen et al. (2014); Zhang et al. (2018) study online ban-
dit multiclass boosting under bandit feedback, where one
can view boosting as linear classification by treating each
base hypothesis as a separate feature. In the weakly lin-
early separable setting, however, these algorithms can only
guarantee a mistake bound of O(

√
T ) at best.

The problem considered here is a special case of the con-
textual bandit problem (Auer et al., 2003; Langford &
Zhang, 2008). In this general problem, there is a hidden
cost vector ct associated with every prediction in round t.
Upon receiving xt and predicting ŷt ∈ {1, . . . ,K}, the
learner gets to observe the incurred cost ct(ŷt). The goal
of the learner is to minimize its regret with respect to the
best predictor in some predefined policy class Π, given by∑T
t=1 ct(ŷt)−minπ∈Π

∑T
t=1 ct(π(xt)). Bandit multiclass

learning is a special case where the cost ct(i) is the classi-
fication error 1 [i 6= yt] and the policy class is the set of
linear classifiers

{
x 7→ argmaxy(Wx)y : W ∈ RK×d

}
.

There has been significant progress on the general contex-
tual bandit problem assuming access to an optimization or-
acle that returns a policy in Π with the smallest total cost on
any given set of cost-sensitive examples (Dudı́k et al., 2011;
Agarwal et al., 2014; Rakhlin & Sridharan, 2016; Syrgka-
nis et al., 2016a;b). However, such an oracle abstracting
efficient search through Π is generally not available in our
setting due to computational hardness results (Arora et al.,
1997).

Recently, Foster & Krishnamurthy (2018) developed

a rich theory of contextual bandits with surrogate
losses, focusing on regrets of the form

∑T
t=1 ct(ŷt) −

minf∈F
∑T
t=1

1
K

∑K
i=1 ct(i)φ(fi(xt)), where F contains

score functions f = (f1, . . . , fK) such that
∑K
i=1 fi(·) ≡

0, and φ(s) = max(1 − s
γ , 0) or min(1,max(1 − s

γ , 0)).
On one hand, it gives information-theoretic regret upper
bounds for various settings ofF . On the other hand, it gives
an efficient algorithm with an O(

√
T ) regret against the

benchmark of F =
{
x 7→Wx : W ∈ RK×d,1TW = 0

}
.

A direct application of this result to ONLINE BANDIT
MULTICLASS LINEAR CLASSIFICATION gives an algo-
rithm with O(

√
T ) mistake bound in the strongly linearly

separable case.

3. Notions of linear separability
Let [n] = {1, 2, . . . , n}. We define two notions of linear
separability for multiclass classification. The first notion is
the standard notion of linear separability used in the proof
of the mistake bound for the MULTICLASS PERCEPTRON
algorithm (see e.g. Crammer & Singer, 2003). The second
notion is stronger, i.e. more restrictive.
Definition 1 (Linear separability). Let (V, 〈·, ·〉) be an
inner product space, K be a positive integer, and γ be
a positive real number. We say that labeled examples
(x1, y1), (x2, y2), . . . , (xT , yT ) ∈ V × [K] are

weakly linearly separable with a margin γ if there exist vec-
tors w1, w2, . . . , wK ∈ V such that

K∑
i=1

‖wi‖2 ≤ 1, (1)〈
xt, wyt

〉
≥ 〈xt, wi〉+ γ ∀t ∈ [T ] ∀i ∈ [K] \ {yt},

(2)

and strongly linearly separable with a margin γ if there ex-
ist vectors w1, w2, . . . , wK ∈ V such that

K∑
i=1

‖wi‖2 ≤ 1, (3)〈
xt, wyt

〉
≥ γ/2 ∀t ∈ [T ], (4)

〈xt, wi〉 ≤ −γ/2 ∀t ∈ [T ] ∀i ∈ [K] \ {yt}. (5)

The notion of strong linear separability has appeared in the
literature; see e.g. (Chen et al., 2009). Intuitively, strong
linear separability means that, for each class i, the set of
examples belonging to class i and the set of examples be-
longing to the remaining K − 1 classes are separated by a
linear classifier wi with margin γ

2 .

It is easy to see that if a set of labeled examples is strongly
linearly separable with margin γ, then it is also weakly lin-
early separable with the same margin (or larger). Indeed, if
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〈w1 − w2, x〉 = 0

〈w2 − w3, x〉 = 0

〈w3 − w1, x〉 = 0

Figure 1. A set of labeled examples in R2. The examples belong
toK = 3 classes colored white, gray and black respectively. Each
class lies in a 120◦ wedge. In other words, each class lies in an
intersection of two halfspaces. While the examples are weakly
linearly separable with a positive margin γ, they are not strongly
linearly separable with any positive margin γ. For instance, there
does not exist a linear separator that separates the examples be-
longing to the gray class from the examples belonging to the re-
maining two classes.

w1, w2, . . . , wK ∈ V satisfy (3), (4), (5) then they satisfy
(1) and (2).

In the special case of K = 2, if a set of labeled examples
is weakly linearly separable with a margin γ, then it is also
strongly linearly separable with the same margin. Indeed, if
w1, w2 satisfy (1) and (2) then w′1 = w1−w2

2 , w′2 = w2−w1

2

satisfy (3), (4), (5). Equation (3) follows from
∥∥w′i∥∥2 ≤

( 1
2‖w1‖+ 1

2‖w2‖)2 ≤ 1
2‖w1‖2 + 1

2‖w2‖2 ≤ 1
2 for i = 1, 2.

Equations (4) and (5) follow from the fact that w′1 − w′2 =
w1 − w2.

However, for any K ≥ 3 and any inner product space of
dimension at least 2, there exists a set of labeled examples
that is weakly linearly separable with a positive margin γ
but is not strongly linearly separable with any positive mar-
gin. Figure 1 shows one such set of labeled examples.

4. Algorithm for strongly linearly separable
data

In this section, we consider the case when the examples are
strongly linearly separable. We present an algorithm for
this setting (Algorithm 1) and give an upper bound on its
number of mistakes, stated as Theorem 2 below. The proof
of the theorem can be found in Appendix B.

The idea behind Algorithm 1 is to use K copies of the BI-
NARY PERCEPTRON algorithm, one copy per class; see e.g.
(Shalev-Shwartz, 2012, Section 3.3.1). Upon seeing each
example xt, copy i predicts whether or not xt belongs to
class i. Multiclass predictions are done by evaluating all
K binary predictors and outputting any class with a posi-
tive prediction. If all binary predictions are negative, the

algorithm chooses a prediction uniformly at random from
{1, 2, . . . ,K}.

Algorithm 1 BANDIT ALGORITHM FOR STRONGLY LIN-
EARLY SEPARABLE EXAMPLES
Require: Number of classes K, number of rounds T .
Require: Inner product space (V, 〈·, ·〉).

1 Initialize w(1)
1 = w

(1)
2 = · · · = w

(1)
K = 0

2 for t = 1, 2, . . . , T do
3 Observe feature vector xt ∈ V

4 Compute St =

{
i : 1 ≤ i ≤ K,

〈
w

(t)
i , xt

〉
≥ 0

}
5 if St = ∅ then
6 Predict ŷt ∼ Uniform({1, 2, . . . ,K})
7 Observe feedback zt = 1 [ŷt 6= yt]
8 if zt = 1 then
9 Set w(t+1)

i = w
(t)
i , ∀i ∈ {1, 2, . . . ,K}

10 else
11 Set w(t+1)

i = w
(t)
i , ∀i ∈ {1, 2, . . . ,K} \ {ŷt}

12 Update w(t+1)
ŷt

= w
(t)
ŷt

+ xt
13 else
14 Predict ŷt ∈ St chosen arbitrarily
15 Observe feedback zt = 1 [ŷt 6= yt]
16 if zt = 1 then
17 Set w(t+1)

i = w
(t)
i , ∀i ∈ {1, 2, . . . ,K} \ {ŷt}

18 Update w(t+1)
ŷt

= w
(t)
ŷt
− xt

19 else
20 Set w(t+1)

i = w
(t)
i , ∀i ∈ {1, 2, . . . ,K}

Theorem 2 (Mistake upper bound). Let (V, 〈·, ·〉) be an
inner product space, K be a positive integer, γ be a
positive real number, R be a non-negative real num-
ber. If the examples (x1, y1), . . . , (xT , yT ) ∈ V ×
{1, 2, . . . ,K} are strongly linearly separable with mar-
gin γ and ‖x1‖ ,‖x2‖ , . . . ,‖xT ‖ ≤ R then the expected
number of mistakes that Algorithm 1 makes is at most
(K − 1)b4(R/γ)2c.

The upper bound (K−1)b4(R/γ)2c on the expected num-
ber of mistakes of Algorithm 1 is optimal up to a con-
stant factor, as long as the number of classes K is at most
O((R/γ)2). This lower bound is stated as Theorem 3 be-
low. The proof of the theorem can be found in Appendix B.
Daniely & Helbertal (2013) provide a lower bound under
the assumption of weak linear separability, which does not
immediately imply a lower bound under the stronger no-
tion.
Theorem 3 (Mistake lower bound). Let γ be a positive
real number, R be a non-negative real number and let
K ≤ (R/γ)2 be a positive integer. Any (possibly random-
ized) algorithm makes at least ((K − 1)/2)

⌊
(R/γ)2/4

⌋
mistakes in expectation on some sequence of labeled exam-
ples (x1, y1), (x2, y2), . . . , (xT , yT ) ∈ V × {1, 2, . . . ,K}
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for some inner product space (V, 〈·, ·〉) such that the ex-
amples are strongly linearly separable with margin γ and
satisfy‖x1‖ ,‖x2‖ , . . . ,‖xT ‖ ≤ R.

Remark. If γ ≤ R then, irrespective of any other con-
ditions on K, R, and γ, a trivial lower bound on the ex-
pected number of mistakes of any randomized algorithm is
(K − 1)/2. To see this, note that the adversary can choose
an example (Re1, y), where e1 is some arbitrary unit vector
in V and y is a label chosen uniformly from {1, 2, . . . ,K},
and show this example K times. The sequence of exam-
ples trivially satisfies the strong linear separability condi-
tion, and the (K − 1)/2 expected mistake lower bound fol-
lows from (Daniely & Helbertal, 2013, Claim 2).

Algorithm 1 can be extended to nonlinear classification us-
ing positive definite kernels (or kernels, for short), which
are functions of the form k : X × X → R for some
set X such that the matrix

(
k(xi, xj)

)m
i,j=1

is a symmet-
ric positive semidefinite for any positive integer m and
x1, x2, . . . , xm ∈ X (Schölkopf & Smola, 2002, Defini-
tion 2.5).6 As opposed to explicitly maintaining the weight
vector for each class, the algorithm maintains the set of
example-scalar pairs corresponding to the updates of the
non-kernelized algorithm. As a direct consequence of The-
orem 2 we get a mistake bound for the kernelized algo-
rithm.

Theorem 4 (Mistake upper bound for kernelized algo-
rithm). Let X be a non-empty set, let (V, 〈·, ·〉) be an inner
product space. Let φ : X → V be a feature map and let
k : X ×X → R, k(x, x′) =

〈
φ(x), φ(x′)

〉
be the associ-

ated positive definite kernel. Let K be a positive integer, γ
be a positive real number,R be a non-negative real number.
If (x1, y1), (x2, y2), . . . , (xT , yT ) ∈ X×{1, 2, . . . ,K} are
labeled examples such that:

1. the mapped examples (φ(x1), y1), . . . , (φ(xT ), yT )
are strongly linearly separable with margin γ,

2. k(x1, x1), k(x2, x2), . . . , k(xT , xT ) ≤ R2,

then the expected number of mistakes that Algorithm 2
makes is at most (K − 1)b4(R/γ)2c.

5. From weak separability to strong
separability

In this section, we consider the case when the examples are
weakly linearly separable. Throughout this section, we as-
sume without loss of generality that all examples lie in the

6For every kernel there exists an associated feature map φ :
X → V into some inner product space (V, 〈·, ·〉) such that
k(x, x′) =

〈
φ(x), φ(x′)

〉
.

Algorithm 2 KERNELIZED BANDIT ALGORITHM

Require: Number of classes K, number of rounds T .
Require: Kernel function k(·, ·).
Initialize J (1)

1 = J
(1)
2 = · · · = J

(1)
K = ∅

for t = 1, 2, . . . , T do
Observe feature vector xt.
Compute
St =

{
i : 1 ≤ i ≤ K,

∑
(x,y)∈J(t)

i
yk(x, xt) ≥ 0

}
if St = ∅ then

Predict ŷt ∼ Uniform({1, 2, . . . ,K})
Observe feedback zt = 1 [ŷt 6= yt]
if zt = 1 then

Set J (t+1)
i = J

(t)
i for all i ∈ {1, 2, . . . ,K}

else
Set J (t+1)

i = J
(t)
i , ∀i ∈ {1, 2, . . . ,K} \ {ŷt}

Update J (t+1)
ŷt

= J
(t)
ŷt
∪
{

(xt,+1)
}

else
Predict ŷt ∈ St chosen arbitrarily
Observe feedback zt = 1 [ŷt 6= yt]
if zt = 1 then

Set J (t+1)
i = J

(t)
i , ∀i ∈ {1, 2, . . . ,K} \ {ŷt}

Update J (t+1)
ŷt

= J
(t)
ŷt
∪
{

(xt,−1)
}

else
Set J (t+1)

i = J
(t)
i for all i ∈ {1, 2, . . . ,K}

unit ball B(0, 1) ⊆ Rd.7 Note that Algorithm 1 alone does
not guarantee a finite mistake bound in this setting, as weak
linear separability does not imply strong linear separability.

