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ABSTRACT

Internet search advertising is often sold by an online automated
auction. Typically a fixed number of slots & is available, and have
to be allocated among n advertisers each of whom desires to dis-
play an ad. Several mechanisms to price the slots and allocate them
to advertisers have been studied, including variants of the General-
ized Second Price (GSP) mechanism, as well as mechanisms from
the Vickrey-Clarke-Groves (VCG) family that are designed to be
truthful for profit maximizing bidders. Extensions of these mech-
anisms to account for things like position constraints and reserve
prices have also been proposed. Many any of these auction mecha-
nisms can be viewed as computing a bidder-optimal stable match-
ing with suitably defined preferences of the auction participants.
This allows us to apply the theory of stable matchings pioneered
by Gale and Shapley [13] to search auctions.

In this paper, we define a general stable matching model with
money in which many of the existing and new auctions can be
expressed. We show that in this model, a bidder-optimal stable
matching always exists (under a mild non-degeneracy assumption),
and that a mechanism based on computing such matching is truth-
ful. Importantly, we give an algorithm to compute a bidder-optimal
matching in polynomial time of O(nk?). As a result, we obtain the
first known, truthful mechanism for a variety of bidders.

1. INTRODUCTION

Search engine companies like Yahoo!, Google or MSN display
advertisements on web pages with search results or various kind of
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content. Typically, the web page has a number of separately marked
slots reserved for the ads, and an auction is run to determine the set
of ads to be displayed out of a pool of eligible ads that match the
search query or content of the page. Typically, each advertiser must
submit an ad together with a bid ahead of time. The purpose of
the auction is to determine an assignment of ads to slots, as well
as determine how much each winning advertiser should pay for
displaying her ad. The payment scheme may charge the advertiser
each time the ad is shown, or only in the event that a user clicks on
the ad. More involved schemes charge the advertiser only when the
user performs a pre-specified action in response to the ad, such as
making a purchase from the advertiser’s online store.

GSP is a popular auction mechanism used by major search en-
gines. It assumes that there is a natural ordering on the ad slots
(such as top to bottom or left to right). It asks each advertiser to
submit a bid (this can be a per-impression, per-click or per-action
bid), ranks the advertisers in decreasing order of their bids, and
assigns the top k advertisers to the k available slots.

From the point of view of a bidder, GSP enjoys simple semantics:
each slot has a price (that depends on the bids of other bidders), and
the bidder is simply assigned the highest slot whose price does not
exceed her bid. If the bidder is a “maximum price” bidder, in that
her goal is simply to get the highest possible slot while making
sure that her cost does not exceed a certain threshold, it is her dom-
inant strategy to submit the threshold as her bid. This is true for
any charging scheme, per impression, per click, or any generally
defined action.

The basic GSP mechanism can be extended in various ways, for
example by scaling each bid by a bidder-specific multiplier or by
introducing a minimum price. These extensions are useful tools
for the search engine: for example, giving a higher multiplier to
better ads increases the overall ad quality, while giving a higher
multiplier to ads likely to be clicked on in a per-click auction may
improve revenue.

The class of VCG mechanisms [22, 7, 15] has been designed as
a truthful mechanism for an important class of “profit maximizing”
bidders. In the context of advertising auctions, we assume that a
profit maximizing bidder ¢ derives a certain (expected) value v;;
from her ad being placed in position j. The advertiser’s profit is
then equal to the (expected) profit from placing her ad, minus the
(expected) payment she is charged for the slot. In a simpler model
where the click probabilities of different slots are known to the auc-
tioneer, the advertiser may simply submit her value of a click. The
auctioneer then finds a maximum-weight assignment (which max-
imizes the overall value to all bidders), and determines payments
according to a formula that incents the bidders to bid truthfully.

Our paper is motivated by the observation that the above mecha-
nisms really compute a bidder-optimal stable matching between a



set of slots and a set of advertisers. We will define a model of bid-
der preferences and stable matchings with side payments in which
this observation can be formalized. Indeed, proving that the out-
comes of these mechanisms are bidder-optimal stable matchings in
our model is not difficult. With this observation in mind, we set
out to study a general scenario that accomodates the different set
of bidders as well as the incorporates various features that search
engines employ; this scenario not only includes mechanisms de-
scribed above, but also other extensions.

In our model, each bidder specifies a maximum price she is will-
ing to pay for an impression in a given slot, as well as a value
of that slot to her (which may be greater than her willingness to
pay for the slot). In addition, the search engine may specify a re-
serve (minimum) price for each bidder and each slot. We show that
in this model, a bidder-optimal stable matching exists and can be
computed in O(nk®) time, where n is the number of bidders and
k the number of slots. Further, we show that the mechanism that
elicits bidder’s preferences and computes a bidder-optimal stable
matching based on them is truthful in that for every bidder whose
preferences can be expressed within our model, it is a dominant
strategy to express her true preferences. In particular, this shows
that there is a truthful auction mechanism for any combination of
“maximum price” and “profit maximizing” bidders who can pay
per imperssion, per click or per action, and can have constraints on
the set of positions they may to appear in. Thus, what results is the
first-known general auction mechanism that is truthful for a diverse
set of bidders.

2. RELATED WORK

The GSP auction is the major vehicle for selling ads on the inter-
net. It has been observed that although it is not truthful for “profit
maximizing” bidders, it does have a Nash equilibrium that is effi-
cient and its resulting prices are equal to VCG prices, see e.g. [11,
2]. A variant of GSP in which the bidder can specify the lowest
(maximum) acceptable position has been proposed in [3], which
also has a Nash equilibrium equivalent to a suitably defined VCG
auction. The recent manuscript [12] explores the effect of adding
minimum prices to GSP. The GSP mechanism assumes a fixed or-
dering on available slots. With increasingly complex web page lay-
outs, this assumption is no longer universally valid; if there are sev-
eral regions on the page where ads can be placed, it is not obvious
that one slot or region should be universally preferred to another by
all advertisers. Also, allowing the advertiser to choose the action
she is charged for (impression vs click) destroys incentive proper-
ties of the auction, even if as is natural, one considers multiplying
each per-click bid by the probability of a click). As long as dif-
ferent positions have different click probabilities, it is not difficult
to come up with examples where switching from a per-click bid
to per-impression bid or vice versa lowers the overall cost to the
bidder while giving her the same or better slot.

The general class of VCG mechanisms follows from works [22,
7, 15]. For an overview of the VCG mechanism applied to spon-
sored search, see e.g. [1, 2]. VCG is a natural mechanism, but bid-
ders may find it unintuitive to interpret the prices they are charged.
Also, it does not directly support maximum-price bidders who nat-
urally fit into GSP.

The stable matching model has been introduced by Gale and
Shapley [13] in 1962 and has been studied extensively since then.
The monograph [19] gives a great overview of important results in
the area; we only mention themes that are directly relevant to our
work. In the basic model introduced in [13], a set I of men is to be
matched to a set J of women in a one to one fashion. Each man has
a preference ordering on the set of women, and each woman has a

preference ordering on the set of men. The goal is to find a match-
ing that is stable in that there is no man and a woman in which the
man would prefer the woman to his partner in the matching and
vice versa. Gale and Shapley [13] give a “deferred acceptance”
algorithm to compute a man-optimal stable matching.

