Agnostic Online Learning

Dávid Pál

March 2009

Waterloo

joint work with Shai Ben-David and Shai Shalev-Shwartz

Online learning

In round t = 1, 2, ..., T

- receive \mathbf{x}_t e.g. an email
- predict $\hat{y}_t \in \{0, 1\}$ e.g. {spam, not-spam}
- receive "correct" feedback $y_t \in \{0, 1\}$
- $\hat{y}_t \neq y_t$ is a mistake

Overview

Previous work:

- Littlestone's model
- learning with expert advice
- PAC model
- agnostic PAC

Our contribution:

• Agnostic online learning

Important technicalities:

- Littlestone's dimension
- Simulating Expert's

Littlestone (1988)

- *unknown* target $h^* : \mathfrak{X} \to \{0, 1\}$ in *fixed known* class \mathfrak{H}
- ŷ_t = h^{*}(x_t) for all t
 (So called "realizable case".)
- How many mistakes do we make?
- Littlestone defined "optimal mistake bound" of \mathcal{H} . We call it Ldim (\mathcal{H}) – Littlestone's dimension

Learning with Expert Advice

Littlestone & Warmuth (1994), Vovk (1990), Lugosi & Cesa-Bianchi (2006) and many others:

- N experts
- in round *t* receive expert's advice $(f_1^t, f_2^t, \dots, f_N^t) \in \{0, 1\}^N$.
- \mathbf{x}_t 's and y_t 's can be arbitrary
- How many more mistakes than the best expert do we make?
- $\sqrt{T \log N}$ more (so called *regret*)

Valiant (1984), Haussler, Littlestone & Warmuth (1994)

- *x*_t is drawn from a fixed (but arbitrary) probability distribution *P* over *X*.
- target h^* in class $\mathcal H$
- $\hat{y}_t = h^*(\mathbf{x}_t)$ (realizable case)
- How many mistakes do we make?
- VCdim(H) log *T* mistakes

Haussler (1990), Vapnik and Chervonekis (1971)

- (\mathbf{x}_t, y_t) random drawn from a fixed (but arbitrary) probability distribution *P* over $\mathcal{X} \times \{0, 1\}$.
- Fixed class $\mathcal H$
- How many more mistakes than the best hypothesis in $\mathcal H$ do we make?
- $\sqrt{\text{VCdim}(\mathcal{H})T}$ regret

Our model: Agnostic Online Learning

- Fixed known class H
- \mathbf{x}_t and y_t are arbitrary
- How many more mistakes than the best hypothesis in $\mathcal H$ do we make?

•
$$\widetilde{O}\left(\sqrt{T \operatorname{Ldim}(\mathcal{H})}\right)$$
 regret

 $(PAC \rightarrow Agnostic \ PAC) \sim (Littlestone \rightarrow Agnostic \ Online)$

Littlestone's dimension

 \mathcal{H} *shatters* a full binary tree iff each leaf-hypothesis is *consistent* with the path to the root.

 $Ldim(\mathcal{H})$ is maximum depth of a full binary tree shattered by \mathcal{H} .

Standard Optimal Algorithm (SOA)

Littlestone (1988)

Initialize: $V_0 = \mathcal{H}$ **For** t = 1, 2, ..., Treceive \mathbf{x}_t for $r \in \{0, 1\}$ set $V_{t-1}^{(r)} = \{h \in V_{t-1} : h(\mathbf{x}_t) = r\}$ predict $\hat{y}_t = \operatorname{argmax}_{r \in \{0,1\}} \operatorname{Ldim}(V_{t-1}^{(r)})$ (if tie, then predict $\hat{y}_t = 0$) receive y_t update $V_t = V_{t-1}^{(y_t)}$

- V_t are hypotheses consistent with $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_t, y_t)$
- Ldim(V_t) decreases at every mistake i.e. when $\hat{y}_t \neq y_t$
- Makes at most $Ldim(\mathcal{H})$ mistakes in total

Our learning algorithm

- Create $N = O(T^{\text{Ldim}(\mathcal{H})})$ experts
- Use learning with expert advice algorithm
- Total regret

$$\sqrt{T\log N} = O\left(\sqrt{\operatorname{Ldim}(H)T\log T}\right)$$

to best expert

• Make sure that regret to the best hypothesis is at most regret to the best expert.