We use a positive definite kernel function k(·, ·), namely
a rational kernel (Shalev-Shwartz et al., 2011) whose cor-
responding feature map φ(·) transforms any sequence of
weakly linearly separable examples to a strongly linearly
separable sequence of examples. Specifically, φ has the
property that if a set of labeled examples in B(0, 1) is
weakly linearly separable with a margin γ, then after ap-
plying φ the examples become strongly linearly separable
with a margin γ′ and their squared norms are bounded by
2. 8 The parameter γ′ is a function of the old margin γ
and the number of classesK, and is specified in Theorem 5
below.

7Instead of working with feature vector xt we can work with
normalized feature vectors x̂t = xt

‖xt‖ . It can be easily checked
that if (x1, y1), (x2, y2), . . . , (xT , yT ) are weakly linearly sepa-
rable with margin γ and ‖xt‖ ≤ R for all t, then the normal-
ized examples (x̂1, y1), (x̂2, y2), . . . , (x̂T , yT ) are weakly lin-
early separable with margin γ/R.

8Other kernels, such as the polynomial kernel k(x, x′) =
(1+

〈
x, x′

〉
)d, or the multinomial kernel (Goel & Klivans, 2017)

k(x, x′) =
∑d
i=0(

〈
x, x′

〉
)i, will have similar properties for large

enough d.
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The rational kernel k : B(0, 1) × B(0, 1) → R is defined
as

k(x, x′) =
1

1− 1
2 〈x, x′〉Rd

. (6)

Note that k(x, x′) can be evaluated in O(d) time.

Consider the classical real separable Hilbert space `2 =
{x ∈ R∞ :

∑∞
i=1 x

2
i < +∞} equipped with the stan-

dard inner product
〈
x, x′

〉
`2

=
∑∞
i=1 xix

′
i. If we index

the coordinates of `2 by d-tuples (α1, α2, . . . , αd) of non-
negative integers, the feature map that corresponds to k is
φ : B(0, 1)→ `2,(
φ(x1, x2, . . . , xd)

)
(α1,α2,...,αd)

=

xα1
1 xα2

2 . . . xαdd ·

√
2−(α1+α2+···+αd)

(
α1 + α2 + · · ·+ αd
α1, α2, . . . , αd

)
(7)

where
(
α1+α2+···+αd
α1,α2,...,αd

)
= (α1+α2+···+αd)!

α1!α2!...αd! is the multino-
mial coefficient. It can be easily checked that

k(x, x′) =
〈
φ(x), φ(x′)

〉
`2
.

The last equality together with the formula for k implies
that k(x, x) < +∞ for any x in B(0, 1) and thus in partic-
ular implies that φ(x) indeed lies in `2.

The following theorem is our main technical result in this
section. We defer its proof to Section 5.1.

Theorem 5 (Margin transformation). Let (x1, y1),
(x2, y2), . . . , (xT , yT ) ∈ B(0, 1) × {1, 2, . . . ,K} be
a sequence of labeled examples that is weakly linearly
separable with margin γ > 0. Let φ be as defined in
equation (7) and let

γ1 =

[
376dlog2(2K − 2)e ·

⌈√
2
γ

⌉]−dlog2(2K−2)e·d√2/γe
2

2
√
K

,

γ2 =

(
2s+1r(K − 1)(4s+ 2)

)−(s+1/2)r(K−1)

4
√
K(4K − 5)2K−1

,

where r = 2
⌈

1
4 log2(4K − 3)

⌉
+ 1 and s =

⌈
log2(2/γ)

⌉
.

Then, the sequence of labeled examples transformed by
φ, namely (φ(x1), y1), (φ(x2), y2), . . . , (φ(xT ), yT ), is
strongly linearly separable with margin γ′ = max{γ1, γ2}.
In addition, for all t in {1, . . . , T}, k(xt, xt) ≤ 2.

Using this theorem we derive a mistake bound for Algo-
rithm 2 with kernel (6) under the weak linear separability
assumption.

Corollary 6 (Mistake upper bound). Let K be a pos-
itive integer and let γ be a positive real number. If

(x1, y1), (x2, y2), . . . , (xT , yT ) ∈ B(0, 1)×{1, 2, . . . ,K}
is a sequence of weakly separable labeled examples with
margin γ > 0, then the expected number of mistakes made
by Algorithm 2 with kernel k(x, x′) defined by (6) is at most

min(2Õ(K log2(1/γ)), 2Õ(
√

1/γ logK)).

This corollary follows directly from Theorems 4 and 5.
We remark that under the weakly linearly separable set-
ting, (Daniely & Helbertal, 2013) gives a mistake lower
bound of Ω(Kγ2 ) for any algorithm (see also Theorem 3).
We leave the possibility of designing efficient algorithms
that have mistakes bounds matching this lower bound as an
important open question.

5.1. Proof of Theorem 5

Overview. The idea behind the construction and anal-
ysis of the mapping φ is polynomial approximation.
Specifically, we construct K multivariate polynomials
p1, p2, . . . , pK such that

∀t ∈ {1, 2, . . . , T} , pyt(xt) ≥
γ′

2
, (8)

∀t ∈ {1, 2, . . . , T} ∀i ∈ {1, 2, . . . ,K} \ {yt} ,

pi(xt) ≤ −
γ′

2
.

(9)

We then show (Lemma 9) that each polynomial pi
can be expressed as

〈
ci, φ(x)

〉
`2

for some ci ∈
`2. This immediately implies that the examples
(φ(x1), y1), . . . , (φ(xT ), yT ) are strongly linearly separa-
ble with a positive margin.

The conditions (8) and (9) are equivalent to that

∀t ∈ {1, 2, . . . , T} , yt = i ⇒ pi(xt) ≥
γ′

2
, (10)

∀t ∈ {1, 2, . . . , T} , yt 6= i ⇒ pi(xt) ≤ −
γ′

2
. (11)

hold for all i ∈ {1, 2, . . . ,K}. We can thus fix i and focus
on construction of one particular polynomial pi.

Since examples (x1, y1), (x2, y2), . . . , (xT , yT ) are weakly
linearly separable, all examples from class i lie in

R+
i =

⋂
j∈{1,2,...,K}\{i}

{
x ∈ B(0, 1) :

〈
w∗i − w∗j , x

〉
≥ γ

}
,

and all examples from the remaining classes lie in

R−i =
⋃

j∈{1,2,...,K}\{i}

{
x ∈ B(0, 1) :

〈
w∗i − w∗j , x

〉
≤ −γ

}
.

Therefore, to satisfy conditions (10) and (11), it suffices to
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construct pi such that

x ∈ R+
i =⇒ pi(x) ≥ γ′

2
, (12)

x ∈ R−i =⇒ pi(x) ≤ −γ
′

2
. (13)

According to the well known Stone-Weierstrass theo-
rem (see e.g. Davidson & Donsig, 2010, Section 10.10),
on a compact set, multivariate polynomials uniformly
approximate any continuous function. Roughly speak-
ing, the conditions (12) and (13) mean that pi ap-
proximates on B(0, 1) a scalar multiple of the indica-
tor function of the intersection of K − 1 halfspaces⋂
j∈{1,2,...,K}\{i}

{
x :
〈
w∗i − w∗j , x

〉
≥ 0

}
while within

margin γ along the decision boundary, the polynomial is
allowed to attain arbitrary values. It is thus clear such a
polynomial exists.

We give two explicit constructions for such polynomial in
Theorems 7 and 8. Our constructions are based on Kli-
vans & Servedio (2008) which in turn uses the construc-
tions from Beigel et al. (1995). More importantly, the theo-
rems quantify certain parameters of the polynomial, which
allows us to upper bound the transformed margin γ′.

Before we state the theorems, recall that a polynomial of d
variables is a function p : Rd → R of the form

p(x) = p(x1, x2, . . . , xd)

=
∑

α1,α2,...,αd

cα1,α2,...,αdx
α1
1 xα2

2 . . . xαdd

where the sum ranges over a finite set of d-tuples
(α1, α2, . . . , αd) of non-negative integers and
cα1,α2,...,αd ’s are real coefficients. The degree of a
polynomial p, denoted by deg(p), is the largest value of
α1 + α2 + · · · + αd for which the coefficient cα1,α2,...,αd

is non-zero. Following the terminology of Klivans &
Servedio (2008), the norm of a polynomial p is defined as

‖p‖ =

√ ∑
α1,α2,...,αd

(
cα1,α2,...,αd

)2
.

It is easy see that this is indeed a norm, since we can in-
terpret it as the Euclidean norm of the vector of the coeffi-
cients of the polynomial.

Theorem 7 (Polynomial approximation of intersection of
halfspaces I). Let v1, v2, . . . , vm ∈ Rd be vectors such that
‖v1‖ ,‖v2‖ , . . . ,‖vm‖ ≤ 1. Let γ ∈ (0, 1). There exists a
multivariate polynomial p : Rd → R such that

1. p(x) ≥ 1/2 for all x ∈ R+ =
m⋂
i=1

{
x ∈ B(0, 1) : 〈vi, x〉 ≥ γ

}
,

〈v1, x〉 = 0

〈v2, x〉 = 0

γ
γ

γ
γ

R+ R−

Figure 2. The figure shows the two regions R+ and R− used in
parts 1 and 2 of Theorems 7 and 8 for the case m = d = 2 and
a particular choice of vectors v1, v2 and margin parameter γ. The
separating hyperplanes 〈v1, x〉 = 0 and 〈v2, x〉 = 0 are shown as
dashed lines.

2. p(x) ≤ −1/2 for all x ∈ R− =
m⋃
i=1

{
x ∈ B(0, 1) : 〈vi, x〉 ≤ −γ

}
,

3. deg(p) =
⌈
log2(2m)

⌉
·
⌈√

1/γ
⌉

,

4. ‖p‖ ≤
[
188

⌈
log2(2m)

⌉
·
⌈√

1/γ
⌉] dlog2(2m)e·d√1/γe

2

.

Theorem 8 (Polynomial approximation of intersection of
halfspaces II). Let v1, v2, . . . , vm ∈ Rd be vectors such
that‖v1‖ ,‖v2‖ , . . . ,‖vm‖ ≤ 1. Let γ ∈ (0, 1). Define

r = 2

⌈
1

4
log2(4m+ 1)

⌉
+ 1 and s =

⌈
log2(1/γ)

⌉
.

Then, there exists a multivariate polynomial p : Rd → R
such that

1. p(x) ≥ 1/2 for all x ∈ R+ =
m⋂
i=1

{
x ∈ B(0, 1) : 〈vi, x〉 ≥ γ

}
,

2. p(x) ≤ −1/2 for all x ∈ R− =
m⋃
i=1

{
x ∈ B(0, 1) : 〈vi, x〉 ≤ −γ

}
,

3. deg(p) ≤ (2s+ 1)rm,

4. ‖p‖ ≤ (4m− 1)2m ·
(
2srm(4s+ 2)

)(s+1/2)rm
.

The proofs of the theorems are in Appendix D. The geo-
metric interpretation of the two regions R+ and R− in the
theorems is explained in Figure 2. Similar but weaker re-
sults were proved by Klivans & Servedio (2008). Specifi-
cally, our bounds in parts 1, 2, 3, 4 of Theorems 7 and 8 are
independent of the dimension d.
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The following lemma establishes a correspondence be-
tween any multivariate polynomial in Rd and an element
in `2, and gives an upper bound on its norm. Its proof fol-
lows from simple algebra, which we defer to Appendix C.
Lemma 9 (Norm bound). Let p : Rd → R be a multi-
variate polynomial. There exists c ∈ `2 such that p(x) =〈
c, φ(x)

〉
`2

and‖c‖`2 ≤ 2deg(p)/2‖p‖.

Using the lemma and the polynomial approximation the-
orems, we can prove that the mapping φ maps any set of
weakly linearly separable examples to a strongly linearly
separable set of examples. Due to space constraints, we
defer the full proof of Theorem 5 to Appendix E.

6. Experiments
In this section, we provide an empirical evaluation on our
algorithms, verifying their effectiveness on linearly sepa-
rable datasets. We generated strongly and weakly linearly
separable datasets with K = 3 classes in R3 i.i.d. from
two data distributions. Figures 3a and 3b show visualiza-
tions of the two datasets, along with detailed descriptions
of the distributions.