The stable matching has been generalized to allow side payments
between members of a matched pair. In such models, each par-
ticipant has a preference relation on the set of possible potential
(partner, payment) pairs. In models where the side payments are
allowed to be arbitrary real numbers, the preference relation is of-
ten given by a set of utility functions, one for each man-woman
pair expressing the man’s preferences, and one woman’s. A model
with utility functions that are linear in money has been studied by
[20, 18, 9]. It has long been known that in the linear utility model,
a bidder-optimal stable matching is equivalent to VCG allocation
and prices, [16, 6].

Arbitrary (non-linear) increasing continuous utility functions were
considered in [8, 9, 4, 5]. These models crucially depend on the
utility functions being continuous and defined on the whole set R,
an assumption we have to drop in our paper. The paper [8] shows
that even in such a general model, there exists a bidder-optimal sta-
ble matching, but no algorithm was given to find it. Moreover they
show that in a mechanism based on the man-optimal matching, it is
weakly dominant for each man to reveal his true utility function.

Our paper builds heavily on this body of work. A feature that
distinguishes our work is that in order to model “maximum price”
bidders and reserve prices we need to introduce preferences that
can not be expressed as continuous, strictly monotone utility func-
tions. This seemingly innocent change introduces technical diffi-
culties and makes the model harder to work with. Still, we are able
to transfer the main structural results to our model. Under the as-
sumption that the bidder preferences are in a “general position”,
we can still prove the existence of a bidder-optimal matching, and
we give a very efficient algorithm to find it. The general position
assumption can be lifted by adopting a suitable tie-breaking rule,
which allows us to show that the stable matching mechanism is
truthful. This gives us the first known truthful mechanisms for a
variety of bidders.

3. THE MAX-VALUE MODEL

Our model consists of the set I = {1,2,...,n} of bidders and
theset J = {1,2,...,k} of slots. We use letter ¢ to denote a bidder
and letter j to denote a slot.

Each bidder ¢ has a value v; ; for each slot 5 how much is that
slot worth to her, and a maximum price m;, ; she is able and will-
ing to pay for the slot. To motivate why v; ; and m; ; might be
different, consider buying a house whose value you estimate sig-
nificantly higher than your bank. While your value for the house
is high, the amount of money your bank is willing to lend you is
lower. Allowing the bidder to specify both a value and a maximum
is also needed to model the GSP auction. In addition to bidder
preferences, the seller specifies for each bidder ¢ and each slot j a
reserve price T ;.

For simplicity we assume that the reserve prices are known to the
bidders in advance. For each ¢ and each j we assume that r; ; > 0,
vi; > 0, my; < v ;. If bidder ¢ is interested in the slot j he
specifies m; ; > 7. Otherwise, if bidder ¢ has no interest in
slot j he specifies negative m; ;. We denote by v, m,r the n X k
matrices with entries v;,j, m;, j, 74,5 respectively. We refer to the
triple (v, m, r) as an auction instance or simply auction.

We wish to find an assignment of slots to bidders, and compute
how much each winning bidder should pay for her slot. To study
strategic behavior of the bidders, we need to specify their relative



preference for possible outcomes.

Bidder Preferences. We assume that each bidder is indifferent
among various outcomes as long as her assigned slot (if any) and
payment is the same. Let us define the utility of a bidder ¢ who
is offered a slot j at price p as follows. If p < m; ;, we set u =
vi; — p. If p > my ;, we set w = —1. This utility, interpreted as a
function of the price, is not continuous at p = m; ;. If the bidder is
not matched (at zero price), her utility is 0. Given a choice between
slot j1 at price g1 < my,j;, and slot j2 at price p2 < my j,, the
bidder prefers the offer with higher utility, and is indifferent among
offers that have the same utility. In particular, the bidder prefers to
be not matched to being matched to a slot j at price that exceeds
her maximum price m;;. The bidder is indifferent between being
matched with utility 0 and not being matched.

3.1 Stable Matching

We formalize the notion of a matching in the following defini-
tions.

DEFINITION 1  (MATCHING). A matching is a triple (u, p, u),
where u = (u1,us,...,uy) is a non-negative utility vector, p =
(p1,D2, ..., Pk) is a non-negative price vector, and p C I x J is
a set of bidder-slot pairs such that no slot and no bidder occurs in
more than one pair.

If a pair (¢,5) € u, we say that bidder ¢ is matched to slot j.
We use p(4) to denote the slot matched to a bidder ¢, and u(5) to
denote to denote the bidder matched to a slot j. Bidders ¢ and slots
7 that do not belong to any pair in p are said to be unmatched.

DEFINITION 2 (FEASIBLE MATCHING). A matching (u,p, )
is said to be feasible for an auction (v, m,r), whenever for every

(4,7) € w
pj € [riz,mijl, (D
ui +pj =vij , 2

and for each unmatched bidder i is u; = 0 and for each unmatched
slot 5 is p; = 0.

DEFINITION 3 (STABLE MATCHING). A matching (u,p, i) is
stable for an auction (v, m,r) whenever for each (i,j) € I x J at
least one of the following inequalities holds:

Ui +pj = Vi, 3
Pj = Miy )
Ui + Ti5 > Vij - (5)

A pair (i,7) € I x J which does not satisfy any of the three in-
equalities is called blocking.

Geometric interpretation of inequalities (3), (4), (5) is explained in
Figure 1. Note that if a bidder 7 is not interested in a slot j, then (4)
is trivially satisfied.

A feasible matching does not have to be stable, and a stable
matching does not have to be feasible. However, we will be inter-
ested in matchings that are both stable and feasible. More specif-
ically, we will be interested in a particular matching (u*, p*, u*)
that is stable, feasible, and is, with respect to each bidder’s prefer-
ences, superior to any other feasible stable matching (u, p, ). It is
surprising that such a matching exists. Its existence for other sim-
pler models, e.g., with continuous utility vs. price curves or other
preference relations, is a core result of the theory of stable match-
ings.

u; — utility of bidder ¢
A
Vi, j

Vij ~Tij

Vi,j — M

Tij Mij Vi
Figure 1: Matching is stable whenever for each bidder i € [
and each slot j € J the point with coordinates (p;, u;) lies out-
side the gray region.

3.2 Our Results

One of our technical contributions is a proof of the existence of
stable, feasible matching in our model.

THEOREM 4 (EXISTENCE OF BIDDER-OPTIMAL MATCHING).
If the auction (v, m, ) is in a “general position”, it has a unique
bidder-optimal stable matching.

We defer the precise definition of general position to Defini-
tion 12. In essence, any auction (v,m,r) can be brought into
general position by arbitrarily small (symbolic) perturbations. In
practice this assumption is easily removed by using a consistent
tie-breaking rule.

