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Online learning

Inroundt=1,2,...,T
e receive x; e.g. an email
e predict j; € {0,1} e.g. {spam, not-spam}
e receive “correct” feedback y; € {0,1}
e 1, # y; is a mistake



Overview

Previous work:
e Littlestone’s model
e learning with expert advice
e PAC model
e agnostic PAC
Our contribution:
e Agnostic online learning
Important technicalities:
e Littlestone’s dimension
e Simulating Expert’s



Littlestone’s model

Littlestone (1988)

. unknown target h* : X — {0, 1} in fixed known class H

o 9y =h*(x;) for all ¢
(So called “realizable case”.)

e How many mistakes do we make?

e Littlestone defined “optimal mistake bound” of .
We call it Ldim(H) — Littlestone’s dimension



Learning with Expert Advice

Littlestone & Warmuth (1994), Vovk (1990),
Lugosi & Cesa-Bianchi (2006) and many others:

e N experts

¢ in round t receive expert’s advice
(A for-- o f8) €10, 1%,

e x;'s and y,’s can be arbitrary

e How many more mistakes than the best expert do we
make?

e /Tlog N more (so called regret)



Valiant’s PAC model

Valiant (1984), Haussler, Littlestone & Warmuth (1994)

e x; is drawn from a fixed (but arbitrary) probability
distribution P over X.

target h* in class H

9 = h*(x;) (realizable case)
e How many mistakes do we make?
VCdim(H) log T mistakes



Agnostic PAC model

Haussler (1990), Vapnik and Chervonekis (1971)
¢ (x4,y;) random drawn from a fixed (but arbitrary)
probability distribution P over X x {0, 1}.
e Fixed class H

¢ How many more mistakes than the best hypothesis
in H do we make?

e /VCdim(H)T regret



Our model: Agnostic Online Learning

e Fixed known class H
e x; and y; are arbitrary

e How many more mistakes than the best hypothesis
in 7 do we make?

. 6( TLdim(fH)) regret
(PAC — Agnostic PAC) ~ (Littlestone — Agnostic Online)



Littlestone’s dimension

I shatters a full binary tree iff each leaf-hypothesis is
consistent with the path to the root.

Ldim(J) is maximum depth of a full binary tree
shattered by J{.



Standard Optimal Algorithm (SOA)
Littlestone (1988)

Initialize: Vo = H
Fort=1,2,...,T
receive X;
forr e {0,1)set V", ={h e Viy : h(x,) =7}
predict §; = argmax,_, Ldim(Vt(r_)l)
(if tie, then predict ; = 0)
receive v
update V, = V)

e V; are hypotheses consistent with (x1, 1), ... (X, )
e Ldim(V;) decreases at every mistake i.e. when §); # vy,
e Makes at most Ldim(H) mistakes in total



Our learning algorithm

Create N = O(THm7)) experts
Use learning with expert advice algorithm

Total regret

J/TlogN =0 <\/Ldim(H)Tlog T)

to best expert

Make sure that regret to the best hypothesis is at
most regret to the best expert.



Experts

¢ Total number of experts:

Ldim ()

Z ('Z) _ O(TLdim(iH])

L=0
¢ One expert for each choice
{ir,ia,...,i1} C{1,2,..., T} where L <Ldim(H)

e Expert(iy,...,i ) simulates SOA on x1,X,...,Xr
assuming that it errs in rounds iy, 15, . . ., If



Expert(iy, ..., i)

Initialize: V) = H
Fort=1,2,...,T
receive x;
forr € {0, 1} set Vt(r_)1 ={heViq : hix;) =7}
§r = argmax,_ ;, Ldim( Vt(i)l )
(if tie, then f); = 0)
Ift ¢ {i1,...,iL}
Then predict f* = —),
Else predict f' = y;
update V; = Vt(f_t 1)



Experts

Lemma
For each h € 3 and any sequence x1,Xa, . .., Xt there exists an
expert, Expert(iy, . .., i), with the same predictions as h. That
is,

f'=h(x;)  forallt=1,2,...,T.
Proof.

Pretend that / is the target. Consider the predictions of
SOA on (x1,h(x1)), ... (x1,h(x7)). SOA makes mistakes in
rounds iy, iy, ..., i for some L < Ldim(X).

Expert(iy, . .., i) predicts f' = h(x;). O



Regret upper bound

Corollary

Regret to the best hypothesis is at most the regret to the best
expert.

Theorem
For any 3 there exists a learning algorithm with regret

O(y/Ldim(H)Tlog T).




Lower Bound

Theorem
For any 3 and any learning algorithm there exists a sequence
(X1,Y1), ..., (X1, yr) such that regret to the best hypothesis in

H is at least Q(+/Ldim(H)T).

Proof.
Follow a path in shattered tree. For each node x construct

(X»y1)> (X»y2)> ceey (X,]/T/Ldim(ﬂf))

where y’s are chosen independently uniformly at random.
If there exists two h, h' such that h(x) =0and h'(x) =1,
then expected regret is at least QO(/T/ Ldim(H)). Total
regret is

Q(Ldim(iH)-W) :Q< Ldim(H)T) .



Conclusion

Paper:
e www.cs.uwaterloo.ca/~dpal/papers/
e COLT 2009
e fat-shattering and margins
e y,'s are stochastic instead of adversarial
Open problem:

0 (VEdim(30T) vs. O(\/Ldim(i]{)TlogT).

Thanks!
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