(a) Strongly separable case (b) Weakly separable case

Figure 3. Strongly and weakly linearly separable datasets in R3

with K = 3 classes and T = 5 × 106 examples. Here we
show projections of the examples onto their first two coordinates,
which lie in the ball of radius 1/

√
2 centered at the origin. The

third coordinate is 1/
√
2 for all examples. Class 1 is depicted

red. Classes 2 and 3 are depicted green and blue, respectively.
80% of the examples belong to class 1, 10% belong to class
2 and 10% belong to class 3. Class 1 lies in the angle inter-
val [−15◦, 15◦], while classes 2 and 3 lie in the angle intervals
[15◦, 180◦] and [−180◦,−15◦] respectively. The examples are
strongly and weakly linearly separable with a margin of γ = 0.05,
respectively. (Examples lying within margin γ of the linear sepa-
rators were rejected during sampling.)

We implemented Algorithm 1, Algorithm 2 with ratio-
nal kernel (6) and used implementation of BANDITRON
algorithm by Orabona (2009). We evaluated these al-
gorithms on the two datasets. BANDITRON has an
exploration rate parameter, for which we tried values
0.02, 0.01, 0.005, 0.002, 0.001, 0.0005. Since all three al-
gorithms are randomized, we run each algorithm 20 times.

The average cumulative number of mistakes up to round t
as a function of t are shown in Figures 4 and 5.

We can see that there is a tradeoff in the setting of the explo-
ration rate for BANDITRON. With large exploration param-
eter, BANDITRON suffers from over-exploration, whereas
with small exploration parameter, its model cannot be up-
dated quickly enough. As expected, Algorithm 1 has a
small number of mistakes in the strongly linearly separa-
ble setting, while having a large number of mistakes in the
weakly linearly separable setting, due to the limited rep-
resentation power of linear classifiers. In contrast, Algo-
rithm 2 with rational kernel has a small number of mis-
takes in both settings, exhibiting strong adaptivity guaran-
tees. Appendix F shows the decision boundaries that each
of the algorithms learns by the end of the last round.
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Figure 4. The average cumulative number of mistakes versus the
number of rounds on the strongly linearly separable dataset in
Figure 3a.
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Figure 5. The average cumulative number of mistakes versus the
number of rounds on the weakly linearly separable dataset in Fig-
ure 3b.
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A. Multiclass Perceptron
MULTICLASS PERCEPTRON is an algorithm for ONLINE MULTICLASS CLASSIFICATION. Both the protocol for the
problem and the algorithm are stated below. The algorithm assumes that the feature vectors come from an inner product
space (V, 〈·, ·〉).

Two results are folklore. The first result is Theorem 10 which states that if examples are linearly separable with margin γ
and examples have norm at mostR then the algorithm makes at most b2(R/γ)2cmistakes. The second result is Theorem 11
which states that under the same assumptions as in Theorem 11 any deterministic algorithm for ONLINE MULTICLASS
CLASSIFICATION must make at least b(R/γ)2c mistakes in the worst case.

Protocol 2 ONLINE MULTICLASS CLASSIFICATION
Require: Number of classes K, number of rounds T .
Require: Inner product space (V, 〈·, ·〉).
for t = 1, 2, . . . , T do

Adversary chooses example (xt, yt) ∈ V × {1, 2, . . . ,K}, where xt is revealed to the learner.
Predict class label ŷt ∈ {1, 2, . . . ,K}.
Observe feedback yt.

Algorithm 3 MULTICLASS PERCEPTRON

Require: Number of classes K, number of rounds T .
Require: Inner product space (V, 〈·, ·〉).
Initialize w(1)

1 = w
(1)
2 = · · · = w

(1)
K = 0

for t = 1, 2, . . . , T do
Observe feature vector xt ∈ V
Predict ŷt = argmaxi∈{1,2,...,K}

〈
w

(i)
t , xt

〉
Observe yt ∈ {1, 2, . . . ,K}
if ŷt 6= yt then

Set w(t+1)
i = w

(t)
i

for all i ∈ {1, 2, . . . ,K} \ {yt, ŷt}
Update w(t+1)

yt = w
(t)
yt + xt

Update w(t+1)
ŷt

= w
(t)
ŷt
− xt

else
Set w(t+1)

i = w
(t)
i for all i ∈ {1, 2, . . . ,K}

Theorem 10 (Mistake upper bound (Crammer & Singer, 2003)). Let (V, 〈·, ·〉) be an inner product space, let K be a
positive integer, let γ be a positive real number and let R be a non-negative real number. If (x1, y1), (x2, y2), . . . , (xT , yT )
is a sequence of labeled examples in V × {1, 2, . . . ,K} that are weakly linearly separable with margin γ and
‖x1‖ ,‖x2‖ , . . . ,‖xT ‖ ≤ R then MULTICLASS PERCEPTRON algorithm makes at most b2(R/γ)2c mistakes.

Proof. Let M =
∑T
t=1 1 [ŷt 6= yt] be the number of mistakes the algorithm makes. Since the K-tuple

(w
(t)
1 , w

(t)
2 , . . . , w

(t)
K ) changes only if a mistake is made, we can upper bound

∑K
i=1

∥∥∥w(t)
i

∥∥∥2

in terms of number of mis-
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takes. If a mistake happens in round t then

K∑
i=1

∥∥∥w(t+1)
i

∥∥∥2

=

 ∑
i∈{1,2,...,K}\{yt,ŷt}

∥∥∥w(t)
i

∥∥∥2

+
∥∥∥w(t)

yt + xt

∥∥∥2

+
∥∥∥w(t)

ŷt
− xt

∥∥∥2

=

 ∑
i∈{1,2,...,K}\{yt,ŷt}

∥∥∥w(t)
i

∥∥∥2

+
∥∥∥w(t)

yt

∥∥∥2

+
∥∥∥w(t)

ŷt

∥∥∥2

+ 2‖xt‖2 + 2
〈
w(t)
yt − w

(t)
ŷt
, xt

〉

=

 K∑
i=1

∥∥∥w(t)
i

∥∥∥2

+ 2‖xt‖2 + 2
〈
w(t)
yt − w

(t)
ŷt
, xt

〉

≤

 K∑
i=1

∥∥∥w(t)
i

∥∥∥2

+ 2‖xt‖2

≤

 K∑
i=1

∥∥∥w(t)
i

∥∥∥2

+ 2R2 .

So each time a mistake happens,
∑K
i=1

∥∥∥w(t)
i

∥∥∥2

increases by at most 2R2. Thus,

K∑
i=1

∥∥∥w(T+1)
i

∥∥∥2

≤ 2R2M . (14)

Let w∗1 , w
∗
2 , . . . , w

∗
K ∈ V be vectors satisfying (1) and (2). We lower bound

∑K
i=1

〈
w∗i , w

(t)
i

〉
. This quantity changes only

when a mistakes happens. If mistake happens in round t, we have

K∑
i=1

〈
w∗i , w

(t+1)
i

〉
=

 ∑
i∈{1,2,...,K}\{yt,ŷt}

〈
w∗i , w

(t)
i

〉
+
〈
w∗yt , w

(t)
yt + xt

〉
+
〈
w∗ŷt , w

(t)
ŷt
− xt

〉
=

 K∑
i=1

〈
w∗i , w

(t)
i

〉+
〈
w∗yt − w

∗
ŷt
, xt

〉

≥

 K∑
i=1

〈
w∗i , w

(t)
i

〉+ γ .

Thus, after M mistakes,
K∑
i=1

〈
w∗i , w

(T+1)
i

〉
≥ γM .

We upper bound the left hand side by using Cauchy-Schwartz inequality twice and the condition (1) on w∗1 , w
∗
2 , . . . , w

∗
K .

We have
K∑
i=1

〈
w∗i , w

(T+1)
i

〉
≤

K∑
i=1

‖w∗i ‖ ·
∥∥∥w(T+1)

i

∥∥∥
≤

√√√√ K∑
i=1

∥∥w∗i ∥∥2

√√√√ K∑
i=1

∥∥∥w(T+1)
i

∥∥∥2

≤

√√√√ K∑
i=1

∥∥∥w(T+1)
i

∥∥∥2

.



Bandit Multiclass Linear Classification: Efficient Algorithms for the Separable Case

Combining the above inequality with Equations (14) and (A), we get

(γM)2 ≤
K∑
i=1

∥∥∥w(T+1)
i

∥∥∥2

≤ 2R2M .

We conclude that M ≤ 2(R/γ)2. Since M is an integer, M ≤ b2(R/γ)2c.

Theorem 11 (Mistake lower bound). Let K be a positive integer, let γ be a positive real number and let R be a non-
negative real number. For any (possibly randomized) algorithm A for the ONLINE MULTICLASS CLASSIFICATION
problem there exists an inner product space (V, 〈·, ·〉), a non-negative integer T and a sequence of labeled examples
(x1, y1), (x2, y2), . . . , (xT , yT ) examples in V × {1, 2, . . . ,K} that are weakly linearly separable with margin γ, the
norms satisfy‖x1‖ ,‖x2‖ , . . . ,‖xT ‖ ≤ R and the algorithm makes at least 1

2b(R/γ)2c mistakes.

Proof. Let T = b(R/γ)2c, V = RT , and for all t in {1, . . . , T}, define instance xt = Ret where et is t-th element of
the standard orthonormal basis of RT . Let labels y1, . . . , yT be chosen i.i.d uniformly at random from {1, 2, . . . ,K} and
independently of any randomness used by the algorithm A.

We first show that the set of examples (x1, y1), . . ., (xT , yT ) we have constructed is weakly linearly separable with margin
γ. To prove that, we demonstrate vectors w1, w2, . . . , wK satisfying conditions (1) and (2). We define

wi =
γ

R

∑
t:1≤t≤T
yt=i

et for i = 1, 2, . . . ,K.

Let ai = |{t : 1 ≤ t ≤ T, yt = i}| be the number of occurrences of label i. It is easy to see that

‖wi‖2 =
γ2

R2

∑
t:1≤t≤T
yt=i

‖et‖2 =
aiγ

2

R2
for i = 1, 2, . . . ,K.

Since
∑K
i=1 ai = T ,

∑K
i=1‖wi‖

2
= T · γ

2

R2 ≤ 1, i.e. the condition (1) holds. To verify condition (2) consider any labeled
example (xt, yt). Then, for any i in {1, . . . ,K}, by the definition of wi, we have

〈wi, xt〉 =
γ

R

∑
s:1≤s≤T
ys=i

〈es, Ret〉

= γ ·
∑

s:1≤s≤T
ys=i

1 [s = t]

= γ · 1 [yt = i] .

Therefore, if i = yt, 〈wi, xt〉 = γ; otherwise i 6= yt, in which case 〈wi, xt〉 = 0. Hence, condition (2) holds.

We now give a lower bound on the number of mistakes A makes. As yt is chosen uniformly from {1, 2, . . . ,K}, indepen-
dently from A’s randomization and the first t− 1 examples,

E[1 [ŷt 6= yt]] ≥ 1− 1

K
≥ 1

2
.

Summing over all t in {1, . . . , T}, we conclude that

E

 T∑
t=1

1 [ŷt 6= yt]

 ≥ T

2
=

1

2
b(R/γ)2c,

which completes the proof.
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B. Proofs of Theorems 2 and 3
Proof of Theorem 2. Let M =

∑T
t=1 zt be the number of mistakes Algorithm 1 makes. Let A =

∑T
t=1 1

[
St 6= ∅

]
zt

be the number of mistakes in the rounds when St 6= ∅, i.e. the number of rounds line 18 is executed. In addition, let
B =

∑T
t=1 1

[
St = ∅

]
zt be the number of mistakes in the rounds when St = ∅. It can be easily seen that M = A+B.

Let C =
∑T
t=1 1

[
St = ∅

]
(1 − zt) be the number of rounds line 12 gets executed. Let U =

∑T
t=1(1

[
St 6= ∅

]
zt +

1
[
St = ∅

]
(1 − zt)) be the number of rounds line 12 or 18 gets executed. In other words, U is the number of times the

K-tuple of vectors (w
(t)
1 , w

(t)
2 , . . . , w

(t)
K ) gets updated. It can be easily seen that U = A+ C.