We propose an auction mechanism that, for any reserve prices
r specified by the auctioneer, and any valutions v and maximum
prices m specified by the bidders, computes the bidder-optimal sta-
ble matching (u*, p*, u*), assigns the slots to the bidders according
to 1™ and charges the matched bidders prices p* correspondingly.
We call this mechanism the stable matching mechanism. We study
this mechanism from the game-theoretic perspective and prove that
the mechanism is truthful.

THEOREM 5 (TRUTHFULNESS). The stable matching mech-
anism is a truthful mechanism for bidders in the max-value model.
That is, submitting her true vectors v; and m; is a dominant strat-
egy for each bidder 1.

Our final contribution is an algorithm that computes the bidder-
optimal stable matching.

THEOREM 6. There is an algorithm that finds the bidder-optimal
stable matching in the max-value model in time O(nk®). Thus,
there is a truthful mechanism for max-value bidders that can be
implemented in this running time.

Taken together, these results yield the first known truthful mech-
anism that is efficient to implement for all bidders who can be rep-
resented in our max-value model. This not only includes the well-
known GSP or VCG and their variants by search engines, but much
more.

4. MODELING ADVERTISING AUCTIONS

In this section, we will present examples of auction mechanisms
commonly used in sponsored search. We will show how to model

® p,; — price of slot j



these mechanisms in our max-value model. In the next section we
give examples of novel combined mechanisms that can be imple-
mented in our model.

4.1 Existing Mechanisms

GSP pay-per-impression. In a Generalized Second Price auction,
each advertiser ¢ submits a single number b; as her bid, which is
the maximum amount she is willing to pay for displaying her ad.
The auctioneer orders bidders in decreasing order of their bids, and
assigns the first k£ advertisers to the k available slots in this order.
The i-th allocated advertiser pays amount equal to the (7 + 1)-st bid
for each impression.

GSP pay-per-click. An alternative is to charge the advertiser only
in the event of a click on her ad. The bid b; is interpreted as a
maximum the advertiser is willing to pay for a click. Again, the
advertisers are ordered by their per-click bid, and each allocated
advertiser pays the next highest bid in the event of a click. In a
quality-weighted variant, the ads are ordered by the product of their
quality score g; and bid b;; the i-th advertiser pays bi+1% in
the event of a click. Note that the expected cost per impre%sion
bit1 qi;l ctr; ; depends not only on the next highest bid but also on
the position, as long as the probability ctr; ; of clicking on the ad ¢
in position j depends on the position. Thus, there is no direct way
to translate a per-click bid to a per-impression bid, without looking
at the competitor’s bids.

The VCG mechanism for profit-maximizing bidders. In a vari-
ant of the VCG mechanism considered e.g. in [2], each bidder ¢
states her value V; for a click. The auctioneer derives the expected
value of each slot v; ; = V; - ctr; ; for that bidder by using an es-
timate ctr; ; of the probability that the ad ¢ would be clicked on if
placed in position j. The auctioneer computes a maximum-weight
matching in the bipartite graph on bidders and positions with v; ;
as edge weights. The maximum weight matching p* gives the final
allocation. For pricing, the VCG formula sets the price per impres-
sion of slot j = p*(i) to be pj = D4\ (i) Vhu/ (k) — Vkypu* (k)
where £/ is a maximum-weight matching with the set of bidders
I'\ {i}. Note that the per-impression price p; can be translated to a
per-click price by charging bidder 4 price p; /ctr; ; for each click.
(Similar translation can be done for a generally defined user action
other than a click, as long as the probability of the action can be
estimated.)

For each of the above mechanisms, we define a corresponding
type of bidder in the max-value model.

Max-per-impression bidder has a target cost per impression b;.
She prefers paying b; or less per impression to any outcome where
she pays more than b;. Given that her cost per impression is at most
b;, she prefers higher (with lower index) position to lower position.
Given a fixed position, she prefers paying lower price to higher
price.

A max-per-impression bidder ¢ can be translated into the max-
value model by setting her m; ; = b; for all positions j € J, and
setting her value v; ; = M(k + 1 — i) where M is a sufficiently
large number (M > b; is enough).

Max-per-click bidder differs from a max-per-impression bidder
in that she is not willing to pay more than b; per click. We translate
her per-click bid into our framework using predicted click proba-
bilities: set m; ; = b; - ctr;; fori € I and v, ; = M(k+ 1 —1)
where M > b; max; ctr;, ;.

Profit-maximizing bidder seeks the position and payment that
maximizes her expected profit (value from clicks minus payment).
If we assume that her value per click is V;, such bidder is modeled
by setting Vij = My 5 = Vi- ctr;,j.

We formalize the correspondence between the mechanisms and

corresponding bidder types in the following theorem.

THEOREM 7. The outcome (allocation and payments) of a (1)
per-impression GSP, (2) per-click GSP, (3) VCG auction, respec-
tively is a bidder-optimal stable matching for a set of (1) max-per-
impression bidders, (2) max-per-click bidders, (3) profit-maximizing
bidders, respectively.

PROOF. Part (3) of the theorem has been observed by multiple
authors including [16]. Chapter 7 of [19] as well as [6] discuss
the relationship of the VCG mechanism for assignments and stable
matchings.

We give a proof for part (1), per-impression GSP. The proof of
part (2) for per-click GSP is similar. For simplicity, we assume that
n > k and all reserve prices are zero. Let by > by > -+ > b, be
the per-impression bids of the bidders. Without loss of generality,
the bidders are ordered by decreasing order of their bids. (By the
general position assumption, assume bids are distinct.)

Recall that we encode a max-per-impression bidder by setting
vi; = M(k — 7+ 1) and m;; = b;. The matching produced
by the GSP auction is as follows: the matched pairs are y =
{(1,1),(2,2),...,(k,k)}, bidder’s utilities u; = M (k—i+1) —
bit1 for1 < ¢ < k, u; = 0fors > k, and prices p; = b;1 for
i=1,2,... .k

It is easy to verify that the matching is feasible and stable ac-
cording to Definitions 2 and 3.

First we show that any feasible matching in which the assign-
ment is different from p is not stable. Indeed, such a matching
(u',p’, u') must have a bidder i < k such that 7 was not allocated a
slot among the first ¢ slots, and a slot j < ¢ that is either unmatched
or matched to some bidder 7’ > 3.

From feasibility we have that p; = 0 if slot j is unmatched and
p; < b;s in case it is matched. In either case, p; < b;. Also, since
bidder 7 is matched to some slot j° > 4 (or unmatched), we know
that u; < v; ;v = M(k — j' + 1). We now claim that (¢, j) is a
blocking pair. Since v; j —uj > M[(k—j+1)—(k—j'+1)] > M,
inequalities (3) and (5) are violated, and since p;v < b;, inequality
(4) is violated as well.

