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Online learning

In round t = 1, 2, . . . ,T
• receive xt e.g. an email
• predict ŷt ∈ {0, 1} e.g. {spam,not-spam}

• receive “correct” feedback yt ∈ {0, 1}

• ŷt 6= yt is a mistake



Overview

Previous work:
• Littlestone’s model
• learning with expert advice
• PAC model
• agnostic PAC

Our contribution:
• Agnostic online learning

Important technicalities:
• Littlestone’s dimension
• Simulating Expert’s



Littlestone’s model

Littlestone (1988)

• unknown target h∗ : X → {0, 1} in fixed known class H

• ŷt = h∗(xt) for all t
(So called “realizable case”.)

• How many mistakes do we make?
• Littlestone defined “optimal mistake bound” of H.

We call it Ldim(H) – Littlestone’s dimension



Learning with Expert Advice

Littlestone & Warmuth (1994), Vovk (1990),
Lugosi & Cesa-Bianchi (2006) and many others:
• N experts
• in round t receive expert’s advice

(f t
1, f

t
2, . . . , f t

N) ∈ {0, 1}N.
• xt’s and yt’s can be arbitrary
• How many more mistakes than the best expert do we

make?
•
√

T log N more (so called regret)



Valiant’s PAC model

Valiant (1984), Haussler, Littlestone & Warmuth (1994)

• xt is drawn from a fixed (but arbitrary) probability
distribution P over X.

• target h∗ in class H

• ŷt = h∗(xt) (realizable case)
• How many mistakes do we make?
• VCdim(H) log T mistakes



Agnostic PAC model

Haussler (1990), Vapnik and Chervonekis (1971)

• (xt, yt) random drawn from a fixed (but arbitrary)
probability distribution P over X× {0, 1}.

• Fixed class H

• How many more mistakes than the best hypothesis
in H do we make?

•
√

VCdim(H)T regret



Our model: Agnostic Online Learning

• Fixed known class H

• xt and yt are arbitrary
• How many more mistakes than the best hypothesis

in H do we make?
• Õ

(√
T Ldim(H)

)
regret

(PAC → Agnostic PAC) ∼ (Littlestone → Agnostic Online)



Littlestone’s dimension

H shatters a full binary tree iff each leaf-hypothesis is
consistent with the path to the root.
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Ldim(H) is maximum depth of a full binary tree
shattered by H.



Standard Optimal Algorithm (SOA)

Littlestone (1988)

Initialize: V0 = H

For t = 1, 2, . . . ,T
receive xt

for r ∈ {0, 1} set V(r)
t−1 = {h ∈ Vt−1 : h(xt) = r}

predict ŷt = argmaxr∈{0,1} Ldim(V(r)
t−1)

(if tie, then predict ŷt = 0)
receive yt

update Vt = V(yt)
t−1

• Vt are hypotheses consistent with (x1, y1), . . . (xt, yt)

• Ldim(Vt) decreases at every mistake i.e. when ŷt 6= yt

• Makes at most Ldim(H) mistakes in total



Our learning algorithm

• Create N = O(TLdim(H)) experts
• Use learning with expert advice algorithm
• Total regret

√
T log N = O

(√
Ldim(H)T log T

)
to best expert

• Make sure that regret to the best hypothesis is at
most regret to the best expert.



Experts

• Total number of experts:

Ldim(H)∑
L=0

(
T
L

)
= O(TLdim(H))

• One expert for each choice

{i1, i2, . . . , iL} ⊆ {1, 2, . . . ,T} where L ≤ Ldim(H)

• Expert(i1, . . . , iL) simulates SOA on x1, x2, . . . , xT

assuming that it errs in rounds i1, i2, . . . , iL



Expert(i1, . . . , iL)

Initialize: V0 = H

For t = 1, 2, . . . ,T
receive xt

for r ∈ {0, 1} set V(r)
t−1 = {h ∈ Vt−1 : h(xt) = r}

ŷt = argmaxr∈{0,1} Ldim(V(r)
t−1)

(if tie, then ŷt = 0)
If t ∈ {i1, . . . , iL}

Then predict f t = ¬ŷt

Else predict f t = yt

update Vt = V(f t)
t−1



Experts

Lemma
For each h ∈ H and any sequence x1, x2, . . . , xT there exists an
expert, Expert(i1, . . . , iL), with the same predictions as h. That
is,

f t = h(xt) for all t = 1, 2, . . . ,T .

Proof.
Pretend that h is the target. Consider the predictions of
SOA on (x1, h(x1)), . . . (xT, h(xT)). SOA makes mistakes in
rounds i1, i2, . . . , iL for some L ≤ Ldim(H).
Expert(i1, . . . , iL) predicts f t = h(xt).



Regret upper bound

Corollary
Regret to the best hypothesis is at most the regret to the best
expert.

Theorem
For any H there exists a learning algorithm with regret
O(
√

Ldim(H)T log T).



Lower Bound

Theorem
For any H and any learning algorithm there exists a sequence
(x1, y1), . . . , (xT, yT) such that regret to the best hypothesis in
H is at leastΩ(

√
Ldim(H)T).

Proof.
Follow a path in shattered tree. For each node x construct

(x, y1), (x, y2), . . . , (x, yT/ Ldim(H))

where y’s are chosen independently uniformly at random.
If there exists two h, h ′ such that h(x) = 0 and h ′(x) = 1,
then expected regret is at leastΩ(

√
T/Ldim(H)). Total

regret is

Ω
(

Ldim(H) ·
√

T/Ldim(H)
)

= Ω
(√

Ldim(H)T
)
.



Conclusion

Paper:
• www.cs.uwaterloo.ca/˜dpal/papers/
• COLT 2009
• fat-shattering and margins
• yt’s are stochastic instead of adversarial

Open problem:

Ω
(√

Ldim(H)T
)

vs. O
(√

Ldim(H)T log T
)
.

Thanks!

www.cs.uwaterloo.ca/~dpal/papers/