The key observation is that E[B] = (K − 1)E[C]. To see this, note that if St = ∅, there is 1/K probability that the
algorithm guesses the correct label (zt = 0) and with probability (K − 1)/K algorithm’s guess is incorrect (zt = 1).
Therefore,

E[zt|St = ∅] =
K − 1

K
,

E[B] =
K − 1

K
E

 T∑
t=1

1
[
St = ∅

] ,
E[C] =

1

K
E

 T∑
t=1

1
[
St = ∅

] .
Putting all the information together, we get that

E[M ] = E[A] + E[B]

= E[A] + (K − 1)E[C]

≤ (K − 1)E[A+ C]

= (K − 1)E[U ] . (15)

To finish the proof, we need to upper bound the number of updates U . We claim that U ≤ b4(R/γ)2c with probability 1.
The proof of this upper bound is similar to the proof of the mistake bound for MULTICLASS PERCEPTRON algorithm. Let
w∗1 , w

∗
2 , . . . , w

∗
K ∈ V be vectors that satisfy (3), (4) and (5). The K-tuple (w

(t)
1 , w

(t)
2 , . . . , w

(t)
K ) changes only if there is

an update in round t. We investigate how
∑K
i=1

∥∥∥w(t)
i

∥∥∥2

and
∑K
i=1

〈
w∗i , w

(t)
i

〉
change. If there is an update in round t, by

lines 12 and 18, we always have w(t+1)
ŷt

= w
(t)
ŷt

+ (−1)ztxt, and for all i 6= ŷt, w
(t+1)
i = w

(t)
i . Therefore,

K∑
i=1

∥∥∥w(t+1)
i

∥∥∥2

=

 ∑
i∈{1,2,...,K}\{ŷt}

∥∥∥w(t)
i

∥∥∥2

+
∥∥∥w(t+1)

ŷt

∥∥∥2

=

 ∑
i∈{1,2,...,K}\{ŷt}

∥∥∥w(t)
i

∥∥∥2

+
∥∥∥w(t)

ŷt
+ (−1)ztxt

∥∥∥2

=

 K∑
i=1

∥∥∥w(t)
i

∥∥∥2

+‖xt‖2 + (−1)zt2
〈
w

(t)
ŷt
, xt

〉
︸ ︷︷ ︸

≤0

≤

 K∑
i=1

∥∥∥w(t)
i

∥∥∥2

+‖xt‖2

≤

 K∑
i=1

∥∥∥w(t)
i

∥∥∥2

+R2 .
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The inequality that (−1)zt2
〈
w

(t)
ŷt
, xt

〉
≤ 0 is from a case analysis: if line 12 is executed, then zt = 0 and

〈
w

(t)
ŷt
, xt

〉
< 0;

otherwise line 18 is executed, in which case zt = 1 and
〈
w

(t)
ŷt
, xt

〉
≥ 0.

Hence, after U updates,
K∑
i=1

∥∥∥w(T+1)
i

∥∥∥2

≤ R2U . (16)

Similarly, if there is an update in round t, we have

K∑
i=1

〈
w∗i , w

(t)
i

〉
=

 ∑
i∈{1,2,...,K}\{ŷt}

〈
w∗i , w

(t)
i

〉+
〈
w∗ŷt , w

(t+1)
ŷt

〉

=

 ∑
i∈{1,2,...,K}\{ŷt}

〈
w∗i , w

(t)
i

〉+
〈
w∗ŷt , w

(t)
ŷt

+ (−1)ztxt

〉

=

 K∑
i=1

〈
w∗i , w

(t)
i

〉+ (−1)zt
〈
w∗ŷt , xt

〉

≥

 K∑
i=1

〈
w∗i , w

(t)
i

〉+
γ

2
,

where the last inequality follows from a case analysis on zt and Definition 1: if zt = 0, then ŷt = yt, by Equation (4), we
have that

〈
w∗ŷt , xt

〉
≥ γ

2 ; if zt = 1, then ŷt 6= yt, by Equation (5), we have that
〈
w∗ŷt , xt

〉
≤ −γ2 .

Thus, after U updates,
K∑
i=1

〈
w∗i , w

(T+1)
i

〉
≥ γU

2
. (17)

Applying Cauchy-Schwartz’s inequality twice, and using assumption (3), we get that

K∑
i=1

〈
w∗i , w

(T+1)
i

〉
≤

K∑
i=1

‖w∗i ‖ ·
∥∥∥w(T+1)

i

∥∥∥
≤

√√√√ K∑
i=1

∥∥w∗i ∥∥2

√√√√ K∑
i=1

∥∥∥w(T+1)
i

∥∥∥2

≤

√√√√ K∑
i=1

∥∥∥w(T+1)
i

∥∥∥2

.

Combining the above inequality with Equations (16) and (17), we get(
γU

2

)2

≤
K∑
i=1

∥∥∥w(T+1)
i

∥∥∥2

≤ R2U .

We conclude that U ≤ 4(R/γ)2. Since U is an integer, U ≤ b4(R/γ)2c.

Applying Equation (15), we get

E[M ] ≤ (K − 1)E[U ] ≤ (K − 1)b4(R/γ)2c .

Proof of Theorem 3. Let M =
⌊

1
4 (R/γ)2

⌋
. Let V = RM+1 equipped with the standard inner product. Let

e1, e2, . . . , eM+1 be the standard orthonormal basis of V . We define vectors v1, v2, . . . , vM ∈ V where vj = R√
2
(ej +
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eM+1) for j = 1, 2, . . . ,M . Let `1, `2, . . . , `M be chosen i.i.d. uniformly at random from {1, 2, . . . ,K} and independently
of any randomness used the by algorithm A. Let T = M(K − 1). We define examples (x1, y1), (x2, y2), . . . , (xT , yT ) as
follows. For any j = 1, 2, . . . ,M and any h = 1, 2, . . . ,K − 1,

(x(j−1)(K−1)+h, y(j−1)(K−1)+h) = (vj , `j)

The norm of each example is exactly R. The examples are strongly linearly separable with margin γ. To see that, consider
w∗1 , w

∗
2 , . . . , w

∗
K ∈ V defined by

w∗i =
√

2
γ

R

 ∑
j : `j=i

ej

− √2

2

γ

R
eM+1

for i = 1, 2, . . . ,K.

For i ∈ {1, 2, . . . ,K} and j ∈ {1, 2, . . . ,M}, consider the inner product of w∗i and vj . If i = `j ,
〈
w∗i , vj

〉
= γ − γ

2 = γ
2 ;

otherwise i 6= `j , in which case
〈
w∗i , vj

〉
= 0− γ

2 = −γ2 . This means that w∗1 , w
∗
2 , . . . , w

∗
K satisfy conditions (4) and (5).

Condition (3) is satisfied since

K∑
i=1

‖w∗i ‖
2

= 2
γ2

R2

M∑
j=1

∥∥ej∥∥2
+

γ2

2R2
K‖eM+1‖2

= 2
γ2

R2
M +

γ2

2R2
K ≤ 1

2
+

1

2
= 1 .

It remains to lower bound the expected number of mistakes of A. For any j ∈ {1, 2, . . . ,M}, consider the expected
number of mistakes the algorithm makes in rounds (K − 1)(j − 1) + 1, (K − 1)(j − 1) + 2, . . . , (K − 1)j.

Define a filtration of σ-algebras
{
Bj
}M
j=0

, where Bj = σ((x1, y1, ŷ1), . . . , (x(K−1)j , y(K−1)j , ŷ(K−1)j)) for every j in
{1, 2, . . . ,M}. By Claim 2 of Daniely & Helbertal (2013), as `j is chosen uniformly from {1, . . . ,K} and independent of
Bj−1 and A’s randomness,

E

 (K−1)j∑
t=(K−1)(j−1)+1

zt

∣∣∣∣∣ Bj−1

 ≥ K − 1

2
.

This implies that

E

 (K−1)j∑
t=(K−1)(j−1)+1

zt

 ≥ K − 1

2
.

Summing over all j in {1, 2, . . . ,M},

E

(K−1)M∑
t=1

zt

 ≥ K − 1

2
·M =

K − 1

2

⌊
1

4
(R/γ)2

⌋
.

Thus there exists a particular sequence of examples for which the algorithm makes at least K−1
2

⌊
1
4 (R/γ)2

⌋
mistakes in

expectation over its internal randomization.

C. Proof of Lemma 9
Proof. Note that the polynomial p can be written as p(x) =

∑
α1,α2,...,αd

c′α1,α2,...,αd
xα1

1 xα2
2 . . . xαdd . We define c ∈ `2

using the multi-index notation as

cα1,α2,...,αd =
c′α1,α2,...,αd

2(α1+α2+···+αd)/2√(
α1+α2+···+αd
α1,α2,...,αd

)
for all tuples (α1, α2, . . . , αd) such that α1 + α2 + · · · + αd ≤ deg(p). Otherwise, we define cα1,α2,...,αd = 0. By the
definition of φ,

〈
c, φ(x)

〉
`2

= p(x).
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Whether α1 + . . .+ αd ≤ deg(p), we always have:

|cα1,α2,...,αd | ≤ 2(α1+α2+···+αd)/2|c′α1,α2,...,αd
| ≤ 2deg(p)/2|c′α1,α2,...,αd

| .

Therefore,

‖c‖`2 ≤ 2deg(p)/2

√ ∑
α1,α2,...,αd

(c′α1,α2,...,αd
)2 = 2deg(p)/2‖p‖ .

D. Proofs of Theorems 7 and 8
In this section, we follow the construction of Klivans & Servedio (2008) (which in turn uses the constructions of Beigel
et al. (1995)) to establish two polynomials of low norm, such that it takes large positive values in

m⋂
i=1

{
x ∈ Rd : ‖x‖ ≤ 1, 〈vi, x〉 ≥ γ

}
and takes large negative values in

m⋃
i=1

{
x ∈ Rd : ‖x‖ ≤ 1, 〈vi, x〉 ≤ −γ

}
.

We improve the norm bound analysis of Klivans & Servedio (2008) in two aspects:

1. Our upper bounds on the norm of the polynomials do not have any dependency on the dimensionality d.

2. We remove the requirement that the fractional part of input x must be above some threshold in Theorem 8.

A lot of the proof details are similar to those of Klivans & Servedio (2008); nevertheless, we provide a self-contained full
proof here.

For the proofs of the theorems we need several auxiliary results.

Lemma 12 (Simple inequality). For any real numbers b1, b2, . . . , bn, n∑
i=1

bi

2

≤ n
n∑
i=1

b2i .

Proof. The lemma follows from Cauchy-Schwartz inequality applied to vectors (b1, b2, . . . , bn) and (1, 1, . . . , 1).

Lemma 13 (Bound on binomial coefficients). For any integers n, k such that n ≥ k ≥ 0,(
n

k

)
≤ (n− k + 1)k .

Proof. If k = 0, the inequality trivially holds. For the rest of the proof we can assume k ≥ 1. We write the binomial
coefficient as (

n

k

)
=
n(n− 1) · · · (n− k + 1)

k(k − 1) · · · 1

=
n

k
· n− 1

k − 1
· · · n− k + 1

1
.

We claim that
n

k
≤ n− 1

k − 1
≤ · · · ≤ n− k + 1

1
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from which the lemma follows by upper bounding all the fractions by n − k + 1. It remains to prove that for any j =
0, 1, . . . , k − 1,

n− j + 1

k − j + 1
≤ n− j
k − j

.

Multiplying by the (positive) denominators, we get an equivalent inequality

(n− j + 1)(k − j) ≤ (n− j)(k − j + 1) .

We multiply out the terms and get

nk − kj + k − nj + j2 − j ≤ nk − nj + n− kj + j2 − j .

We cancel common terms and get an equivalent inequality k ≥ n, which holds by the assumption.

Lemma 14 (Properties of the norm of polynomials).

1. Let p1, p2, . . . , pn be multivariate polynomials and let p(x) =
∏n
j=1 pj(x) be their product. Then, ‖p‖2 ≤

n
∑n
j=1 deg(pj)

∏n
j=1

∥∥pj∥∥2
.

2. Let q be a multivariate polynomial of degree at most s and let p(x) = (q(x))n. Then,‖p‖2 ≤ nns‖q‖2n.

3. Let be p1, p2, . . . , pn be multivariate polynomials. Then,
∥∥∥∑n

j=1 pj

∥∥∥ ≤ ∑n
j=1

∥∥pj∥∥. Consequently,
∥∥∥∑n

j=1 pj

∥∥∥2

≤

n
∑n
j=1

∥∥pj∥∥2
.

Proof. Using multi-index notation we can write any multivariate polynomial p as

p(x) =
∑
A

cAx
A

where A = (α1, α2, . . . , αd) is a multi-index (i.e. a d-tuple of non-negative integers), xA = xα1
1 xα2

2 . . . xαdd is a monomial
and cA = cα1,α2,...,αd is the corresponding real coefficient. The sum is over a finite subset of d-tuples of non-negative
integers. Using this notation, the norm of a polynomial p can be written as

‖p‖ =

√∑
A

(cA)2 .

For a multi-index A = (α1, α2, . . . , αd) we define its 1-norm as‖A‖1 = α1 + α2 + · · ·+ αd.

To prove the part 1, we express pj as

pj(x) =
∑
Aj

c
(j)
Aj
xAj .