Now consider any matching with the assignment
uw={(1,1),...,(k,k)}. Itis easy to verify that in order to be
stable, it must be that p; > b; 1, otherwise the pair (i + 1, ) would
be a blocking pair. Hence the matching with prices p; = b;+1 has
the lowest possible prices and hence is bidder-optimal. []

Minimum prices. Some search engines impose a minimum price
r; for each ad (for example, based on perceived quality of the ad).
In GSP, only bidders whose bid is above the reserve price can par-
ticipate. The allocation is in decreasing order of bids, and each
bidder pays the maximum of her reserve price and the next bid.
Minimum GSP prices are easily translated to the max-value model
by setting r;; = r; (if paying per impression) or r;; = 7; - ctr; ; (if
paying per click). Our model allows for separate reserve prices for
different slots (e.g. higher reserve price for certain premium slots)
that are not easily implemented in the GSP world.

4.2 New Auction mechanisms

Let us give a few examples of new auction mechanisms that are
special cases of the max-value model.
GSP with arbitrary position preferences. Consider an advertiser
i who wishes for her ad to appear only in certain slots. For example,
[3] propose a GSP variant in which each bidder has the option to
specify a prefix of positions {1, 2, ..., 3;} for some (3; she is inter-
ested in and exclude the remaining slots. Also, tools like Google’s
Position Preference allow the advertiser to specify arbitrary posi-
tion intervals [av;, 3;]. We are however not aware of any published



work that discusses more sophisticated position preferences. One
would imagine that in the world of content advertising where there
may be multiple areas designed for ads on a single page, having
a richer language in which to express the preferences over slots
would be beneficial to the advertiser. Such preferences are readily
expressible in the max-value model. [

Combining click and impression bidders in GSP. Since both pay
per click and pay per impression models are widely used in prac-
tice, it is useful to have a way of combining these two bidding
modes. This can be easily done by computing a stable matching
for a mixed pool of bidders. The following simpler approach is not
appropriate, as it does not have the proper incentive structure.

Suppose we allow each bidder ¢ to specify both a maximum price
b, as well as a payment type 7; € {Z,C}. A naive combined auc-
tion orders bidders by decreasing b;. Each advertiser with 7; = 7 is
charged the next highest bid b; 1 for showing the ad. Each adver-
tiser with 7; = C is charged b;+1 in the event that the user clicks on
the ad. Note, this scheme gives advertisers a strong incentive to re-
port ; = C regardless of their true type (as long as the probability
of user clicking is less than 1).

To offset this incentive, the auctioneer may introduce multipliers
0 < gc < 1 and gz = 1 and set the effective bid of each bidder
to be bt = biq-;. In the modified GSP auction, bidders are be
sorted by their effective bid. Each bidder 7 who reports type 7; = T
is charged bfﬁl for each impression, while each bidder reporting
7; = C is charged b?_‘cf_l/qc in the event of a click.

For any value of 0 < g¢ < 1, there is a simple instance in which

some bidder can gain by misreporting her type. Let ctr; and ctra
be the probability that an user will click on an ad in position 1 and
2 respectively. Assume this probability is the same for all ads, and
that ctr; > ctrz. Suppose that the first slot is won by a bidder of
type Z, the second slot is won by a bidder of type C, and that there is
at least one more bidder with positive bid. If g¢ > ctro, the bidder
in the second position can lower her overall cost while keeping the
same position by reporting type C and keeping the same effective
bid. On the other hand, if g¢ < ctry, bidder in the first position can
lower her cost by reporting type Z, and adjusting her bid so that her
effective bid stays the same. []
Diverse bidders. There are many types of bidders with different
goals. Some like to think in terms of a maximum price per click or
impression. Some prefer to target only certain positions (e.g. top of
the page) for consistency or branding reasons. Others try to maxi-
mize their profit and are able to estimate the value of a specific user
action. Each bidder may specify her goal in a language familiar to
her. We are not aware of any prior research on auction mechanisms
for such diverse set of bidders. [

S. ALGORITHM FOR COMPUTING THE
BIDDER-OPTIMAL MATCHING

In this section we present an algorithm that for given auction
(v,m,r) (in general position) computes the bidder-optimal stable

matching. The algorithm starts with an empty matching (u(®, p(® 11(*))

which is defined as follows. Utility of each bidder i is u\” = B,

i

where B is a large enough number, such that B > max{v; ; | (i,7) €

I'x J}. Price of each slot j is ¥

j
e p©® =0

In each iteration, the algorithm finds an augmenting path, and
updates the current matching (v, p®, 1(9) to the next matching
(utHD pt+D 4Dy - The algorithm stops when no more up-

= 0. There are no matched pairs,

dates can be made, and outputs the current matching (u(T) p'D, M(T))

at the end of the last iteration. We now describe an iteration in more

detail. To do so, we introduce the concept of an update graph.

DEFINITION 8 (UPDATE GRAPH). Given an auction (v, m,T),
the update graph for a matching (u, p, 1) is a directed weighted bi-
partite multigraph with partite sets I and J U {jo}, where jo is the
dummy slot. The update graph consists of five types of edges. For
each bidder i and each slot j € J there is

e ¢ forward edge from i to j with weight u; + p; — v j, if
pj € [rig,mi);

e a backward edge from j to ¢ with weight v; ;
(1,4) € o

—u; —py, If

e a reserve-price edge from i to j with weight w; + 7; j — vij,
if wi + i > vi; and myj > 145,

e a maximum-price edge from i to j with weight w; + m; ; —
Vig, f i +mij > i and mi; > i,

e g terminal edge from i to jo with weight u; if u; > 0.

An alternating path in the update graph starts with an unmatched
bidder vertex ¢ with u;, > 0, follows a sequence of forward and
backward edges, and ends with a reserve-price, maximum-price or
terminal edge. We place the restriction that all vertices of the al-
ternating path must be distinct, with the possible exception that the
last vertex is allowed to appear once again along the path. The
weight w(P) of an alternating path P is the sum of weights of its
edges.

Let (u®,p®, 1) be a matching and G*) be the correspond-
ing update graph. A single iteration of the algorithm consists of the
following steps.

1. If there is no alternating path, stop and output the current
matching. Otherwise, let P be an alternating path in G ® of
minimum weight. Let w'®) (P) denote its weight, and let

yJes e, Jet1) for some £ >0 .

P = (iO,jl,il,j2, i2,. ..

2. Let d (40, y) be the length of the shortest path in G**) from
1o to any vertex y, using only forward and backward edges.
If a vertex y is not reachable from 4o, d® (ig, y) = oo.

3. Compute utility updates for each bidder ¢« € I. The vector
u Y gives the final utilities for the iteration.

K3

D — ugt) — max (w(t)(P) - d(t)(io,i), 0) (6)
4. Compute price updates for each slot j € J.

Py =)+ max (w®(P) = d¥(io,j), 0) ()
The final prices p§-t+l) are equal to p;-H') with one exception.
In case the last edge of P is a reserve-price edge, we set
the price of slot j¢1, the last vertex of P to be p‘TY =
max(p(“') yTig,de41 )
5. Update the assignment /L(z) along the alternating path P to

obtain the new assignment z(**1).

We have not specified how should the set of assignment edges be
updated. Before we do that, let us state two invariants maintained
by the algorithm.

(A1) The matching (um ,p\, p<t)) is stable for the auction (v, m, ).



(A2) For every matched pair (3, j) € ;L(t), uE” and p§t) satisfy (1)
and (2).