• Total number of experts:

$$\sum_{L=0}^{\text{Ldim}(\mathcal{H})} \binom{T}{L} = O(T^{\text{Ldim}(\mathcal{H})})$$

• One expert for each choice

 $\{i_1, i_2, \dots, i_L\} \subseteq \{1, 2, \dots, T\}$ where $L \leq \text{Ldim}(\mathcal{H})$

• Expert (i_1, \ldots, i_L) simulates SOA on $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_T$ assuming that it errs in rounds i_1, i_2, \ldots, i_L

 $\operatorname{Expert}(i_1,\ldots,i_L)$

Initialize: $V_0 = \mathcal{H}$ For t = 1, 2, ..., Treceive \mathbf{x}_{t} for $r \in \{0, 1\}$ set $V_{t-1}^{(r)} = \{h \in V_{t-1} : h(\mathbf{x}_t) = r\}$ $\hat{y}_t = \operatorname{argmax}_{r \in \{0,1\}} \operatorname{Ldim}(V_{t-1}^{(r)})$ (if tie, then $\hat{y}_t = 0$) If $t \in \{i_1, ..., i_I\}$ **Then** predict $f^t = \neg \hat{y}_t$ **Else** predict $f^t = y_t$ update $V_t = V_{t-1}^{(f^t)}$

Experts

Lemma

For each $h \in \mathcal{H}$ and any sequence $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_T$ there exists an expert, $\text{Expert}(i_1, \dots, i_L)$, with the same predictions as h. That is,

$$f^t = h(\mathbf{x}_t)$$
 for all $t = 1, 2, ..., T$.

Proof.

Pretend that *h* is the target. Consider the predictions of SOA on $(\mathbf{x}_1, h(\mathbf{x}_1)), \dots, (\mathbf{x}_T, h(\mathbf{x}_T))$. SOA makes mistakes in rounds i_1, i_2, \dots, i_L for some $L \leq \text{Ldim}(\mathcal{H})$. Expert (i_1, \dots, i_L) predicts $f^t = h(\mathbf{x}_t)$.

Regret upper bound

Corollary

Regret to the best hypothesis is at most the regret to the best expert.

Theorem

For any \mathcal{H} there exists a learning algorithm with regret $O(\sqrt{\text{Ldim}(\mathcal{H})T\log T})$.

Lower Bound

Theorem

For any \mathcal{H} and any learning algorithm there exists a sequence $(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_T, y_T)$ such that regret to the best hypothesis in \mathcal{H} is at least $\Omega(\sqrt{\text{Ldim}(\mathcal{H})T})$.

Proof.

Follow a path in shattered tree. For each node x construct

$$(\mathbf{x}, y_1), (\mathbf{x}, y_2), \ldots, (\mathbf{x}, y_{T/\operatorname{Ldim}(\mathcal{H})})$$

where *y*'s are chosen independently uniformly at random. If there exists two *h*, *h*' such that $h(\mathbf{x}) = 0$ and $h'(\mathbf{x}) = 1$, then expected regret is at least $\Omega(\sqrt{T/\text{Ldim}(H)})$. Total regret is

$$\Omega\left(\mathrm{Ldim}(\mathcal{H})\cdot\sqrt{T/\mathrm{Ldim}(H)}\right) = \Omega\left(\sqrt{\mathrm{Ldim}(H)T}\right) \ .$$

Conclusion

Paper:

- www.cs.uwaterloo.ca/~dpal/papers/
- COLT 2009
- fat-shattering and margins
- *y*_{*t*}'s are stochastic instead of adversarial

Open problem:

$$\Omega\left(\sqrt{\operatorname{Ldim}(\mathcal{H})T}\right) \quad \text{vs.} \quad O\left(\sqrt{\operatorname{Ldim}(\mathcal{H})T\log T}\right) \ .$$
Thanks!