Since p(x) =
∏n
i=1 pj(x), the coefficients of its expansion p(x) =

∑
A cAx

A are

cA =
∑

(A1,A2,...,An)
A1+A2+···+An=A

c
(1)
A1
c
(2)
A2
· · · c(n)

An
.
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Therefore,

‖p‖2 =
∑
A

(cA)2

=
∑
A

 ∑
(A1,A2,...,An)

A1+A2+···+An=A

c
(1)
A1
c
(2)
A2
· · · c(n)

An


2

=
∑
A

 ∑
(A1,A2,...,An)

A1+A2+···+An=A

n∏
j=1

c
(j)
Aj


2

and

n∏
i=1

‖pi‖2 =

n∏
i=1

∑
Ai

(c
(i)
Ai

)2


=

∑
(A1,A2,...,An)

n∏
j=1

(c
(j)
Aj

)2

=
∑

(A1,A2,...,An)

 n∏
j=1

c
(j)
Aj

2

=
∑
A

∑
(A1,A2,...,An)

A1+A2+···+An=A

 n∏
j=1

c
(j)
Aj

2

where in both cases the outer sum is over multi-indices A such that ‖A‖1 ≤ deg(p). Lemma 12 implies that for any
multi-index A,  ∑

(A1,A2,...,An)
A1+A2+···+An=A

n∏
j=1

c
(j)
Aj


2

≤MA

∑
(A1,A2,...,An)

A1+A2+···+An=A

 n∏
j=1

c
(j)
Aj

2

.

where MA is the number of n-tuples (A1, A2, . . . , An) such that A1 +A2 + · · ·+An = A.

To finish the proof, it is sufficient to prove that MA ≤ ndeg(p) for any A such that‖A‖1 ≤ deg(p). To prove this inequality,
consider a multi-index A = (α1, α2, . . . , αd) and consider its i-th coordinate αi. In order for A1 +A2 + · · ·+An = A to
hold, the i-th coordinates of A1, A2, . . . , An need to sum to αi. There are exactly

(
αi+n−1

αi

)
possibilities for the choice of

i-th coordinates of A1, A2, . . . , An. The total number of choices is thus

MA =

d∏
i=1

(
αi + n− 1

αi

)
.

Using Lemma 13, we upper bound it as

MA ≤
d∏
i=1

nαi = n‖A‖1 ≤ ndeg(p) .

Part 2 follows from the part 1 by setting p1 = p2 = . . . pn = q.
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The first inequality of part 3 follows from triangle inequality in Euclidean spaces, by viewing the polynomials p =∑
A cAx

A as multidimensional vectors (cA), and ‖p‖ = ‖(cA)‖.

For the second inequality, by Lemma 12, we have∥∥∥∥∥∥
n∑
j=1

pj

∥∥∥∥∥∥
2

=


∥∥∥∥∥∥
n∑
j=1

pj

∥∥∥∥∥∥


2

≤

 n∑
j=1

∥∥pj∥∥
2

≤ n
n∑
j=1

∥∥pj∥∥2
.

D.1. Proof of Theorem 7

To construct the polynomial pwe use Chebyshev polynomials of the first kind. Chebyshev polynomials of the fist kind form
an infinite sequence of polynomials T0(z), T1(z), T2(z), . . . of single real variable z. They are defined by the recurrence

T0(z) = 1 ,

T1(z) = z ,

Tn+1(z) = 2zTn(z)− Tn−1(z), for n ≥ 1.

Chebyshev polynomials have a lot of interesting properties. We will need properties listed in Proposition 15 below. Inter-
ested reader can learn more about Chebyshev polynomials from the book by Mason & Handscomb (2002).

Proposition 15 (Properties of Chebyshev polynomials). Chebyshev polynomials satisfy

1. deg(Tn) = n for all n ≥ 0.

2. If n ≥ 1, the leading coefficient of Tn(z) is 2n−1.

3. Tn(cos(θ)) = cos(nθ) for all θ ∈ R and all n ≥ 0.

4. Tn(cosh(θ)) = cosh(nθ) for all θ ∈ R and all n ≥ 0.

5. |Tn(z)| ≤ 1 for all z ∈ [−1, 1] and all n ≥ 0.

6. Tn(z) ≥ 1 + n2(z − 1) for all z ≥ 1 and all n ≥ 0.

7. ‖Tn‖ ≤ (1 +
√

2)n for all n ≥ 0

Proof of Proposition 15. The first two properties can be easily proven by induction on n using the recurrence.

We prove the third property by induction on n. Indeed, by definition

T0(cos(θ)) = 1 = cos(0θ) and T1(cos(θ)) = cos(θ) .

For n ≥ 1, we have

Tn+1(cos(θ)) = 2 cos(θ)Tn(cos(θ))− Tn−1(cos(θ))

= 2 cos(θ) cos(nθ)− cos((n− 1)θ)) ,

where the last step follow by induction hypothesis. It remains to show that the last expression equals cos((n+ 1)θ). This
can be derived from the trigonometric formula

cos(α± β) = cos(α) cos(β)∓ sin(α) sin(β) .

By substituting α = nθ and β = θ, we get two equations

cos((n+ 1)θ) = cos(nθ) cos(θ)− sin(nθ) sin(θ) ,

cos((n− 1)θ) = cos(nθ) cos(θ) + sin(nθ) sin(θ) .
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Summing them yields
cos((n+ 1)θ) + cos((n− 1)θ) = 2 cos(nθ) cos(θ)

which finishes the proof.

The fourth property has the similar proof as the third property. It suffices to replace cos and sin with cosh and sinh
respectively.

The fifth property follows from the third property. Indeed, for any z ∈ [−1, 1] there exists θ ∈ R such that cos θ = z.
Thus, |Tn(z)| = |Tn(cos(θ))| = | cos(nθ)| ≤ 1.

The sixth property is equivalent to

Tn(cosh(θ)) ≥ 1 + n2(cosh(θ)− 1) for all θ ≥ 0,

since cosh(θ) = eθ+e−θ

2 is an even continuous function that maps R onto [1,+∞), is strictly decreasing on (−∞, 0], and
is strictly increasing on [0,∞). Using the fourth property the last inequality is equivalent to

cosh(nθ) ≥ 1 + n2(cosh(θ)− 1) for all θ ≥ 0.

For θ = 0, both sides are equal to 1. Thus, it is sufficient to prove that the derivative of the left hand side is greater or equal
to the derivative of the right hand side. Recalling that [cosh(θ)]′ = sinh(θ), this means that we need to show that

sinh(nθ) ≥ n sinh(θ) for all θ ≥ 0.

To prove this inequality we use the summation formula

sinh(α+ β) = sinh(α) cosh(β) + sinh(β) cosh(β) .

If α, β are non-negative then sinh(α), sinh(β) are non-negative and cosh(α), cosh(β) ≥ 1. Hence,

sinh(α+ β) ≥ sinh(α) + sinh(β) for any α, β ≥ 0.

This implies that (using induction on n) that sinh(nθ) ≥ n sinh(θ) for all θ ≥ 0.

We verify the seventh property by induction on n. For n = 0 and n = 1 the inequality trivially holds, since‖T0‖ =‖T1‖ =
1. For n ≥ 1, since Tn+1(z) = 2zTn(z)− Tn−1(z),

‖Tn+1‖ ≤ 2‖Tn‖+‖Tn−1‖

≤ 2(1 +
√

2)n + (1 +
√

2)n−1

= (1 +
√

2)n−1(2(1 +
√

2) + 1)

= (1 +
√

2)n−1(3 + 2
√

2)

= (1 +
√

2)n−1(1 +
√

2)2

= (1 +
√

2)n+1 .

We are now ready to prove Theorem 7. Let r =
⌈
log2(2m)

⌉
and s =

⌈√
1
γ

⌉
. We define the polynomial p : Rd → R as

p(x) = m+
1

2
−

m∑
i=1

(
Ts(1− 〈vi, x〉)

)r
.

It remains to show that p has properties 1–5.

To verify the first property notice that if x ∈ Rd satisfies ‖x‖ ≤ 1 and 〈vi, x〉 ≥ γ then since ‖vi‖ ≤ 1 we have
〈vi, x〉 ∈ [0, 1]. Thus, Ts(1− 〈vi, x〉) and

(
Ts(1− 〈vi, x〉)

)r
lie in the interval [−1, 1]. Therefore,

p(x) ≥ m+
1

2
−m ≥ 1

2
.
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To verify the second property consider any x ∈
⋃m
i=1

{
x ∈ Rd : ‖x‖ ≤ 1, 〈vi, x〉 ≤ −γ

}
. Clearly, ‖x‖ ≤ 1 and there

exists at least one i ∈ {1, 2, . . . ,m} such that 〈vi, x〉 ≤ −γ. Therefore, 1 − 〈vi, x〉 ≥ 1 + γ and Proposition 15 (part 6)
imply that

Ts(1− 〈vi, x〉) ≥ 1 + s2γ ≥ 2

and thus (
Ts(1− 〈vi, x〉)

)r ≥ 2r ≥ 2m .

On the other hand for any j ∈ {1, 2, . . . ,m}, we have
〈
vj , x

〉
∈ [−1, 1] and thus 1 −

〈
vj , x

〉
lies in the interval [0, 2].

According to Proposition 15 (parts 5 and 6), Ts(1−
〈
vj , x

〉
) ≥ −1. Therefore,

p(x) = m+
1

2
−
(
Ts(1− 〈vi, x〉)

)r − ∑
j : 1≤j≤m

j 6=i

(
Ts(1−

〈
vj , x

〉
)
)r

≤ m+
1

2
− 2m+ (m− 1) ≤ −1

2
.

The third property follows from the observation that the degree of p is the same as the degree of any one of the terms(
Ts(1− 〈vi, x〉)

)r
which is r · s.

To prove the fourth property, we need to upper bound the norm of p. Let fi(x) = 1− 〈vi, x〉, let gi(x) = Ts(1− 〈vi, x〉)
and let hi(x) = (Ts(1− 〈vi, x〉))r. We have

‖fi‖2 = 1 +‖vi‖2 ≤ 1 + 1 = 2 .

Let Ts(z) =
∑s
j=0 cjz

j be the expansion of s-th Chebyshev polynomial. Then,

‖gi‖2 =

∥∥∥∥∥∥
s∑
j=0

cj(fi)
j

∥∥∥∥∥∥
2

≤ (s+ 1)

s∑
j=0

∥∥∥cj(fi)j∥∥∥2

(by part 3 of Lemma 14)

= (s+ 1)

s∑
j=0

(cj)
2
∥∥∥(fi)

j
∥∥∥2

≤ (s+ 1)

s∑
j=0

(cj)
2jj‖fi‖2j (by part 2 of Lemma 14)

≤ (s+ 1)

s∑
j=0

(cj)
2jj22j

≤ (s+ 1)ss22s
s∑
j=0

(cj)
2

= (s+ 1)ss22s‖Ts‖2

= (s+ 1)ss22s(1 +
√

2)2s (by part 7 of Proposition 15)

= (s+ 1)
(

4(1 +
√

2)2s
)s

≤
(

8(1 +
√

2)2s
)s

≤ (47s)
s
.
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where we used that s+ 1 ≤ 2s for any non-negative integer s. Finally,

‖p‖ ≤ m+
1

2
+

m∑
i=1

∥∥(gi)
r
∥∥

= m+
1

2
+

m∑
i=1

√∥∥(gi)r
∥∥2

≤ m+
1

2
+

m∑
i=1

√
rrs‖gi‖2r

≤ m+
1

2
+mrrs/2 (47s)

rs/2

= m+
1

2
+m (47rs)

rs/2
.

We can further upper bound the last expression by using that m ≤ 1
22r. Since r, s ≥ 1,

‖p‖ ≤ m+
1

2
+m (47rs)

rs/2

≤ 1

2
2r +

1

2
+

1

2
2r (47rs)

rs/2

≤ 2r +
1

2
2r (47rs)

rs/2

= 2r
(

1 +
1

2
(47rs)

rs/2

)
= 2r (47rs)

rs/2

≤ 4rs/2 (47rs)
rs/2

≤ (188rs)
rs/2

.

Substituting for r and s finishes the proof.

D.2. Proof of Theorem 8

We define several univariate polynomials

Pn(z) = (z − 1)

n∏
i=1

(z − 2i)2, for n ≥ 0,

An,k(z) = (Pn(z))k − (Pn(−z))k, for n, k ≥ 0,

Bn,k(z) = −(Pn(z))k − (Pn(−z))k, for n, k ≥ 0.

We define the polynomial q : Rd → R as

q(x) =


m∑
i=1

As,r

(
〈vi, x〉
γ

) ∏
j : 1≤j≤m

j 6=i

Bs,r

(〈
vj , x

〉
γ

)−
(
m− 1

2

) m∏
j=1

Bs,r

(〈
vj , x

〉
γ

)
.

Finally, we define p(x) = 2−s(s+1)rm+1q(x). We are going to show that this polynomial p satisfies the required properties.

For convenience we define univariate rational function

Sn,k(z) =
An,k(z)

Bn,k(z)
, for n, k ≥ 0,
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and a multivariate rational function

Q(x) =

 m∑
i=1

Ss,r

(
〈vi, x〉
γ

)− (m− 1

2

)
.

It is easy to verify that

q(x) = Q(x)

m∏
j=1

Bs,r

(〈
vj , x

〉
γ

)
.

Lemma 16 (Properties of Pn).