An important consequence of invariant (A1) is that forward edges
have non-negative weight. Indeed, it can be easily checked that a
forward edge with a negative weight would be blocking pair. Invari-
ant (A2) guarantees that backward edges have zero weight. Simi-
larly, invariant (A2) implies that the weight of every backward edge
must be zero. Finally, each reserve-price, maximum-price and ter-
minal edges has non-negative weight by definition.

LEMMA 9. All edge weights in each update graph G® are
non-negative.

With non-negative edge weights, single-source shortest paths can
be computed using Dijkstra’s algorithm in time proportional to the
square of the number of vertices reachable from the source. Since
no unmatched vertex is reachable from any other vertex, there are at
most 2k reachable vertices at any time, thus the shortest alternating
path P and distances d* (i, ) can be computed in time O (k?).

Finally, let us deal with updating the assignment p. Since the al-
ternating path alternates between using forward (i.e. non-matching)
and backward (i.e. matching) edges, a natural move is to remove all
the matching edges of P and replace them by non-matching edges
of P. Care must be taken however to take into account the special
nature of the last edge of P as well as the fact that the last vertex of
P may be visited twice. We consider three cases:

Case 1: P ends with a terminal edge, i.e. j¢+1 is the dummy slot.
Flip matching and non-matching edges along the whole length of
P. Bidder i, ends up being unmatched, and forx = 0,1,...,/—1,
bidder 7, will be matched to slot jz41.

Case 2: P ends with a maximum-price edge. Consider two sub-
cases:

(a) je+1 = je. This means that the price bidder ¢, was matched
to reached his maximum price. Flip matching an non-matching
edges along P. This leaves bidder ¢, unmatched, and for
x=0,1,...,¢ — 1bidder i, is matched with slot 751.

(b) Otherwise, the maximum price was reached on a non-matching
edge. Keep the matching unchanged. That is, p(+1) = ;).

Case 3: P ends with a reserve-price edge. This is the most com-
plex case. Consider three subcases:

(a) Item jo41 is unmatched in u(t). This case increases the size
of the matching. For z = 0, 1, ..., ¢, match bidder i, with
slot jzy1 -

(b) Item joiy is matched in x® and the reserve price Tig,des1

offered by bidder 7, does not exceed the current price p;’:i

of the slots. Keep the matching unchanged, that is, g+ =

ol

(¢) Ttem jeq1 is matched in 4 to some bidder ¢, and Tigjop1 >

pxii If P is a path, that is, if P does not visit slots j;,

twice, we simply unmatch bidder ¢¢1, and flip matching and
non-matching edges of P. (This keeps the size of the match-
ing the same, as bidder ¢ gets matched and bidder 4,41 un-
matched.)

If P visits je+1 twice, it must be that jo+1 = jq for some d.
Note that it is not the case that d = ¢, since this would mean
that 7, was matched to jo41. This is impossible because the
reserve price on this edge has been reached just now. This

way, the end of P forms a cycle with at least 2 bidders and
2 slots. We flip the matching and non-matching edges along
the cycle, but leave the rest of P untouched. This leaves
bidder i, matched to slot jy41,forx =d,d+1,...,%.

6. ANALYSIS OF OUR ALGORITHM

In this section we show that the algorithm from Section 5 indeed
computes a bidder-optimal stable matching. It is not obvious that
a stable matching even exists for any auction instance (v, m, 7).
Our algorithm provides a constructive proof of this fact. An alter-
nate proof of existence can be done using limit arguments and the
deferred acceptance algorithm on a sequence of discretizations of
bidder’s preference lists. The details are deferred to the full version
of this paper.

LEMMA 10. The matching (u<T),p(T)7 u(T)) computed by the
matching algorithm is feasible and stable.

PROOF. Stability follows directly from invariant (A1). Feasibil-
ity follows from invariant (A2) and the fact that since there are no
(T)

alternating paths, it must be that «
bidderi. [J

= 0 for every unmatched

We shall prove the invariants later in this section. While a feasi-
ble stable matching always exists, there may not always be a bidder-
optimal matching, as the following example shows. Consider the
case of a single slot and two bidders with identical maximum bids.
There are two stable matchings. In each matching, the slot is al-
located to one of the bidders at maximum price. Each matching is
preferred by one bidder over the other, hence there is no matching
preferred by both of them.

Fortunately it turns out that the example above is degenerate,
and that a bidder-optimal matching exists for every non-degenerate,
or "general position" auction. To make this precise, we need the
following two definitions.

DEFINITION 11  (AUCTION GRAPH). The auction graph of an
auction (v,m,r) is a directed weighted bipartite multigraph with
partite sets I and J U {jo}, where jo is the dummy slot. The auc-
tion graph contains five types of edges. For each bidder i and each
slot j € J there exist

e g forward edge from 1 to j with weight —v; ;,

e a backward edge from j to i with weight v; j,

e qreserve-price edge from i to j with weight r; ; — v; j,

e a maximum-price edge from i to j with weight m; ; — v; j,
e ¢ terminal edge from 1 to jo with weight 0.

DEFINITION 12 (GENERAL POSITION). An auction (v, m,r)
is in general position if for every bidder i, no two alternating walks
in the auction graph that start at bidder i, follow alternating for-
ward and backward edges and end with a distinct edge that is either
a reserve-price, maximum-price or terminal edge, have the same
weight.

Any auction (v, m, ) can be brought into general position by a
symbolic perturbation. In the algorithm implementation, this can
be also achieved by breaking ties lexicographically by the identity
of the final edge of the walk.

The next section is pretty technical.
needed to prove Theorem 6.

It establishes invariants



6.1 Invariants

Besides invariants (A1) and (A2) introduced in Section 5, we
claim three more invariants.

(A3) Each unmatched slot has zero price.

(B1) if a bidder ¢ is interested in slot j and u§t> + mi; = vij,
then (i, j) & p®.

(B2) If a bidder 7 is interested in a slot j and u,
then (i, ) € pu® orpg- V>

(t) _
+ rij = Vi,

All the five invariants are proved by induction on ¢. Invariants
(B1) and (B2) are technical and we omit their proofs in this version
of the paper. However, we use them in the induction step to prove
the first three invariants. Both (B1) and (B2) rely on the general
position assumption.

PROOF OF THE INVARIANTS. The base case, t = 0, is readily
verified. Invariant (A1) follows from that ul(p) = Bforall: € I,
p§-0> = 0 for all j € J, and hence (3) is satisfied. Invariants (A2)
and (A3) hold trivially.

Let us prove that (uF, pt+Y 0+ satisfies (A3). Note
that p<th1> > p<t). The slots matched in /,L<t) remain matched
in u*TY, at most one additional slot is matched in p**1). The
remaining slots are not reachable from i in G, since for any
such slot 7, p = 0O and forany ¢ € I, r;; > 0 by the general
position assumptlon thus there is no forward edge to j. Hence the
price of any such slot j remains zero.

Let us prove that (u(*+1) | p(t+1) 1,41 satisfies (A1). We con-
sider three cases for any pair (¢,7) € I x J:
€ [rij,mij). (u(t),p<t)7p<t)) is stable by the
induction hypothesis and hence u(-t) + p(t) > ;. I d® (ig, 1) >
w®(P), then u(tH) Et) and p<t+1) >p (t> , thus u<t+1) and
p§t+l> satisfy (3).

On the other hand, if d®) (io, i) < w® (P), then

W = — @O P) = d o, 1)), ®
P = p ) 2 pl 4 ((P) = dW (0, 5) . )

Since from ¢ to j there is a forward edge in G(t),

Case 1: p;-t)

d (io,§) < d¥ (io,i) + (u{” +p —vij) . (10)

We add (8) to (9), subtract (10), and we get that ui”” and p;t“)
satisfy (3).

Case 2: p > m ;. Since p{'™" > p', (4) holds for p{ ).
(This case applies also if ¢ is not interested in j.)

Case 3: p§t) < 7,5 and ¢ is interested in j. (u(t>,p<t),u<t)) is
stable by the induction hypothesis and hence u(t) satisfies (5). If
d® (ig,i) > w®(P), then u{"™ = u{") and hence u{""" also
satisfies (5).

On the other hand, if d® (49, 7) < w™® (P), then

wl = 4 — (w®(P) — d (ig, ) . (11)

We claim that in G® there is reserve-price edge from ¢ to j and
thus

w®(P) < dW (io,i) + Wl +rij —viy) . (12)

To prove the existence of the reserve-price edge we show that u§t> +
Ti,; > v;,. The non-strict inequality holds since ugt) satisfies (5).

The strictness follows since, by the induction hypothesis, (u*, p®, u®)

satisfies (A2) and (B2) .
By subtracting (12) from (11) we get that w1 satisfies 5).

First, let us prove that (u(t+1),p(t+), p(t)) satisfies (A2). Con-
sider any pair (i,7) € p. In G™ there is a backward edge from
j to i. By induction hypothesis, (u(*), p, (V) satisfies (A2) and
hence the backward edge has zero weight. Hence

d (io, 1) = d¥ (o, j) - (13)

Therefore, from the updates (6), (7) follows ul(.tﬂ) + p§t+) =
ugt) + pg-t) and hence (1) remains to hold.

If w® (P) < d® (ig, 1), then p(H) pgt) and thus (2) remains
satisfied by p§-t+). On the other hand, if w® (P) > d® (io, 1), then
by the update (7) for prices

i =i + (@ (P) — d (i, j)) - (14)
We also claim that there exists maximum-price edge from ¢ to j and
thus

wP(P) < d® (ig, i) + (! +mi; —vi) . (15)

To prove the existence of the maximum-price edge we show that
ugt) + my,; > v;,;. The non-strict inequality holds since pg-t) <
m;,; and thus ul(-t) +mi,; > ugt) —|—p§.t) = v;,; since by the induc-
tion hypothesis (u?, p®, u®) satisfies (A2). Strictness follows
since, by the induction hypothesis, (u®, p®, 1) satisfies (B1).

Summing (13), (15), (14) and canceling common terms gives
P < (ul?) +p(t) vij) +mi; = my;, where ul” + p(t)
vi,; = 0 follows from the induction hypothesis. Hence since
p“” > p(t) > 14,5, (2) remains to hold for pgtﬂ.

Finally, let us prove that (w9 p(t+D (4D sagisfies (A2).
For any pair (i,7) € p® N u®Y we have already done it, since

(Hl) = p(tﬂ It remains to consider pairs in 1\ p(®). Let

P = (zo,jl, i1,... ,jg,l[,]g+1) be the alternating path used to
obtain Y from ™. Any pair (¢, 7) € pt\ u® is an edge
lying P and has the form (¢,5) = (i, jo+1). We consider two
cases.

Case 1: © < (. In this case (i,j) =
and has weight uz(-t) + p;t) — 5,5, and since it lies on a minimum-
weight path,

(i, jo+1) is a forward edge

d¥ (io, ) = dV (io,3) + (ul” +p\ —vij) . (16)

Since w¥(P) > d® (ig,i) and w (P) > d® (io,7), the up-
dated quantities are

(f+1) — u§t) _ (w(t) (P) _

P =+ W (P) -

d® (ig, 1)) , a7

d(io, 5)) - (18)
The equality (1) for u( D and p<tJr ) follows by summing (17),
(18) and subtracting (16)

Let us verlfy that go(t+ ) satisfies (2). Since (i,7) is a forward

) € [ri;,ms ;). By the induction hypothesis (u®, p® ;1)
( ()

edge, p

is stable, thus u; RS p<t) > v;,j, hence u;” + m;; > v;; and
consequently in G< ) there is a maximum- price edge from ¢ to j of

weight ugt) + my,; — vs,;5. Therefore

w®(P) < d (g, i) +ul” +mi; —vi; . (19)



We add (18) to (19) and from that we subtract (16), we cancel com-
mon terms and we have pﬁ-“‘l) < my,j. The verification of (2) for
(*+1) i finished by observing that p'™ > p{® > p; ..
D; 18 finis y g p; ZP; Z Ty
Case 2: x = (. Since we assume that (7, j) = (¢, je+1) belongs
to 1\ 1M it can be neither a terminal edge nor a maximum-
price edge, and thus it must be a reserve-price edge and has weight

uﬁ” + 7i,; — vi;. By the same argument p§-i+) < 7y, hence
p*Y =1, ; and clearly satisfies (2). Observe that
Y =0 — (P (P) — d (i, 1)) ,
w® (P) = d® (io, i) + (u” + 7115 —vi5) -

(t+1)

[

(t+1)

Subtracting the two equations shows that w j sat-

isfy (1). O
6.2 Running Time

We bound the number of iterations by O(nk) in the claim below.
Since each iteration can be implemented in time O(k?), this gives
us overall running time O(nk?).

and p

LEMMA 13. The matching algorithm finishes after at most n(2k~+

1) iterations.

PROOF. Consider the number of edges in the update graph. Ini-
tially, the graph G©) has at most nk reserve-price, nk maximum-
price and n terminal edges. We claim that in each iteration, the
number of edges in the update graph is reduced by one. Since the
algorithm must stop when there are no more edges left, this bounds
the total number of iterations.

Consider an iteration ¢ of the algorithm. We claim that in the
alternating path P = (io, j1,%1,-.-,Jje¢, %¢, je+1), the last edge
(i,7) = (i¢, jes1) will not appear in the update graph G**Y)_ This
is easily verified by considering three cases:

Case 1: 1f (i, j) is a terminal edge, then w (P) = d*) (iq, 1) + ul?

i

and hence uEtH) = ugt) — (U)(t)(P) - d(t>(7:03 i)) = 0.

Case 2: 1f (i, §) is a maximum-price edge, then w'*) (P) = d'® (iq, i)+

(u(t) + m;,; — v;,;) and hence ultt 4 mi; = ugt) —

7 7

(w(t> (P) —d® (’io,i)) + my; = vi;.

Case 3: 1f (i, j) is a reserve-price edge, then w') (P) = d®) (io, i) +

('U;Et)+7"i,j7vi7j) and hence u§t+1>+ri,j = ugwf(w(t) (P)—
d® (’io, Z)) +7ri; = Ui 5.