1. If z ∈ [0, 1] then Pn(−z) ≤ Pn(z) ≤ 0.

2. If z ∈ [1, 2n] then 0 ≤ 4Pn(z) ≤ −Pn(−z).

3. If z ≥ 0 then −Pn(−z) ≥ 2n(n+1).

Proof. To prove the first part, note that Pn(z) and Pn(−z) are non-positive for z ∈ [0, 1]. We can write Pn(z)
Pn(−z) as a

product of n+ 1 non-negative fractions

Pn(z)

Pn(−z)
=

1− z
1 + z

n∏
i=1

(z + 2i)2

(z − 2i)2
.

The first part follows from the observation that each fraction is upper bounded by 1.

To prove the second part, notice that Pn(z) is non-negative and Pn(−z) is non-positive for any z ∈ [1, 2n]. Now, fix
z ∈ [1, 2n] and let j ∈ {1, 2, . . . , n} be such that 2j−1 ≤ z ≤ 2j . This implies that (z + 2j)2 ≥ (2j)2 ≥ 4(z − 2j)2. We
can write Pn(z)

−Pn(−z) as a product of n+ 1 non-negative fractions

Pn(z)

−Pn(−z)
=
z − 1

z + 1
· (z − 2j)2

(z + 2j)2

∏
i : 1≤i≤n

i 6=j

(z − 2i)2

(z + 2i)2
.

The second part follows from the observation that the second fraction is upper bounded by 1/4 and all other fractions are
upper bounded by 1.

The third part follows from

−Pn(−z) = (1 + z)

n∏
i=1

(z + 2i)2 ≥
n∏
i=1

22i = 2n(n+1) .

Lemma 17 (Properties of Sn,r and Bn,r). Let n,m be non-negative integers. Let r = 2
⌈

1
4 log2(4m+ 1)

⌉
+ 1. Then,

1. If z ∈ [1, 2n] then Sn,r(z) ∈ [1, 1 + 1
2m ].

2. If z ∈ [−2n,−1] then Sn,r(z) ∈ [−1− 1
2m ,−1].

3. If z ∈ [−1, 1] then |Sn,r(z)| ≤ 1.

4. If z ∈ [−2n, 2n] then Bn,r(z) ≥
(

1− 1
4m+1

)
2n(n+1)r.

Proof. Note that Bn,r(z) is an even function and An,r(z) is an odd function. Therefore, Sn,r(z) is odd. Also notice that r
is an odd integer.
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1. Observe that Sn,r(z) can be written as

Sn,r(z) =

1 +

(
− Pn(z)

Pn(−z)

)r
1−

(
− Pn(z)

Pn(−z)

)r =
1 + c

1− c

where c =
(
− Pn(z)
Pn(−z)

)r
. Since z ∈ [1, 2n], by part 2 of Lemma 16, c ∈ [0, 1

4r ]. Since r ≥ 1
2 log2(4m + 1), this

means that c ∈ [0, 1
4m+1 ]. Thus, Sn,r(z) = 1+c

1−c ∈ [1, 1 + 1
2m ].

2. Since Sn,r(z) is odd, the statement follows from part 1.

3. Recall that Sn,r(z) can be written as

Sn,r(z) =
1 + c

1− c

where c =
(
− Pn(z)
Pn(−z)

)r
. If z ∈ [0, 1], by part 1 of Lemma 16 and the fact that r is odd, c ∈ [−1, 0], and thus,

Sn,r(z) = 1+c
1−c ∈ [0, 1]. Since Sn,r(z) is odd, for z ∈ [−1, 0], Sn,r(z) ∈ [−1, 0].

4. Since Bn,r(z) is even, we can without loss generality assume that z ≥ 0. We consider two cases.

Case z ∈ [0, 1]. Since r is odd and Pn(z) is non-positive,

Bn,r(z) = −(Pn(z))r +
(
−Pn(−z)

)r
≥
(
−Pn(−z)

)r ≥ 2n(n+1)r

≥ 2n(n+1)r

(
1− 1

4m+ 1

)
.

where the second last inequality follows from part 3 of Lemma 16.

Case z ∈ [1, 2n]. Since r is odd,

Bn,r(z) =
(
−Pn(−z)

)r (
1−

(
− Pn(z)

Pn(−z)

)r)
=
(
−Pn(−z)

)r
(1− c)

where c =
(
− Pn(z)
Pn(−z)

)r
. Since z ∈ [1, 2n], by part 2 of Lemma 16, c ∈ [0, 1

4r ]. By the definition of r that means that

c ∈ [0, 1
4m+1 ]. Thus,

Bn,r(z) ≥
(
−Pn(−z)

)r (
1− 1

4m+ 1

)
≥ 2n(n+1)r

(
1− 1

4m+ 1

)
.

where the last inequality follows from part 3 of Lemma 16.

Lemma 18 (Properties of Q(x)). The rational function Q(x) satisfies

1. Q(x) ≥ 1
2 for all x ∈

m⋂
i=1

{
x ∈ Rd : ‖x‖ ≤ 1, 〈vi, x〉 ≥ γ

}
,

2. Q(x) ≤ − 1
2 for all x ∈

m⋃
i=1

{
x ∈ Rd : ‖x‖ ≤ 1, 〈vi, x〉 ≤ −γ

}
.



Bandit Multiclass Linear Classification: Efficient Algorithms for the Separable Case

Proof. To prove part 1, consider any x ∈
⋂m
i=1

{
x ∈ Rd : ‖x‖ ≤ 1, 〈vi, x〉 ≥ γ

}
. Then, 〈vi,x〉γ ∈ [1, 1

γ ]. By part 1 of

Lemma 17, Ss,r
(
〈vi,x〉
γ

)
∈ [1, 1 + 1

2m ] and in particular Ss,r
(
〈vi,x〉
γ

)
≥ 1. Thus,

Q(x) =

 m∑
i=1

Ss,r

(
〈vi, x〉
γ

)− (m− 1/2)

≥ m− (m− 1/2)

= 1/2 .

To prove part 2, consider any x ∈
⋃m
i=1

{
x ∈ Rd : ‖x‖ ≤ 1, 〈vi, x〉 ≤ −γ

}
. Observe that 〈vi,x〉γ ∈ [− 1

γ ,
1
γ ]. Consider

Ss,r

(
〈vi,x〉
γ

)
for any i ∈ {1, 2, . . . ,m}. Parts 1,2, and 3 of Lemma 17 and the fact 1/γ ≤ 2s imply that Ss,r

(
〈vi,x〉
γ

)
≤

1 + 1
2m for all i ∈ {1, 2, . . . ,m}. By the choice of x, there exists j ∈ {1, 2, . . . ,m} such that

〈
vj , x

〉
≤ −γ. Part 2 of

Lemma 17 implies that Ss,r

(
〈vj ,x〉
γ

)
∈ [−1− 1

2m ,−1]. Thus,

Q(x) =

 m∑
i=1

Ss,r

(
〈vi, x〉
γ

)− (m− 1

2

)

= Ss,r

(〈
vj , x

〉
γ

)
+

 ∑
i : 1≤i≤m

i 6=j

Ss,r

(
〈vi, x〉
γ

)−
(
m− 1

2

)

≤ −1 + (m− 1)

(
1 +

1

2m

)
−
(
m− 1

2

)
≤ −1/2 .

To prove parts 1 and 2 of Theorem 8 first note that part 4 of Lemma 17 implies that for any x such that ‖x‖ ≤ 1,
Bs,r

(
〈vi,x〉
γ

)
is positive. Thus p(x) and Q(x) have the same sign on the unit ball. Consider any x in either

m⋂
i=1

{
x ∈ Rd : ‖x‖ ≤ 1, 〈vi, x〉 ≥ γ

}
or in

m⋃
i=1

{
x ∈ Rd : ‖x‖ ≤ 1, 〈vi, x〉 ≤ −γ

}
. Lemma 18 states that |Q(x)| ≥ 1/2

and the sign depends on which of the two sets x lies in. Since signs of Q(x) and p(x) are the same, it remains to show that
|p(x)| ≥ 1

4 · 2
s(s+1)rm. Indeed,

|p(x)| = 2−s(s+1)rm+1 · |Q(x)|
m∏
j=1

Bs,r

(〈
vj , x

〉
γ

)

≥ 2−s(s+1)rm+1 · |Q(x)|

(
2s(s+1)r

(
1− 1

4m+ 1

))m
≥ |Q(x)| ≥ 1

2
(Lemma 18) .

where we used that
(

1− 1
4m+1

)m
≥ e− 1

4 ≥ 1/2.

To prove part 3 of Theorem 8 note that deg(Ps) = 2s+1. Thus, deg(As,r) and deg(Bs,r) are at most (2s+1)r. Therefore,
deg(p) ≤ (2s+ 1)rm.

It remains to prove part 4 of Theorem 8. For any i ∈ {0, 1, 2, . . . , s} and any v ∈ Rd such that‖v‖ ≤ 1 define multivariate
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polynomials

fi,v(x) =
〈v, x〉
γ
− 2i ,

qv(x) = Ps

(
〈v, x〉
γ

)
,

av(x) = As,r

(
〈v, x〉
γ

)
,

bv(x) = Bs,r

(
〈v, x〉
γ

)
.

Note that

q(x) =


m∑
i=1

avi(x)
∏

j : 1≤j≤m
j 6=i

bvj (x)

−
(
m− 1

2

) n∏
j=1

bvj (x) .

We bound the norms of these polynomials. We have∥∥fi,v∥∥2
=‖v‖2 /γ2 + 22i ≤ 2 · 22s .

where we used that 1/γ ≤ 2s and‖v‖ ≤ 1. Since qv(x) = fi,v(
〈v,x〉
γ )

∏s
i=1

(
fi,v(

〈v,x〉
γ )

)2

, using part 1 of Lemma 14 we
upper bound the norm of qv as

‖qv‖2 ≤ (2s+ 1)2s+1
∥∥f0,v

∥∥2
s∏
i=1

∥∥fi,v∥∥4

≤ (2s+ 1)2s+1(2 · 22s)2s+1 .

Using parts 3 and 2 of Lemma 14 we upper bound the norm of av as

‖av‖2 ≤ 2
∥∥(qv)

r
∥∥2

+ 2
∥∥(q−v)

r
∥∥2

≤ 2rr(2s+1)(‖qv‖2)r + 2rr(2s+1)(‖q−v‖2)r

≤ 4rr(2s+1)
(

(2s+ 1)2s+1(2 · 2s)2s+1
)r

= 4
(

22sr(4s+ 2)
)(2s+1)r

.

The same upper bound holds for‖bv‖2. Therefore,

‖q‖ ≤


m∑
i=1

∥∥∥∥∥∥∥∥∥avi
∏

j : 1≤j≤m
j 6=i

bvj

∥∥∥∥∥∥∥∥∥

+

(
m− 1

2

)∥∥∥∥∥∥
m∏
j=1

bvj

∥∥∥∥∥∥

≤


m∑
i=1

m(s+1/2)rm‖avi‖
∏

j : 1≤j≤m
j 6=i

∥∥bvj∥∥


+

(
m− 1

2

)
m(s+1/2)rm

m∏
j=1

∥∥bvj∥∥
≤ (2m− 1/2)m(s+1/2)rm

(
4
(

22sr(4s+ 2)
)(2s+1)r

)m/2
= (2m− 1/2)2m ·

(
22srm(4s+ 2)

)(s+1/2)rm

.
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Finally,‖p‖ = 2−s(s+1)rm+1‖q‖ ≤ (4m− 1)2m ·
(
2srm(4s+ 2)

)(s+1/2)rm
. The theorem follows.

E. Proof of Theorem 5
Proof of Theorem 5. Since the examples (x1, y1), (x2, y2), . . . , (xT , yT ) are weakly linearly separable with margin γ,,
there are vectors w1, w2, . . . , wK satisfying (1) and (2).

Fix any i ∈ {1, 2, . . . ,K}. Consider the K − 1 vectors (wi − wj)/2 for j ∈ {1, 2, . . . ,K} \ {i}. Note that the vectors
have norm at most 1. We consider two cases regarding the relationship between γ1 and γ2.

Case 1: γ1 ≥ γ2. In this case, Theorem 7 implies that there exist a multivariate polynomial pi : Rd → R,

deg(pi) = dlog2(2K − 2)e ·

⌈√
2

γ

⌉
,

such that all examples x in R+
i (resp. R−i ) satisfy pi(x) ≥ 1/2 (resp. pi(x) ≤ −1/2). Therefore, for all t = 1, 2, . . . , T , if

yt = i then pi(xt) ≥ 1/2, and if yt 6= i then pi(xt) ≤ −1/2, and

‖pi‖ ≤

188dlog2(2K − 2)e ·

⌈√
2

γ

⌉ 1
2 dlog2(2K−2)e·

⌈√
2
γ

⌉
.

By Lemma 9, there exists ci ∈ `2 such that
〈
ci, φ(x)

〉
= pi(x), and

‖ci‖`2 ≤

376dlog2(2K − 2)e ·

⌈√
2

γ

⌉ 1
2 dlog2(2K−2)e·

⌈√
2
γ

⌉
.

Define vectors ui ∈ `2 as

ui =
1√
K
· ci(

376dlog2(2K − 2)e ·
⌈√

2
γ

⌉) 1
2 dlog2(2K−2)e·

⌈√
2
γ

⌉ .