The utilities never increase and the prices never decrease through-

out the algorithm, thus the edge (i¢, je+1) does not appear in any

update graph G forany ¢’ > t. [
6.3 Bidder Optimality

LEMMA 14. Let (v,m,r) be an auction in general position,
and let (u',p’, ') be any feasible stable matching. Then in any
iteration t of the matching algorithm, we have that v} < uit) for

alli € I and p; > p;t)forallj e J.

Without loss of generality assume that (u, p, 1) is such that there
does not exist a pair (¢,7) € p such that p; = m; ;. If there was
such a pair, then we can decrease prices of some of the items and
increase utilities of some of the bidders such that p; < m; ;. This
is possible because of the general position assumption. See full
version of the paper.

We prove Lemma 14 by induction on ¢. The base case, t = 0,
trivially holds true, since by feasibility of (u',p’, i), p} > 0 for
all j € Jand u; < B forall i € I. In the inductive case, assume
that u™® > o’ and p*) < p’. We first prove that

PROPOSITION 15. u*Y) > o/ and p®+) < p'.

We look “continuously” at updates (6) and (7). For that pur-
pose we define for each ¢ € I a continuous non-increasing function
ui(z),

i

ui(z) = ul? — max (m —d™ (ig, ), O) ,
and for each j € J a continuous non-decreasing function p;(z),
pa(e) = pi!) + max (2 — d®io, ), 0) .

Clearly, vtV = 4(w® (P)) and p*") = p(w¥ (P)). To prove
that u*tY > o/ and p**) < p’, suppose by contraction that there
exists y € [0, w™ (P)] such that either u;(y) < w for some i € I
or p;(y) > p)j for some j € J. We choose infimal such y. Clearly,
u(y) > o, p(y) < p’ and y < w™ (P). Consider the sets

I'={i € I'|uiy) = uj and dV (i0,4) <y},
J' ={i€J|pi(y) = p;andd(io, j) <y} .
CLAIM 16. Eachslot j € J' is matched in i to some i € I'.

PROOF OF THE CLAIM. Let j € J'. If j was unmatched, then
either d® (ig, j) = w®(P) or d¥ (i0,7) = oo; however both
options contradict the choice of i and that j € J'. Thus j is
matched to some i € I, hence in G*) there is a backward edge
from j to i and thus d® (io, 1) = d® (io, j) and therefore u;(y) +
p;(y) = v; ;. Further, invariants (A2) and (B1) imply that p§~t) €
[rs,j7, mi ;). Consequently, there is a maximum-price edge from 7
t0 j, w®(P) < d® (i, i) + (ul” +mj j —v; ;), and hence p; =
pi(y) < p§-t+) = p(t>+(w<t)(P)—d(t>(10,j)) < m;,;. Therefore
p; € [rij,ma;), and since (u',p’, p') is stable, uj + pf > v;
and hence u;(y) = vi; — p;(y) = vi; — p; < uj. On the other
hand, by infimality of y, u;(y) > uj. Thusi € I'. [

CLAIM 17. Each bidder i € I' is matched in 1’ to some j €
J'.

PROOF OF THE CLAIM. Since in G there is a terminal edge
from i to the dummy slot, w® (P) < d®) (4o, 1) + u"). Hence

uf = ui(y) = ul — (y — d (io, 1))
> ul? — (w®(P) — dP(io,i)) > 0,

and thus bidder 4 is matched in i’ to some slot j € J.

By feasibility of (u',p’, pt'), p; € [ri,j, ms;]. By the assump-
tion made at the beginning p; # m; ;. Therefore in G ) there is a
forward edge from ¢ to 5 and thus

A (io, §) < d¥ (io,7) + (ul” +p —vij) . (20)

J

Clearly, since i € I',

ui(y) = u'? — (y — dP (o, 7)) . 1)
By the price update rule
piy) = + (y — d¥ (i, 5)) - (22)

We add (21) to (22) and subtract from that (20) and we obtain
pi(y) 2 vij —ui(y) .
Hence, since by feasibility of (u’, p’, u'), ui + pj = vi,;, we have

pi(y) = vij — uily) = vij —u; = pj .



Recalling that p(y) < p" we see that p; (y) = pj.
Subtracting (21) from (20) and cancelling common terms we
have

d (i, ) <y + (uily) +p\ —vij) .

We upper-bound the right side of the inequality using that u;(y) =

uj, p§t) < p;(y) and u} + pj; = v;,; and we have

A (io, ) <y + (uf +p) —vij) =y -
Thusj € J'. O

From the two claims it follows that |I’| = |.J| and that x(®
bijectively matches I’ with J'. In particular 79 ¢ I’. Choose j €
J' with smallest d®) (io, 7). Consider the minimum-weight path in
GW from io to j which uses only forward and backward edges.
The vertex on the path just before j is a bidder ¢ ¢ I’. Clearly,
y > d®(io,7) > d™ (io,) and hence u;(y) < uj. There is a
forward edge from 7 to 7, thus p;” € [ri,j, ms,;) and also u;(y) +
p;j(y) = vi, and hence (¥) u} + pj < v ;. Since in G*) there
is a maximum-price edge from i to j, p; = p;(y) < msj, which
together with (*) contradicts stability of (u’,p’, 1’). This proves
Proposition 15.

To prove Lemma 14 it remains to show that p(H'1> < p’. This
amounts to show that if (u(+1) | p(t+1) | ,(+1)) was obtained from
(w®, p®, 1) by updating along an alternating path P of which
the last edge, (¢,j) = (i, j14+1), Was a reserve-price edge and

p;““) < 74,4, then

ri; < P;' . (23)

Since (u',p’, ') is stable, either u; + p’; > v; 5 or p; > my ;. In
former case, (23) follows from that uEHU = v;,; — Ti,5, Propo-
sition 15 and that (v, p’, u’) is stable. In latter case, (23) follows
since the presence of the reserve-price edge from ¢ to j guarantees
that My, > T4 5.

The discussion thus far completes the proof of Theorem 4.

7. INCENTIVE COMPATIBILITY

In this section we will prove Theorem 5. A mechanism based
on computing men-optimal stable matching has been shown to be
truth-revealing in several contexts. For the basic stable matching
problem without payments, a concise proof can be found in [17].
For the case of continuous utilities, a proof was given in [8]. Our
proof for the max-value model mimics the overall structure of its
predecessors. First, we show that there is no feasible matching in
which every single bidder would be better off than in the bidder-
optimal matching. (Note that if an agent or set of agents were to
successfully lie about their preferences, the mechanism would still
output a matching that is feasible with respect to the true prefer-
ences.) This property is known as weak Pareto optimality of the
bidder-optimal matching.

LEMMA 18 (PARETO OPTIMALITY). Let (v, m,r) be an auc-
tion in general position and let (u”™,p*, u*) be the bidder-optimal

matching. Then for any matching (u, p, ) that is feasible for (v, m, ),

there is at least one bidder i € I such that u; < uj.

Second, we show that every feasible matching is either stable, or
has a blocking bidder-slot pair that involves a bidder who is not bet-
ter off in this matching than in the bidder-optimal matching. Ver-
sions of the following lemma appear in [14, 10, 19]. The original
statement in a model without money is attributed to J. S. Hwang.

LEMMA 19 (HWANG’S LEMMA). Let (u,p, p) be a match-
ing that is feasible for an auction (v, m, ) in general position and
let (u™,p*, u*) be the bidder-optimal matching for that auction.
Let

I"={iel|u>u}.

If I'" is non-empty, then there exists a blocking pair (i,j) € (I —
Ity x J.

Theorem 5 directly follows from Lemma 19. In fact, the lemma
implies the following stronger statement.

THEOREM 20. There is no way for a bidder or a coalition of
bidders to manipulate their bids in a way such that every bidder in
the coalition would strictly benefit from the manipulation.

PROOF. Suppose there is a coalition I of bidders that can ben-
efit from submitting false bids. Let (v, m,r) be an auction that
reflects the true preferences of all bidders, and let (v',m’,7) be
an auction that reflects the falsified bids. Note that v, = v; and
m}, = m, except for bidders i € IT.

Let (u, p, p) be the bidder-optimal stable matching for the auc-
tion (v',m’,r). First observe that the matching (u, p, 1) must be
feasible for the true auction (v, m, r). This is because for each bid-
der i € I — I't, the feasibility constraints are the same in both
auctions. For bidders i € I, we need to verify that p; < my ;
whenever (¢, j) € p. This follows because the true bidder-optimal
matching (u*, p*, p*) respects maximum prices, and any outcome
that respects maximum prices is preferred over an outcome that
doesn’t.

Since (u, p, ) is feasible, we can apply Lemma 19 and conclude
that there is a pair (4,5) with i € I — I'" that is blocking for the
auction (v, m,r). [J

The rest of this section is devoted to the proofs of Lemmas 18
and 19.

PROOF OF LEMMA 18. For the sake of contradiction, suppose
that there is a feasible matching (u, p, 1) such that u;, > wj for
all © € I. Note that every bidder must be matched in p, since
u; > u; > 0.

For each bidder ¢ € I, consider the slot j = p(¢) matched to
bidder ¢ in the matching . Since the pair (¢, §) is not blocking for
the bidder-optimal matching (v, p*, 1), it must be that p; > p;.
In particular, the existence of y implies that there must be n slots
with positive prices in the bidder-optimal matching *, and that
these slots are matched in p as well.

In the matching algorithm of Section 5, if a slot ever becomes
matched to a bidder, it stays matched to some bidder throughout
the algorithm. Thus before the last iteration, at most n — 1 slots
have positive prices. Suppose the last iteration, iteration 7" — 1,
increases the size of the matching to n, and let 5 be the last slot
to be matched. Let i’ = u(j) be the bidder matched to j in the
hypothetical matching p.

Let P be the shortest alternating path found in Step 1 of the last
iteration of the matching algorithm. Recall that the first vertex of
the path is denoted by o and w* ~Y) (P) denotes its length. If P
ends with the reserve-price edge (i, 7), it must be that ¢ and j are
matched in both g and p* at the same reserve price, contradicting
our assumption that u; > u;.

On the other hand, if P does not end with the reserve-price edge
(4,7), we show that there is a shorter alternating path P’ that does
include this edge, which again leads to a contradiction. From Step

3 of the last iteration we have u'T™% — u; = w(T_l)(P) -

2

dT=Y (ig,1). Let s be the length of the reserve price edge (4, j);



recall from Definition 8 that s = uE-T*l) + 7i,; — v4,;. Now con-

sider the alternating path P’ that consists of the shortest path from
1o to ¢ followed by the reserve price (7, j) edge. We have

w T V(P =T V(P =ul"™ —uf —s = vy —riy—ul .
Since uj < u; < v;; — rs,5, this difference is positive and hence
P’ must be a shorter alternating path than P. [

PROOF OF LEMMA 19. Without loss of generality assume that
(u, p, ) is such that there does not exist a pair (3, j) ¢ p such that
u; + ri,; = vi,j. If there was such a pair, then we can decrease
prices of some of the items and increase utilities of some of the
bidders such that u; + 7;,; > v; ;. (This is possible because of the
general position assumption. See full version of the paper.) The set
I'" would only grow by such operation.

Let us denote by u(I), u* (1) the set of slots matched to bid-
ders in I* in matching respectively y, ;1*. We consider two cases:

Case 1: p(IT) # p*(IT). Forany i € I we have u; > ujf >
0 and hence each bidder in I is matched in z to some slot. There
existsaslot j € u(I"), 5 & pw*(I1). Leti = u(j). Sinces € I,
w; > u;.

We argue that p; < pj: By the general position assumption
p; # ma,j, and hence by feasibility of (u, p, it), p; € [ri,j, M ;)
and u; + p; = vi,;. Hence uj + pj > w; ;. Therefore p; >
Vi,j — 'U:: > Vi,j — Ui = Pj.

In particular, 5 is matched in * to some i’, and by the choice of
4. i € I't. Thus uy < uj,. By feasibility of (u*,p*, u*), pj €
[rir 5, Mg ;] and uj, + pj = vy ;. By the assumption on (u, p, 1)
that we made at the beginning of the proof, u;, # vy ; — 74 ;.

Now, it is not hard to see that (i, 5) is blocking pair for z. This
is because

.
pj <pj <Mij,

* *
uy < uy =vy; —p; < Uy — T and
gt 7& Vit g —Tilg

* *
Wir +p; < Uy +Pj = Vit 5 -

Case 2: p(I™) = p*(I") = J*. Since u; > uj fori € I'T, by
stability of (u™, p™, u*) it follows that p; < pj for j € JT.

Consider a reduced auction (v',m’, r’) on the set of bidders I+
and set of slots J . We set the reserve prices to reflect the influence
of bidders in I\ I, More specifically, let I’ = {i € I\ I" |u}, >
vy j — 1 ;}. Foreveryi € I and j € JT, we set

’ . *
T;; = Max (ri,j, {J/neal)f min(mgs ;, v j — U; )) .

We also set vj ; = v;,; and mj ; = m; ; except that if m; ; < 7}
we set méyj = —1. Itis not hard to show that if v, m, r is in general
position, then so is (v',m’,r"), using the fact that each utility u;
was at some point set to be equal to the length of some alternating
walk in the auction graph.

Now consider the matchings 1 and ;" restricted to the sets 1T,
J*. If the restricted p is not feasible for (v, m’,r’), it must be
because p; < 7;,; for some position j = wu(¢). This can only
happen if 7; ; > r; ; and hence 7; ; = max(my j, vy ; — u}) for
some bidder i’ € T\ I.

On the other hand, it is easy to check that the restricted matching
u* is feasible, stable and bidder-optimal for the auction (v, m’, r’).
If the restricted p is feasible for this auction, by Lemma 18, there
is a bidder ¢ € I such that u; < u}. This however contradicts the
definition of the set /™. [
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