Then, ‖u1‖2 +‖u2‖2 + · · · +‖uK‖2 ≤ 1. Furthermore, for all t = 1, 2, . . . , T ,
〈
uyt , φ(xt)

〉
≥ γ1 and for all j ∈

{1, 2, . . . ,K} \ {yt},
〈
uj , φ(xt)

〉
≤ −γ1. In other words, (φ(x1), y1), (φ(x2), y2), . . . , (φ(xT ), yT ) are strongly linearly

separable with margin γ1 = max{γ1, γ2}.

Case 2: γ1 < γ2. In this case, Theorem 8 implies that there exist a multivariate polynomial qi : Rd → R,

deg(qi) = (2s+ 1)r(K − 1) ,

such that all examples x in R+
i (resp. R−i ) satisfy qi(x) ≥ 1/2 (resp. qi(x) ≤ −1/2), and

‖qi‖ ≤ (4K − 5)2K−1 ·
(
2sr(K − 1)(4s+ 2)

)(s+1/2)r(K−1)
.

Recall that here,

r = 2

⌈
1

4
log2(4K − 3)

⌉
+ 1 and s =

⌈
log2(1/γ)

⌉
.

Therefore, for all t = 1, 2, . . . , T , if yt = i then qi(xt) ≥ 1/2, and if yt 6= i then qi(xt) ≤ −1/2.

By Lemma 9, there exists c′i ∈ `2 such that
〈
c′i, φ(x)

〉
= pi(x), and∥∥c′i∥∥`2 ≤ (4K − 5)2K−1 ·
(

2s+1r(K − 1)(4s+ 2)
)(s+1/2)r(K−1)

.
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Define vectors u′i ∈ `2 as

u′i =
c′i ·
(
2s+1r(K − 1)(4s+ 2)

)−(s+1/2)r(K−1)

√
K(4K − 5)2K−1

.

Then,
∥∥u′1∥∥2

+
∥∥u′2∥∥2

+ · · · +
∥∥u′K∥∥2 ≤ 1. Furthermore, for all t = 1, 2, . . . , T ,

〈
u′yt , φ(xt)

〉
≥ γ2 and for all j ∈

{1, 2, . . . ,K} \ {yt},
〈
u′j , φ(xt)

〉
≤ −γ2. In other words, (φ(x1), y1), (φ(x2), y2), . . . , (φ(xT ), yT ) are strongly linearly

separable with margin γ2 = max{γ1, γ2}.

In summary, the examples are strongly linearly separable with margin γ′ = max{γ1, γ2}. Finally, observe that for any
t = 1, 2, . . . , T ,

k(xt, xt) =
1

1− 1
2‖xt‖

2 ≤ 2 .

F. Supplementary Materials for Section 6
Figures 6, 7, and 8 show the final decision boundaries learned by each algorithm on the two datasets (Figures 4 and 5),
after T = 5× 106 rounds. We used the version of Banditron with exploration rate of 0.02, which explores the most.

(a) Strongly separable case (b) Weakly separable case

Figure 6. BANDITRON’s final decision boundaries

(a) Strongly separable case (b) Weakly separable case

Figure 7. Algorithm 1’s final decision boundaries
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(a) Strongly separable case (b) Weakly separable case

Figure 8. Algorithm 2 (with rational kernel)’s final decision boundaries

G. Nearest neighbor algorithm

Algorithm 4 NEAREST-NEIGHBOR ALGORITHM

Require: Number of classes K, number of rounds T .
Require: Inner product space (V, 〈·, ·〉).

1 Initialize S ← ∅
2 for t = 1, 2, . . . , T : do
3 if min(x,y)∈S‖xt − x‖ ≤ γ then
4 Find nearest neighbor

(x̃, ỹ) = argmin(x,y)∈S‖xt − x‖
5 Predict ŷt = ỹ

6 else
7 Predict ŷt ∼ Uniform({1, 2, . . . ,K})
8 Receive feedback zt = 1 [ŷt 6= yt]
9 if zt = 0 then

10 S ← S ∪
{

(xt, ŷt)
}

In this section we analyze NEAREST-NEIGHBOR ALGORITHM shown as Algorithm 4. The algorithm is based on the
obvious idea that, under the weak linear separability assumption, two examples that are close to each other must have the
same label. The lemma below formalizes this intuition.
Lemma 19 (Non-separation lemma). Let (V, 〈·, ·〉) be a vector space, K be a positive integer and let γ be a positive
real number. Suppose (x1, y1), (x2, y2), . . . , (xT , yT ) ∈ V × {1, 2, . . . ,K} are labeled examples that are weakly linearly
separable with margin γ. For i, j in {1, 2, . . . , T}, if

∥∥xi − xj∥∥2
≤ γ then yi = yj .

Proof. Suppose for the sake on contradiction that yi 6= yj . By Definition 1, there exists vectors w1, . . . , wK such that
conditions (1) and (2) are satisfied.

Specifically, 〈
wyi − wyj , xi

〉
≥ γ ,〈

wyj − wyi , xj
〉
≥ γ .

This implies that 〈
wyi − wyj , xi − xj

〉
≥ 2γ .

On the other hand, 〈
wyi − wyj , xi − xj

〉
≤
∥∥wyi − wyj∥∥ ·∥∥xi − xj∥∥ ≤ √2γ

where the first inequality is from Cauchy-Schwartz inequality, the second inequality is from that
∥∥wyi − wyj∥∥ ≤√

2(
∥∥wyi∥∥2

+
∥∥wyj∥∥2

) ≤
√

2 and our assumption on xi and xj . Therefore, we reach a contradiction.
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We also need to define several notions. A subset S ⊆ Rd is called a γ-packing if for any x, x′ ∈ S such that x 6= x′ we
have

∥∥x− x′∥∥ > γ. The following lemma is standard. Also recall that B(x,R) = {x′ ∈ Rd :
∥∥x′ − x∥∥ ≤ R} denotes the

closed ball of radius R centered a point x. For set S ⊆ Rd, denote by Vol(S) the volume of S.

Lemma 20 (Size of γ-packing). Let γ and R be positive real numbers. If S ⊆ B(0, R) ⊆ Rd is a γ-packing then

|S| ≤
(

2R

γ
+ 1

)d
.

Proof. If S is a γ-packing then {B(x, γ/2) : x ∈ S} is a collection of disjoint balls of radius γ that fit into B(0, R+γ/2).
Thus,

|S| ·Vol(B(0, γ/2)) ≤ Vol(B(0, R+ γ/2))

Hence,

|S| ≤ Vol(B(0, R+ γ/2))

Vol(B(0, γ/2))
=

(
R+ γ/2

γ/2

)d
=

(
2R

γ
+ 1

)d
.

Theorem 21 (Mistake upper bound for NEAREST-NEIGHBOR ALGORITHM). Let K and d be positive integers and let
γ,R be a positive real numbers. Suppose (x1, y1), . . . , (xT , yT ) ∈ Rd × {1, 2, . . . ,K} are labeled examples that are
weakly linearly separable with margin γ and satisfy‖x1‖ ,‖x2‖ , . . . ,‖xT ‖ ≤ R. Then, the expected number of mistakes
made by Algorithm 4 is at most

(K − 1)

(
2R

γ
+ 1

)d
.

Proof. Let M be the number of mistakes made by the algorithm. Let bt be the indicator that line 7 is executed at time step
t, i.e. we fall into the “else” case. Note that if bt = 0, then by Lemma 19, the prediction ŷt must equal yt, i.e. zt = 0.
Therefore, M =

∑T
t=1 zt =

∑T
t=1 btzt. Let U =

∑T
t=1 bt(1− zt). Clearly, |S| = U . Since S ⊆ B(0, R) is a γ-packing,

U = |S| ≤ ( 2R
γ + 1)d.

Note that when bt = 1, ŷt is chosen uniformly at random, we have

E[zt | bt = 1] =
K − 1

K
.

Therefore,

E[M ] = E

 T∑
t=1

btzt

 =
K − 1

K
E

 T∑
t=1

bt

 .

On the other hand,

E[U ] = E

 T∑
t=1

bt(1− zt)

 =
1

K
E

 T∑
t=1

bt

 .

Therefore,

E[M ] = (K − 1)E[U ] ≤ (K − 1)

(
2R

γ
+ 1

)d
.
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H. NP-hardness of the weak labeling problem
Any algorithm for the bandit setting collects information in the form of so called strongly labeled and weakly labeled
examples. Strongly-labeled examples are those for which we know the class label. Weakly labeled example is an example
for which we know that class label can be anything except for a particular one class.

A natural strategy for each round is to find vectors w1, w2, . . . , wK that linearly separate the examples seen in the pre-
vious rounds and use the vectors to predict the label in the next round. More precisely, we want to find both the vectors
w1, w2, . . . , wK and label for each example consistent with its weak and/or strong labels such that w1, w2, . . . , wK linearly
separate the labeled examples. We show this problem is NP-hard even for K = 3.

Clearly, the problem is at least as hard as the decision version of the problem where the goal is to determine if such vectors
and labeling exist. We show that this problem is NP-complete.

We use symbols [K] = {1, 2, . . . ,K} for strong labels and [K] = {1, 2, . . . ,K} for weak labels. Formally, the weak
labeling problem can be described as below:

Weak Labeling

Given: Feature-label pairs (x1, y1), (x2, y2), . . . , (xT , yT ) in {0, 1}d × {1, 2, . . . ,K, 1, 2, . . . ,K}.
Question: Do there exist w1, w2, . . . , wK ∈ Rd such that for all t = 1, 2, . . . , T ,

yt ∈ [K] =⇒ ∀i ∈ [K] \ {yt}
〈
wyt , xt

〉
> 〈wi, xt〉 ,

and

yt ∈ [K] =⇒ ∃i ∈ [K] 〈wi, xt〉 >
〈
wyt , xt

〉
?

The hardness proof is based on a reduction from the set splitting problem, which is proven to be NP-complete by Lovász
(Garey & Johnson, 1979), to our weak labeling problem. The reduction is adapted from (Blum & Rivest, 1993).

Set Splitting

Given: A finite set S and a collection C of subsets ci of S.
Question: Do there exist disjoint sets S1 and S2 such that S1 ∪ S2 = S and ∀i, ci 6⊆ S1 and ci 6⊆ S2?

Below we show the reduction. Suppose we are given an instance of the set splitting problem

S = {1, 2, . . . , N} , C = {c1, c2, . . . , cM} .

We create the weak labeling instance as follows. Let d = N + 1 and K = 3. Define 0 as the zero vector (0, . . . , 0) ∈ RN
and ei as the i-th standard vector (0, . . . , 1, . . . , 0) ∈ RN . Then we include all the following feature-label pairs:

• Type 1: (x, y) = ((0, 1), 3),

• Type 2: (x, y) = ((ei, 1), 3) for all i ∈ {1, 2, . . . , N},

• Type 3: (x, y) =

((∑
i∈cj ei, 1

)
, 3

)
for all j ∈ {1, 2, . . . ,M}.

For example, if we have S = {1, 2, 3}, C = {c1, c2}, c1 = {1, 2}, c2 = {2, 3}, then we create the weak labeling sample
set as:

{((0, 0, 0, 1), 3), ((1, 0, 0, 1), 3), ((0, 1, 0, 1), 3), ((0, 0, 1, 1), 3), ((1, 1, 0, 1), 3), ((0, 1, 1, 1), 3)} .
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The following lemma shows that answering this weak labeling problem is equivalent to answering the original set splitting
problem.

Lemma 22. Any instance of the set splitting problem is a YES instance if and only if the corresponding instance of the
weak labeling problem (as described above) is a YES instance.

Proof. (=⇒) Let S1, S2 be the solution of the set splitting problem. Define

w1 =

(
a1, a2, · · · , aN ,−

1

2

)
,

where for all i ∈ {1, 2, . . . , N}, ai = 1 if i ∈ S1 and ai = −N if i /∈ S1. Similarly, define

w2 =

(
b1, b2, · · · , bN ,−

1

2

)
,

where for all i ∈ {1, 2, . . . , N}, bi = 1 if i ∈ S2 and bi = −N if i /∈ S2. Finally, define

w3 = (0, 0, · · · , 0),

the zero vector. To see this is a solution for the weak labeling problem, we verify separately for Type 1-3 samples defined
above. For Type 1 sample, we have

〈w3, x〉 = 0 > −1

2
= 〈w1, x〉 = 〈w2, x〉 .

For a Type 2 sample that corresponds to index i, we have either i ∈ S1 or i ∈ S2 because S1 ∪ S2 = {1, 2, . . . , N} is
guaranteed. Thus, either ai = 1 or bi = 1. If ai = 1 is the case, then

〈w1, x〉 = ai −
1

2
=

1

2
> 0 = 〈w3, x〉 ;

similarly if bi = 1, we have 〈w2, x〉 > 〈w3, x〉.
For a Type 3 sample that corresponds to index j, Since cj 6⊂ S1, there exists some i′ ∈ cj and i′ /∈ S1. Thus we have
xi′ = 1, ai′ = −N , and therefore

〈w1, x〉 = ai′xi′ +
∑

i∈{1,2,...,N}\{i′}

aixi −
1

2

≤ −N + (N − 1)− 1

2
< 0 = 〈w3, x〉 .

Because cj 6⊂ S2 also holds, we also have 〈w2, x〉 < 〈w3, x〉. This direction is therefore proved.

(⇐=) Given the solution w1, w2, w3 of the weak labeling problem, we define

S1 =
{
i ∈ {1, 2, . . . , n} :

〈
w1 − w3, (ei, 1)

〉
> 0
}
,

S2 =
{
i ∈ {1, 2, . . . , n} :

〈
w2 − w3, (ei, 1)

〉
> 0 and i /∈ S1

}
.

It is not hard to see S1 ∩ S2 = ∅ and S1 ∪ S2 = {1, 2, . . . , N}. The former is because S2 only includes elements that are
not in S1. For the latter, note that (ei, 1) is the feature vector for Type 2 samples. Because Type 2 samples all have label
3, for any i ∈ {1, 2, . . . , N}, one of the following must hold:

〈
w1 − w3, (ei, 1)

〉
> 0 or

〈
w2 − w3, (ei, 1)

〉
> 0. This

implies i ∈ S1 or i ∈ S2.

Now we show ∀j, cj 6⊂ S1 and cj 6⊂ S2 by contradiction. Assume there exists some j such that cj ⊂ S1. By our definition
of S1, we have

〈
w1 − w3, (ei, 1)

〉
> 0 for all i ∈ cj . Therefore,

∑
i∈cj

〈
w1 − w3, (ei, 1)

〉
=

〈
w1 − w3,

∑
i∈cj

ei, |cj |

〉 > 0.
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Because Type 1 sample has label 3, we also have 〈
w1 − w3, (0, 1)

〉
< 0.

Combining the above two inequalities, we get〈
w1 − w3,

∑
i∈cj

ei, 1

〉 =

〈
w1 − w3,

∑
i∈cj

ei, |cj |

〉− (|cj | − 1)
〈
w1 − w3, (0, 1)

〉
> 0 .

Note that
(∑

i∈cj ei, 1
)

is a feature vector for Type 3 samples. Thus the above inequality contradicts that Type 3 samples
have label 3. Therefore, cj 6⊂ S1. If we assume there exists some cj ⊂ S2, same arguments apply and also lead to
contradiction.

I. Mistake lower bound for ignorant algorithms
In this section, we prove a mistake lower bound for a family of algorithms called ignorant algorithms. Ignorant algorithms
ignore the examples on which they make mistakes. This assumption seems strong, but as we will explain below, it is actually
natural, and several recently proposed bandit linear classification algorithms that achieve

√
T regret bounds belong to this

family, e.g., SOBA (Beygelzimer et al., 2017), OBAMA (Foster et al., 2018). Also, NEAREST-NEIGHBOR ALGORITHM
(Algorithm 4) presented in Appendix G is an ignorant algorithm.

Under the assumption that the examples lie in in the unit ball of Rd and are weakly linearly separable with margin γ, we

show that any ignorant algorithm must make at least Ω

((
1

160γ

)(d−2)/4
)

mistakes in the worst case. In other words, an

algorithm that achieves a better mistake bound cannot ignore examples on which it makes a mistake and it must make a
meaningful update on such examples.

To formally define ignorant algorithms, we define the conditional distribution from which an algorithm draws its predic-
tions. Formally, given an algorithm A and an adversarial strategy, we define

pt(y|x) = Pr[yt = y | (x1, y1), (x2, y2) . . . , (xt−1, yt−1), xt = x] .

In other words, in any round t, conditioned on the past t−1 rounds, the algorithmA chooses yt from probability distribution
pt(·|xt). Formally, pt is a function p : {1, 2, . . . ,K} × Rd → [0, 1] such that

∑K
y=1 pt(y|x) = 1 for any x ∈ Rd.

Definition 23 (Ignorant algorithm). An algorithmA for ONLINE MULTICLASS LINEAR CLASSIFICATION WITH BANDIT
FEEDBACK is called ignorant if for every t = 1, 2, . . . , T , pt is determined solely by the sequence (xa1 , ya1),(xa2 , ya2),
. . . , (xan , yan) of labeled examples from the rounds 1 ≤ a1 < a2 < · · · < an < t in which the algorithm makes a correct
prediction.

An equivalent definition of an ignorant algorithm is that the memory state of the algorithm does not change after it makes
a mistake. Equivalently, the memory state of an ignorant algorithm is completely determined by the sequence of labeled
examples on which it made correct prediction.

To explain the definition, consider an ignorant algorithm A. Suppose that on a sequence of examples (x1, y1), (x2, y2),
. . . , (xt−1, yt−1) generated by some adversary the algorithm A makes correct predictions in rounds a1, a2, . . . , an where
1 ≤ a1 < a2 < · · · < an < t and errors on rounds {1, 2, . . . , t− 1} \ {a1, a2, . . . , an}. Suppose that on another sequence
of examples (x′1, y

′
1), (x′2, y

′
2), . . . , (x′s−1, y

′
s−1) generated by another adversary the algorithmAmakes correct predictions

in rounds b1, b2, . . . , bn where 1 ≤ b1 < b2 < · · · < bn < s and errors on rounds {1, 2, . . . , s − 1} \ {b1, b2, . . . , bn}.
Futhermore, suppose

(xa1 , ya1) = (x′b1 , y
′
b1) ,

(xa2 , ya2) = (x′b2 , y
′
b2) ,

...
(xan , yan) = (x′b2 , y

′
bn) .
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Then, as A is ignorant,

Pr[yt = y | (x1, y1), (x2, y2) . . . , (xt−1, yt−1), xt = x] = Pr[y′t = y | (x′1, y′1), (x′2, y
′
2) . . . , (x′t−1, y

′
t−1), x′t = x].

Note that the sequences (x1, y1), (x2, y2), . . . , (xt−1, yt−1) and (x′1, y
′
1), (x′2, y

′
2), . . . , (x′s−1, y

′
s−1) might have different

lengths and and A might error in different sets of rounds. As a special case, if an ignorant algorithm makes a mistake in
round t then pt+1 = pt.

Our main result is the following lower bound on the expected number of mistakes for ignorant algorithms.

Theorem 24 (Mistake lower bound for ignorant algorithms). Let γ ∈ (0, 1) and let d be a positive integer. Suppose A
is an ignorant algorithm for ONLINE MULTICLASS LINEAR CLASSIFICATION WITH BANDIT FEEDBACK. There exists
T and an adversary that sequentially chooses labeled examples (x1, y1), (x2, y2), . . . , (xT , yT ) ∈ Rd × {1, 2} such that
the examples are strongly linearly separable with magin γ and ‖x1‖ ,‖x2‖ , . . . ,‖xT ‖ ≤ 1, and the expected number of
mistakes made by A is at least

1

10

(
1

160γ

) d−2
4

.

Before proving the theorem, we need the following lemma.

Lemma 25. Let γ ∈ (0, 1
160 ), let d be a positive integer and let N = ( 1

2
√

40γ
)d−2. There exist vectors u1, u2, . . . , uN ,

v1, v2, . . . , vN in Rd such that for all i, j ∈ {1, 2, . . . , N},

‖ui‖ ≤ 1 ,∥∥vj∥∥ ≤ 1 ,〈
ui, vj

〉
≥ γ, if i = j,〈

ui, vj
〉
≤ −γ, if i 6= j.

Proof. By Lemma 6 of Long (1995), there exists vectors z1, z2, . . . , zN ∈ Rd−1 such that‖z1‖ =‖z2‖ = · · · =‖zN‖ = 1
and the angle between the vectors is ](zi, zj) ≥

√
40γ for i 6= j, i, j ∈ {1, 2, . . . , N}. Since cos θ ≤ 1 − θ2/5 for any

θ ∈ [−π, π], this implies that 〈
zi, zj

〉
= 1, if i = j,〈

zi, zj
〉
≤ 1− 8γ, if i 6= j.

Define vi = ( 1
2zi,

1
2 ), and ui = ( 1

2zi,−
1
2 (1−4γ)) for all i ∈ {1, 2, . . . , N}. It can be easily checked that for all i,‖vi‖ ≤ 1

and‖ui‖ ≤ 1. Additionally, 〈
ui, vj

〉
=

1

4

〈
zi, zj

〉
− 1− 4γ

4
.

Thus, 〈
ui, vj

〉
≥ γ, if i = j,〈

ui, vj
〉
≤ −γ, if i 6= j.

Proof of Theorem 24. We consider the strategy for the adversary described in Algorithm 5.

Let τ be the time step t in which the adversary sets PHASE ← 2. If the adversary never sets PHASE ← 2, we define
τ = T + 1. Then,

E

 T∑
t=1

1 [ŷt 6= yt]

 ≥ E

τ−1∑
t=1

1 [ŷt 6= yt]

+ E

 T∑
t=τ

1 [ŷt 6= yt]

 .

We upper bound each of last two terms separately.
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Algorithm 5 ADVERSARY’S STRATEGY

Define T = N and v1, v2, . . . , vN as in Lemma 25.
Define q0 = 1√

T
.

Initialize PHASE = 1.
for t = 1, 2, . . . , T do

if PHASE = 1 then
if pt(1|vt) < 1− q0 then

(xt, yt)← (vt, 1)
else

(xt, yt)← (vt, 2)
PHASE ← 2

else
(xt, yt)← (xt−1, yt−1)

In rounds 1, 2, . . . , τ − 1, the algorithm predicts the incorrect class 2 with probability at least q0. Thus,

E

τ−1∑
t=1

1 [ŷt 6= yt]

 = q0 E[(τ − 1)] . (18)

In rounds τ, τ + 1, . . . , T , all the examples are the same and are equal to (vτ , 2). Let s be the first time step t such that
t ≥ τ and the algorithm makes a correct prediction. If the algorithm makes mistakes in all rounds τ, τ + 1, . . . , T , we
define s = T + 1. By definition the algorithm makes mistakes in rounds τ, τ + 1, . . . , s− 1. Therefore,

E

 T∑
t=τ

1 [ŷt 6= yt]

 ≥ E[s− τ ]. (19)

Since the algorithm is ignorant, conditioned on τ and q , pτ (2|vτ ), s− τ follows a truncated geometric distribution with
parameter q (i.e., s−τ is 0 with probability q, 1 with probability (1−q)q, 2 with probability (1−q)2q, . . .). Its conditional
expectation can be calculated as follows:

E[s− τ | τ, q] =

T+1−τ∑
i=1

i× Pr[s− τ = i| τ, q]

=

T+1−τ∑
j=1

Pr[s− τ ≥ j| τ, q]

=

T+1−τ∑
j=1

(1− q)j ≥
T+1−τ∑
j=1

(1− q0)j

=
1− q0

q0

(
1− (1− q0)T−τ+1

)
.

Therefore, by the tower property of conditional expectation,

E[s− τ | τ ] = E
[
E [s− τ | τ, q]

∣∣ τ] ≥ 1− q0

q0

(
1− (1− q0)T−τ+1

)
.

Combining this fact with Equations (18) and (19), we have that

E

 T∑
t=1

1 [ŷt 6= yt]

 ≥ q0 E[τ − 1] + E

[
1− q0

q0

(
1− (1− q0)T−τ+1

)]

= E

[
q0(τ − 1) +

1− q0

q0

(
1− (1− q0)T−τ+1

)]
.
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We lower bound the last expression by considering two cases for τ . If τ ≥ 1
2T + 1, then the last expression is lower

bounded by 1
2q0T = 1

2

√
T . If τ < 1

2T + 1, it is lower bounded by

1− q0

q0

(
1− (1− q0)

1
2T
)

=
1− q0

q0

(
1− (1− q0)

1

2q20

)
≥

1− 1√
2

q0

(
1− 1√

e

)
≥ 1

10

√
T .

Observe that in phase 1, the labels are equal to 1 and in phase 2 the labels are equal to 2. Note that (xτ , yτ ) =
(xτ+1, yτ+1) = · · · = (xT , yT ) = (vτ , 2). Consider the vectors u1, u2, . . . , uN as defined in Lemma 25. We claim
that w1 = −uτ/2 and w2 = uτ/2 satisfy the conditions of strong linear separability.

Clearly‖w1‖2 +‖w2‖2 ≤ (‖w1‖+‖w2‖)2 ≤ ( 1
2 + 1

2 )2 ≤ 1. By Lemma 25, we have
〈
w2/2, xt

〉
=
〈
uτ/2, vτ

〉
≥ γ/2,∀t ≥

τ and
〈
w2/2, xt

〉
=
〈
uτ/2, vt

〉
≤ −γ/2 for all t < τ . Similarly,

〈
w1/2, xt

〉
≤ −γ/2 for all t ≥ τ and

〈
w1/2, xt

〉
≥ γ/2

for all t < τ . Thus, the examples are strongly linearly separable with margin γ.


